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Abstract

The study investigates toxic effects of the furdgciebuconazole (TEB) drusariuminfected wheatTriticum
aestivun plants based on the morphological characteristiaoot apices and changes in the integrated peteasof
redox homeostasis, including the contents of fredin® and products of peroxidation of proteinsricenylated
proteins, CP) and lipids (malondialdehyde, MDA) rmots. In two-day-old wheat sprouts infected Bysarium
graminearumthe levels of proline, CP, and border cells aftrapices are higher than in roots of uninfectatduss by
a factor of 1.4, 8.0, and 3, respectively. Theztiia fungicide tebuconazole (TEB) at the conceiainatof 0.01, 0.10,
and 1.00 ug il of medium causes a dose-dependent decrease rifiger of border cells. The study of the effects of
TEB and fusarium infection on wheat plants in ad2@- experiment shows that the effect of the fumgicTEB on
redox homeostasis in wheat roots varies dependingeplant growth stage and is significantly dife in ecosystems
with soil and plants infected Hyusariumphytopathogens. The study of the morphology of eqoces shows that the
toxic effects of TEB and fusarium infection are rifiested in the destructive changes in root apicekthe degradation
of the root tip mantle.

Key words: Fusarium, tebuconazole, free prolineboaylated proteins, malondialdehyde, border cells
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1. Introduction

Fusarium infection is one of the most common disgadfecting cereal crops. This disease is caugembib
pathogenic fungi of the gentisarium The crop losses due to fusarium infection in aafsmaize, wheat, and rice
affected by fusarium infection are economically artant, as they are the major sources of plantepraand their
yields constitute over 55% of the total yield ofem crops. The crop losses may range between 33@%d Many
Fusarium species produce mycotoxins: deoxynivalenol (voriith zearalenone, and T-2 mycotoxin (Binder et al.
2007). The fusarium infection may damage the edrrasult in the reduced grain yield. Mycotoxin-@mtnated grain
is unsuitable and even unsafe food and feed. Thkcapion of fungicides decreases the incidenciisdrium infection
and reduces the levels of mycotoxins in commeggiain (Schmale and Bergstrom, 2003; SANCO, 201B8g ffiazole
fungicides now constitute 30% of the marketed foilgis. One of them is tebuconazole (TEB). TEB isHactive
multifunctional systemic fungicide used to protaatumber of cereal crops. TEB rapidly penetrategpthnts through
both their vegetative organs and roots. Howeviarzdie fungicides, including TEB, are phytotoxich@nad and Khan,
2012a, b). The mode of action of the triazole graufm suppress ergosterol biosynthesis, preverttiagormation of
cell membranes, causing the death of pathogenskletnal., 2001; Hartwig et al., 2012). Thiysariuminfected
crops treated with triazole fungicides are advgraéfected by two factorg:usariuminfection and fungicide.

At the systemic level, the toxic effects of triezellead to hormonal imbalance (Yang et al., 20did)ogen
imbalance, lower seed germination rates, disordersot growth and development (Serra et al., 2@I3,5), and the
appearance of chromosomal abnormalities (Wandseéhesr, 2017). The fungal sterol-tddemethylase — the effector
target of triazole fungicides in cells of mycopaibas — belongs to the evolutionarily ancient cytoofe-450(CYP)-
superfamily, which has also been detected in plantsanimals (Lamb et al., 2001). The phytotoxi¢#tyd toxicity of
triazole fungicides for humans and animals) haslmssociated with the effect of fungicides on tbévdy of sterol
demethylases and disturbance of the sterol depersitgmaling (Hartwig et al., 2012). At the systenewel, sterol
dependent signaling determines the activity of spidtesses as proliferation, differentiation, ahel production of
reactive oxygen species (Wassmann et al., 200k;eRal., 2008).

The cause-effect chain “inhibition of sterol denytdlses— sterol dependent signaling deficieneyinhibition
of generation of reactive oxygen species” can legl s the basis for evaluating myco- and phytotiyxaf fungicides
and for assessing plant resistance to mycopathodéesregulated hyperproduction of reactive oxygpecies (ROS)
in response to pathogen invasion is one of the m@jmtective responses of plants. In addition tmdpénighly toxic,
ROS trigger specific signaling systems, which cagbanges in the gene expression patterns and inthee

development of host plant resistance or sensittaitgathogens (Frederickson and Loake, 2014; Swaetipl., 2014).



76 Over the course of evolution, the pathogenic fumave developed scavenging systems that allow tleem t
77 neutralize cytotoxic effects of the oxidative busthe host plant. The pathogenic fungi use ROSgred in cells of
78 their host plant to regulate the expression ofrtbein genes that control cell differentiation arygphal growth in plant
79  tissues (Takemoto et al., 2007). Thus, ROS siggaimultaneously determines 1) activation of pldefense response
80  against invasion of mycopathogens, 2) the stimutatf growth and the differentiation of the mycduagen in plant
81 tissues after invasion, and 3) myco- and phytottiaf fungicides. In order to produce consisteritlgh crop yields,
82 ROS-dependent readjustment of these three systemsdslead to the most complete suppression of my@ction
83  with the minimal phytotoxic effects.

84 In addition to the peroxidation products, thereaiother important indicator of the state of thenpleoot
85 system: a free amino acid proline, which is angrdaéed indicator of the activity of root antioxidaand defense
86  systems. Proline is a low-molecular-weight scavenddree radicals (Signorelli et al., 2014), whialso increases the
87  gene expression in antioxidant enzymes (de Caretllah, 2013). The activation of the synthesigmafteins with high
88  proline contents is an important factor in the tiowing of mechanisms of the root defense agaiatitqgen invasion
89 (Cecchinietal., 2011; Plancot et al., 2013; Qaeta., 2015).

90 Pathogen invasion occurs through the plant rooid, therefore, the state of the roots of infectieahs can be
91 characterized by a system of border cells (Berrhoab and Molina, 2008). The border cells constitat specific
92  population of metabolically active cells localizi#dthe root apex and play a fundamental role inrtha interactions
93  with symbiotic and pathogenic organisms of theabzhere (Gunawardena and Hawes, 2002; Bais @086, Wen et
94  al., 2007, 2009; Cannesan et al., 2011, 2012).gehenantle is an excretory product of border cellsich encloses
95 them (Cannesan et al., 2011, 2012; Hawes, 2012)ifflasion of root pathogens elicits the productibborder cells
96 and increases their secretory activity — as a @efemsponse (Plancot et al., 2013). Thus, the nuaftirder cells can
97  be regarded as an integrated indicator of theifctif defense systems in pathogen-infected roots.

98 The present study investigated toxic effects of fhegicide tebuconazole ifrusariuminfected wheat
99 (Triticum aestivumstands by examining the state of the root apaceschanges in the integrated parameters of redox

100 homeostasis, including free proline content anccthwtents of protein and lipid peroxidation in mot

101 2. Materials and methods
102 2.1. Materials
103 Fungicide: tebuconazole (TEB) is a multifunctiosgbstemic fungicide, which is effective against aywside

104  range of fungal diseases of cereal crops. The aaifirmula of TEB is GH,,CIN;O. Molar mass (g md): 307.82.
105  Solubility in water: 36 mg I at 20°C. Melting point is 104.7°C. The substargeat hydrolyzed at pH of between 4

106 and 9; it is stable upon the exposure to light aletated temperature. The time of degradation iinisd 77 days. A
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commercial formulation Raxil Ultra (Bayer Crop Swie, Russia), with tebuconazole (TEB) as the adtigeedient
was used.

Wheat: experiments were performed in the communidfesoft spring wheat cv. Altaiskaya 70.

2.2. Wheat cultivation

Fusarium-infected and uninfected wheat seeds wsed. I oxic effects of tebuconazole and fusariuradtibn
were studied in the experiments with two-week-olieat sprouts and in the long-duration experimett fuvisarium-
infected wheat stands in the laboratory soil systEime wheat sprouts were grown as follows: the s@ate washed in
running water for 5-6 h and soaked in distilled evafor 24 h at room temperature. Different doseshef aqueous
solutions of tebuconazole were added to Petri dislomtaining distilled water (7 ml) to achieve edhcentrations of
the fungicide in the medium of 0.001, 0.01, and dl mi*. The seeds were sprouted at room temperature under
continuous light.

In the other experiment, wheat plants were grownthia laboratory soil microecosystems. The soil
microecosystems were prepared as follows. The agioaglly-transformed soil (collected at the villagleMinino, the
Krasnoyarsk Territory, Siberia, Russia) was plaiogal 500-cni plastic containers (500 g soil per container). Wheat
seeds were sown into the soil, at a planting dg$ilt00.45 g seeds per £.nlants were grown in a Conviron A1000
growth chamber (Canada) for 30 days under stabieitons: at an irradiation of 100-300 umol:?re®, under the
12L:12D photoperiod, at a temperature of 18-25°@ #re humidity of 65%; conditions of the experimamd soil
ecosystems are described in detail elsewhere (Holetval., 2017). The experiment consisted of thviding
treatments and controls: 1) in the negative contke), the infected wheat seeds were sown intosihié with no
fungicide applied; 2) in the positive control (kthe seeds and the commercial formulation RaxitdMtere buried in
soil simultaneously, with Raxil Ultra applied atcancentration corresponding to 3 pg TEB spil, and 3) in the
treatment, the seeds were soaked in a Raxil Udtiatisn for 10 min before sowing, with no more TEBHBded to the
soil, i.e. seeds were pretreated before sowing (P).

2.3. A biochemical study

The toxic effects of TEB were evaluated by measurathanges in the integrated parameters of redox
homeostasis: the contents of proline, malondialdehywnd carbonylated proteins in the roots of tap-dld wheat
sprouts and the wheat plants grown in soil-basetesys — at Days 10, 20, and 30 of the experimdra.rdot samples
were prepared by cutting 1-cm-long terminal posiofithe roots with apices. Then, the root biomeass homogenized
in a 0.05 M Tris-HCI buffer solution, pH=7.4, infend-held homogenizer, at T=4°C. To remove coaetrisl the
homogenates were centrifuged at 5@f)0for 45 min, at T=4°C. The supernatant fluid wadlerted and used to

determine the contents of carbonylated proteing thé method of Carty et al. (Carty et al., 2000a/ondialdehyde —

4
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by the method of Bailly et al. (Baily et al., 199@nd proline — by the method of Bates et al. (Bateal., 1973). The
contents of carbonylated proteins, malondialdehgdd, proline were calculated per 1 mg of root hoemage protein.

2.4. A morphological study of root apices

Prior to microscopic analysis, the root apices wewd in 2.5% glutaric aldehyde in 0.1 M phosphbiéfer,
pH=7.2. The root apices were rinsed in distillederdo remove the fixative and stained with 0.01%thylene blue.
Using a light microscope, we counted the numbdresf border cells that had detached from the serédi¢he root and
measured the size of the gel mantle (whose coldr dianged to blue due to the presence of a largauinof
polysaccharides). Sixty to seventy root apices wedyzed in each treatment and in the control.

2.5. A study of the contamination of seeds andosoilhytopathogenic fungi

The intrinsic contamination of wheat seeds with tppgthogens was determined by sprouting the seeds i
Petri dishes on sterile nutrient medium MEA (Russkederal Standard 12044-93). In the experiment wibheat
stands, the number of phytopathogenic fungi, inclgdr. moniliforme in soil was counted at Days 10, 20, and 30 of
the experiment. The counting of the total microscdpngi was performed by plating soil suspensiotodPetri dishes
with malt extract agar, which was supplemented wittoramphenicol (100 pgiof the medium) to suppress the cell
growth. All platings were performed in triplicatem 1F-10°dilutions of soil suspension. The dishes were iateth at
a temperature of 25 °C for 7-10 days. Microscopmialgsis of the colonies was done using an Axio&taroscope
(Carl zeiss). Microscopic fungi were identified tyeir cultural and morphological properties, witte tidentification
guides (Sutton et al., 2001; Watanabe, 2002).

The counting of phytopathogenic fungusarium and the total microscopic fungi in soil samples was
performed by plating soil suspension onto Petrihelis with malt extract agar, which was supplementath
chloramphenicol (100 pgtof the medium) to suppress the cell growth. Aditisigs were performed in triplicate from
10° dilutions of soil suspension. The dishes were liated in thermostat at a temperature of 25 °C fap Hays.
Microscopic analysis of the colonies was done usimgA\xioStar microscope (Carl Zeiss). Soil micrgacdungi were
identified by their cultural and macro-morpholodipsoperties (structure and color of colonies, &iuee of mycelium
and spore-bearing organs), which are objectiverpeters for identifying these microorganisms (Sutedral., 2001;
Watanabe, 2002). The speciesFafsariumwere determined by the presence of purple-pink pigation of colonies
and by the formation of typical micro- and macradimon mycelium (Pradeep et al., 2013).

2.6. Statistical analysis

Statistical analysis of the results was performsihgl the standard software package of MicrosofteExc
STATISTICA 8. The arithmetic means and standardiatmns were determined using Student’s t test.uResre

given asXtm.
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3. Results and Discussion

3.1. The effect of phytopathogenic infection onatkeed germination and the biochemical parametads
morphology of roots of sprouts

The phytosanitary analysis of wheat seeds growthemutrient medium showed the presence of infastio
caused by the fungi of the gendnasariumLink, Alternaria Nees, andBipolaris Shoem. The wheat seeds infected by
plant pathogens constituted 9.5+1.2%, 5.6+0.2% loickv (over 50%) were infected byusariumspecies. Thus, the
natural infections of the seeds were caused noy byl the predominanfusarium species, but also by the
phytopathogenic microscopic fungi that develope@mthe seeds containing internal infection werenjeaited.

The germination rate of the uninfect@dticum aestivumseeds reached 90+3%. The roots of two-day-old
sprouts contained 1.03+0.09 nM carbonylated pret¢®P) mg protein, 10.59+0.26 ug proline mgorotein, and
0.300+0.035 nM malondialdehyde (MDA) hgrotein. MDA, as a product of the peroxidatiommmbrane lipids, can
be involved in the regulation of the activity oflomembranes (via rearranging of the lipid bilageid changing of the
activity of membrane-bound proteins) (Ansari ef 2015; Antosik et al., 2015). The levels of CP, Mand proline
revealed in the experiment characterize the redordostasis in normally developing roots of unirdectriticum
aestivumsprouts.

The germination rate of the infected wheat seeds laaer (77£7%). The CP content in roots was 8 $ime
higher than in the roots of uninfected sprouts .(B)g The level of proline in the roots of the ictied sprouts was 1.4
times higher than in the roots of uninfected spotlihese results are consistent with the notiopatfiogen invasion
inducing the activation of the system for productiaf free radicals as a major defense mechanisia jpiant cell
exposed to biotic and abiotic stresses (Sham e2@14; Chanclud and Morel, 2016). An increasehim activity of
protein peroxidation results from the regulatedvation of generation of ROS in plant tissues agsgponse to the
invasion of pathogenic fungi; it is necessary faduicing ROS-dependent signaling of defense sys{Enmeslerickson
and Loake, 2014; Swarupa et al., 2014). The leteVIDA in the roots of infected sprouts was not giigantly
different from the MDA level in uninfected rootsigF 1). That may be attributed to the involvemehMDA in the
oxidative modification of proteins (Augustyniakadt, 2015). Thus, the proportions of CP, MDA, amdlipe in roots
of infected sprouts differed from those in rootsuafnfected sprouts, suggesting a transition ofrédox systems to
another level of homeostasis.

In the experiment with the fungicide tebuconazdlER) added to the culture medium at the concewoinatdf
0.01, 0.10, and 1.00 pg Mithe germination rate of the infected wheat seeassimilar to that of the infected seeds in
the experiment without TEB addition (75+8%). Norf¢te TEB concentrations tested in this study affécCP, MDA,

and proline levels in the roots of infected sprdiiasble).
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The morphological dissimilarities between the rapices of uninfected and infected sprouts, witmprmced
differences in the contents of carbonylated prateare shown in Figure 2. The root apex of an @ciefd sprout is
ensheathed in a small gel mantle containing bardits (BC) that have detached from the surfacéefapex (Fig. 2a);
there are 15+3 border cells/apex. The infecteduproontain considerably more BC (47x7 cells/ap&kus, ROS
signaling may be involved in the activation of B@gbuction in response to the invasion of pathogé&mgi. As the
number of BC in the root apices of infected sprontseased, the size of the gel mantle increased(Rig. 2b, c, d).
The scattering of the border cells around the apeix corresponds to the size of the gel mantlthdmoot apices of the
infected sprouts, the border cells inside the gahthe may form large aggregates (Fig. 2b), andr&agé border cells
may peel off the lateral surface of the root ageg.(2d).

The formation of the gel mantle is caused by thévation of the excretory function of border celghich
defends the root apex from the pathogen invasiba (bot apex is the most “protected” part of thetyoThe
effectiveness of defense is determined by not amyincrease in the size of the gel mantle but al&nges in its
composition (Baetz and Martinoia, 2014). In thesatéd roots, the border cells secrete xylogalanans, which are
resistant to the effects of pectolytic enzymesathpgenic fungi, and arabinogalactan proteins (Esam et al., 2011,
2012).

Differentiation of border cells is associated widarrangement of the cell wall, which eventuallgds to the
loss of physical contact of border cells with tluotrapex surface and release of border cells inimosphere (in
hydroponic culture, this is mucilage cap). In otudy, we counted border cells of this type (we gred 60-70 apices
in each experimental point). In infected sprousir{p0, the medium containing no fungicide, Fig),3ae number of
free border cells was the greatest: interactionvéen root systems and the pathogen caused morerboetls to
separate from the root apex surface. The additfodifferent concentrations of the fungicide to thature medium
slowed down the release of border cells and lealdecrease in the number of free cells in the mgeicap of the root
apex. The effects of fungicide concentrations &10and 0.1 pg il did not differ significantly: the number of free
border cells decreased by a factor of 2 on avecagepared to the control point (point 0, Fig. 3a).the medium
containing a fungicide concentration of 1 pg'nthe number of free border cells was the lowes5-times lower than
in the medium containing no fungicide.

As the BC number in the root apex decreased, thengetle grew smaller, too. At the highest tebucoha
concentration in the medium (1.00 uginithe majority of root apices were “bare”, with noticeable gel mantle and
free BC (Fig. 3b). The uninfected sprouts had naréh root apices. The “bareness” of the apicescbel caused by
fungicide phytotoxicity. As TEB diffuses throughettgel mantle into the root apex, it may inhibit p@duction

through the sterol dependent signaling, which ilved in the regulation of cell proliferation adty (Roy et al.,
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2011). The dramatic decrease in the number ofB@e- major producers of molecular components ofgtlemantle —
results in the occurrence of “bare” apices. Thishpsobably weakens the defense systems of pksuds subjected to
the invasion of phytopathogens.

Thus, in contrast to fusarium infection, the fundgctebuconazole at concentrations used in therempets
did not affect the content of carbonylated protémthe roots of infected sprouts but caused a dtindecrease in the
number of border cells and the size of the gel teamthich eventually disappeared completely. Thesalts, as well
as detection of products of peroxidation of prateamd lipids, suggest that border cell populatian be regarded as
one of the effector targets of the fungicide telmaamwle, which can be used to evaluate the phytitgf fungicides.

3.2. Morpho-biochemical parameters of the root eyystof Fusarium-infected wheat grown in laboratory
experiments with variously applied tebuconazole

The microbiological study of the structure of théial soil microbial community showed that the naiscopic
fungi were mainly represented Wenicillium species (58-65%). Fungi of the genénasarium, Trichodermaand
Aspergillusconstituted 8-11% of the fungal populatidgfusariumspecies isolated from the initial soil samplesaver
represented bi. solaniandF. lateritium No F. moniliformewas detected in the initial microbial community.siBks
demonstrating fungicidal activity of TEB in soillashown in Figure 4. Dynamics of the total abundasfé-usariumin
soil is shown under different experimental conditio with infected seeds sown into the soil contajnho TEB
(negative control, k-) and with seeds and TEB llrie the soil simultaneously (positive control, kéfig. 4a).
Fusariumspecies in the initial soil constituted 810° CFU-g™. Over the course of the experimeftisariumcounts in
the negative control corresponded to the naturahaance of the fungi in soil, varying betweenxd® and 3.x10°
CFUg™. In the soil supplemented with TEBusariumcounts gradually decreased, dropping to<18 CFUg™” after
10 days and to 1x30° and 0.&10° CFUg™ after 20 and 30 days, respectively.

Raxil Ultra produced a fungistatic effect not omly phytopathogenic fungi but also on all saprotsopFhe
microbiological investigation of the structure oficnobial communities showed that Raxil Ultra addedthe soil
suppressed the growth of indigenous fungi sucheascillium, Alternaria, andAspergillus decreasing their abundance
by a factor of 1.5-2.3 compared to the soil contgjmo TEB (negative control).

In experiments with TEB added to the soil, the nantif the colonies with purple-pink pigmentatiorhigh is
a marker of physiological activity éfusariumspecies, was considerably greater than in therempets with TEB-free
soil (Fig. 4b).

Figure 5 shows the contents of free proline andptivelucts of peroxidation of proteins (carbonylapedteins,

CP) and lipids (malondialdehyde, MDA) in wheat mat different time points of the 30-day experiment
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At Day 10, the contents of proline, MDA, and CPthie control did not differ significantly betweeretthree
groups, reaching 0.189-0.232°%01 mg* protein, 0.265-0.41 1OM mg* protein, 0.586-0.78 1M mg* protein,
respectively; these values were 2-3 times highan those in the experiment with uninfected seellssTat that time
point (Day 10), the application of Raxil Ultra toilsand the pretreatment of the seeds did not meduny significant
effect on the contents of proline, CP, and MDA ineat roots as compared to the control (Fig. 5a¢. @doportions of
proline, MDA, and CP revealed in the experimentrabterize the level of redox homeostasis resulfiogn the
interaction between the host plant and pathogeenhg experimental conditions.

At Day 20, the contents of proline and MDA in roofsthe control plants increased dramatically (biactor
of 19 and by a factor of 8.5) compared to Day 10leviEP decreased slightly (by a factor of 1.8) (). These
changes may be associated with the tillering stag@derground branching of the stem and the dewsop of the
secondary root system, which occurred between D8ysnd 20 of wheat plant growth. As root biomagsagrapidly,
the rates of cell proliferation and cell wall syasis increased, requiring considerable energy ehpea. The reason
for the dramatic increase in proline content ist theline is a proteinogenic amino acid involved synthesis of
arabinogalactans — glycoproteins forming cell waditrix. The arabinogalactans are also excretethearhizosphere
(Gong et al., 2012; Nguema-Ona et al., 2013; Kisktoal., 2015). Since large amounts of proline wed in the
biogenesis of cell walls and the synthesis of matdates, it is synthesized in larger quantitiesnduthe rapid growth
of root biomass. In addition, proline metabolismmitochondria is accompanied by synthesis of FADtA NADH
(Deuschle et al., 2001), which supply electronstht®e mitochondrial respiratory chain. Oxidative pblosrylation
causes generation of ATP molecules. The high denadrttie rapidly growing root system for energy egleénts
during the tillering stage causes a sharp riserdaliqe content in wheat roots. On the other hahe, ligh level of
proline and active oxidation of proline in mitoclibia increase not only the activity of oxidativeogphorylation but
also the production of free radicals, which is texfato this process (Kishor et al., 2005). Thedase in the MDA level
in wheat roots at Day 20 may be caused by the ttaigthof oxidative phosphorylation.

In the treatments with Raxil Ultra both appliedthe soil and used to pretreat seeds, at Day 2@ ahint of
proline in wheat roots also increased dramatidaliyto levels somewhat lower than those in thercbri¥IDA contents
in these treatments and in the control increasesintdar levels. However, the number of tResariumcells in soil in
the treatment with tebuconazole supplementationlexasr than in the control by a factor of almosbtwhese results
suggest targeted effects of the fungicide on plgttapgens and lightening of the load on the defegstem of wheat,
including changes in the level of redox homeostastke roots.

At Day 30, proline content in roots of the contwiheat plants decreased considerably (by a factdr6of

relative to Day 20) while MDA and CP contents dat nhange significantly (Fig. 5). In the treatmaiith Raxil Ultra



292  applied to the soil, proline, MDA, and CP conteintshe roots did not differ significantly from tlwntrol, suggesting
293 that phytotoxic effects of the fungicide were spéié as soil contamination with phytopathogens ceseré. However,
294  in the treatment with seeds pretreated with RakilalJproline, MDA, and CP contents in the rootgevkigher than in
295 the control by a factor of 2.2, 2.0, and 1.7, retigely. That was indicative of the activation oéé radical processes
296 and phytotoxic stress, as the fungicidal effectT&B used to pretreat the seeds before sowing mast een
297  exhausted by Day 30.

298 This study showed that the effect of the fungicidEB on redox homeostasis in wheat roots varied nitipg
299 on the plant growth stage and was significantlfedéint in ecosystems with soil and plants infedsgdFusarium
300 phytopathogens. At Day 20 of plant growth, durihg tillering stage, tebuconazole produced the g@shphytotoxic
301 effect on wheat plants.

302 The morphological properties of wheat root apiaescosystems invaded by phytopathogens, at differen
303 levels of the fungicide, are shown in Figure 6. rAgosphere population of border cells was lost wheots were
304  pulled out of the soil and then rinsed in watedyanot apices were analyzed. The microscopic aslygf root apices
305 did not show any age-related morphological dissirities between the apices at different time poirfithe experiment
306 (at Days 10, 20, and 30); at the same time, thephwogical characteristics of root apices differmmhsiderably
307  between experimental groups. The roots of the whkeaits grown from the seeds initially contaminatbgcoFusarium
308 had either undamaged apices (Fig. 6a) or apicésladsened cells at the tip (Fig. 6b). Most of Wieeat plants grown
309 in the soil supplemented with the fungicide Raxtlroot apices with root tip mantles showing obsisigns of the
310 degradation (Fig. 6d). We assumed that the fungid@iEB had a strong effect on the steroid metaboti§rthe host
311 plant, the functions of cell walls (Schrick et &Q04; Hofte, 2015), and hormonal homeostasis €tial., 2015). Cell
312 wall damage, membrane system dysfunction, and iswders of hormonal homeostasis may cause a decieahe
313  activity of plant defense systems and help thequahs invade the root system. The damage of theuttsastructure
314  of Pennisetum americanuseedlings treated with atrazine was shown by Jrg (Jiang et al., 2017).

315 The pretreatment of the seeds with the fungicide ahused the development of apices with clearssign
316 degradation of the root tip mantle. The laterafases of the root tip mantle were most degraded. (¢, shown by
317 arrows). The pre-emergence treatment of seedstaffae functional systems of the germinating semdse than
318 fungicide application to soil. Penetrating throutite seed coating, the fungicide can induce diserabr sterol
319 metabolism at very early germination stages. Theobimetabolism determines morphogenesis procéssbe early
320 stages of development of the sprout (Closa ebal.Peng et al., 2015). The disorders of the stepkendent stages of
321 morphogenesis may cause various structural andifuad defects in the developing root. Thus, thephology of root

322  apices of wheat plants reflects the effects okste caused by both the phytopathogen and thecfdegi
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The results of biochemical and morphological inigggions of wheat root apices suggest that thesmmpeters
can be used as endpoints to evaluate the toxicteftd the fungicide tebuconazole. Another findimghat the effect of
TEB on redox homeostasis in wheat roots dependiseoplant growth stage.

4, Conclusion

We studied the toxic effects of the fungicide tedmazole and fusarium infection on wheat roots i@ th
experiments with two-day-old wheat sprouts and 8@-experiments with wheat stands based on the ekaingthe
morphology of root apices and integrated parameiéredox homeostasis: the contents of proline piatiucts of
peroxidation of proteins (carbonylated proteinsyl dipids (malondialdehyde) in roots. In the expexits with two-
day-old wheat sprouts infected by Fusarium, theterttnof carbonylated proteins in the roots dranadificincreased,
which was accompanied by an increase in the numbborder cells and the size of the gel mantlehef toot apex
(compared to uninfected sprouts). The fungicidei¢ebazole did not influence the content of carbatey proteins in
the roots of infected sprouts at the concentrat&adied, but led to a sharp decrease in the nuofideorder cells and
the size of the gel mantle (until complete disapaeee) in the root. The study of the effects of T&Rl fusarium
infection on wheat plants in a 30-day experimemtwad that the effect of the fungicide TEB on retimmeostasis in
wheat roots varied depending on the plant growtlyestand was significantly different in ecosystenith yplants
infected by fusarium infection. The results of Wiemical and morphological investigations of wheattrapices
suggest that these parameters can be used fovdheton of biological action of fusarium infeati@and fungicides.
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504 Table Contents of carbonylated proteins (CP), ndiddehyde (MDA), and proline in roots of two-dalg@.

505 aestivumsprouts infected blf. graminearum.

506

Fungicide concentration in the medium, pg'ml
Content in roots

0 0.01 0.1 1.0

CP (nM mg' protein) 8.31+1.22 8.98+0.96 8.91+1.10 9.05+1.53
MDA (nM mg protein) 0.261+0.031 0.284+0.024 0.281+0.028 0.297+0.03
Proline (g mg protein) 15.05+1.85 15.61+1.01 16.82+1.65 15.51+1.32
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Figure Legends

Fig. 1 The contents of carbonylated proteins (nM’'npgotein), malondialdehyde (nM migprotein), and
proline (g mg protein) in roots of two-day-old’. aestivumsprouts: along the X-axis: 1 — uninfected sprogts:
sprouts infected blf. graminearumAsterisks denote values of 2 significantly differ&om values of 1, p>0.05.

Fig. 2 Morphology of the root apices of two-day-oMheat T. aestivurp sprouts: a — the root apex of
uninfected wheat sprouts; b, ¢, d — root apicds. graminearurrnfected sprouts.

Fig. 3 The effect of tebuconazole concentrationhennumber of border cells (BC) (a) and “bare” api¢b) in
the root apices of two-day-old whedk. @estivum sprouts infected with-. graminearum Asterisks denote values
significantly different from values of the test ito tebuconazole added to the medium, p>0.05.

Fig. 4 Dynamics ofusariumabundance in soil at different days of the expeninfa) and photographs of the
colonies with purple-pink pigmentation at Day 30: (k-) - negative control (infected seeds sowrh® soil without
Raxil Ultra), (k+) - positive control (infected stsesown to the soil with Raxil Ultra).

Fig. 5 The contents of proline (!avi mg* protein), malondialdehyde (foM.mg* protein), carbonylated
proteins (10 M mg* protein) in roots of whedt. aestivunrplants infected withr. graminearumat different days of the
experiment: (k-) - negative control (infected sesolan to the soil without Raxil Ultra), (k+) - ptise control (infected
seeds sown to the soil with Raxil Ultra), and Reeds pretreated with Raxil Ultra.

Fig. 6 Morphology of root apices éfusariuminfected wheat plants: a, b — control, infecteddse with no
TEB applied to the soil: a — healthy apex and tamaged apex; ¢ — seeds pretreated with Raxil béfare sowing —
insignificant degradation of the mantle on thedfthe apex and destroyed lateral surface (showarkyws); d — soil

application of Raxil Ultra — damaged apices witbdely packed cells at the tip
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1. Toxic effects of tebuconazole (TEB) on Fusarium-infected wheat were studied.
2. The content of free proline, carbonylated proteins and malondialdehyde was determined

3. TEB causes a dose-dependent decrease in the number of border cells of root apices
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