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Abstract – The new nonparametric probability density 

estimation based on use of the smoothing operator is offered and 

investigated. It has smaller dispersion in comparison with 

probability density estimation like Rosenblatt-Parzen. 
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For on selection of nixi ,1,   statistically independent 

observations of a random value x  we will use its 

nonparametric assessment [1] 
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The kernel function  u  obeys 

       uuu 0, 
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    mduuum 0, 

and coefficients of a diffuseness  ncc   of function  u  

such that   0nc  at n . The infinite limits of integration 

fall in this case and further. 

Nonparametric probability density estimation in the form of 
(1) is generalized for a many-dimensional case in works [2, 3]. 
Conditions of its asymptotic unbiasedness and solvency are 
established. Nonparametric probability density estimates which 
are based on the procedure of compression of input statistical 
data are developed for conditions of selections of large volume 
[4]. The methods of optimum sampling of a range of values of 
random values [5] and confidence estimation of their 
probability density are offered on this basis [6]. 

At the restricted volumes of n of statistical data 
nonparametric assessment of a probability density of type (1) is 
characterized by the increased value of dispersion. For decrease 
of dispersion of traditional nonparametric probability density 
estimates the smoothing operators are used [7]. In this work the 
offered approach develops on use at creation of nonparametric 
assessment of a probability density with implicitly given form 
of kernel function of an optimum kernel of V. A. 
Epanechnikov. Properties of the received probability density 
assessment depending on conditions of their application are 
investigated. 

I. SYNTHESIS OF NONPARAMETRIC PROBABILITY DENSITY 

ESTIMATION 

As an approximation on empirical data of a one-

dimensional probability density  xp  we will accept statistics 
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where  up  - nonparametric assessment of a probability 

density (1). 



Let's substitute in (2) expression, defining  up , we will 

receive получим 
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The statistics (3) falls into to a class of nonparametric 
estimates of a probability density with implicitly given kernel 
function 

  











 










x

x

i

du
c

xu

c2

1
 

The choice of values   and c  by optimization of 

nonparametric assessment of a probability density (3) allows 
changing not only definition range of kernel function, but also 
its look. For example, at kernel function 


 
























 


сxuif

сxuifc

c

xu

c i

i
i

,0

,,211
 

implicitly the given kernel (4) at c  will take a form [7] 
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Let's accept as function (5) an optimum kernel of V. A. 
Epanechnikov [3] 
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Then implicitly the given kernel function (4) at c5  

will take a form 
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where   35403 c . 

If the ratio is fair c5 , then function (4) looks as 
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The graphic illustration of a ratio (6) is presented on the 
figure 1a. 

a) 

 

b) 

 

Fig. 1. A type of kernel function (5) in the conditions of (6) (a) at c  

(1), c  (2) and conditions (8) (b) at c5  (1), c5  (2). 



The received kernel functions (4) have property of a 
normalization. 

Optimization of statistics (3) are carried out by the serial 
choice of parameters c  and  . Taking into account a 

technique of synthesis of the studied nonparametric estimates 

of a probability density  xp1 ,  xp2  and  xp  value of their 

coefficients of a diffuseness c  of kernel functions are equal. 

Therefore for the choice of parameter c  we will use a 

condition of a maximum of likelihood function [2] 
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We will carry out the choice of value of parameter   

according to expression  N2 , where   - a range of 

values of a random value x , and N  - quantity of intervals of 

its sampling which are determined, for example, by Sturges' 
rule [8] 

 1log2  nN  

or Heinhold-Gaede rule [9] 

 nN   

II. ASYMPTOTIC PROPERTIES OF NONPARAMETRIC 

PROBABILITY DENSITY ESTIMATION 

Let's give asymptotic properties of one-dimensional 
nonparametric assessment of a probability density (3) in case 

the required probability density  xp  decays in a row Taylor in 

each point x . When performing transformations we will use 

the technique offered in work [3]. 

For definition of conditions of an asymptotic unbiasedness 

of nonparametric assessment  xp1  we will calculate its 

expectation  
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where observations nixi ,1,   are characterized by the same 

probability density  tp . 

Let's carry out serial changes of variables (at first 

zxu  , and then   1uctzx   ), we will receive  
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Let's spread out function  1uczxp    in a row of 

Taylor in a point x  and we will integrate a right member of 

expression (12) taking into account properties of kernel 
function. As a result we will receive asymptotic expressionи  
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where   xp 2  - probability density flexon  xp . 

Let's calculate an average quadratic error of approximation 
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Let's define the first item in a right member (14) 
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After transformations on above to the given technique, we 
have 
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When obtaining this result the composed smallness  nc0 , 

  cn20   and more were not considered. 

Let's substitute in (14) expression (13) and (15), we will 
receive [7] 
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From the analysis of expressions (12), (15) follows that 

when performing conditions   0n ,   0nc ,   ncn  

for n  nonparametric probability density estimation  xp1  

has properties of an asymptotic unbiasedness and convergence 
in mean squared and consequently, is a consistent estimate 

 xp . 

III. ANALYSIS OF COMPUTING EXPERIMENTS RESULTS 

Let's compare approximating properties of traditional 
nonparametric assessment of a probability density (1) and its 

modification (3) at restitution  xp  to the uniform and normal 

distribution laws of a random value. 

At synthesis of statistics  xp  function (5) and an optimum 

kernel of V. A. Epanechnikov were used (7). Formation of 
nonparametric probability density estimation (3) was carried 
out on the basis of kernel functions (6) and (8). Optimization 

 xp1  was performed according to the technique given above. 

As an efficiency factor of the compared statisticians estimates 

of their shift 1W , a mean squared deviation 2W  and dispersion 

3W  were used. Computing experiments when determining 

values jW , 3,1j  in specific conditions were conducted 50 

times with the subsequent their averaging. At the same time the 
volume of control selection was accepted equal 1000 which 

elements were formed according to a probability density  xp . 

Let's consider results of a research at restitution of a 
probability density of a random value with the uniform 
distribution law. 

With increase in number n   input statistical datas of value 

jW , 3,1j  decrease for the studied statisticians that will be 

coordinated with results of the analysis of their asymptotic 

properties. The offered probability density estimation  xp1  in 

comparison  xp  has by (1.5 – 2) times smaller dispersion and 

mean squared deviations in conditions when at their synthesis 
kernel (6) and (8) functions, and also a formula of sampling are 

used (10). At the same time the shift of the   xpW 11  statistics 

 xp1  from  xp  significantly more values   xpW1  for 

probability density assessment  xp . 

If at construction  xp  the kernel function of V. A. 

Epanechnikov is applied (7), that is observed decrease by (10 – 

15) % of values of estimates of its indexes jW , 3,1j . 

However, the regularities noted above generally remain. 

 

Application of a formula of sampling of Heinhold-Gaede 

(11) allows to reduce shift   11,11 xpW  nonparametric 

assessment of a probability density  xp1  to 30% in 

comparison with results   10,11 xpW  of use of the Sturges' 

rule (10).  

At the same time dispersion   11,13 xpW  statistics  xp1  

increases by 20% of value   10,13 xpW  that is especially 

shown at great values n . However in these conditions 

dispersion and a mean squared deviation of nonparametric 

assessment  xp1  are less than for traditional statistics  xp . 

At estimation of the normal distribution law approximating 

properties of statisticians  xp  and  xp1  significantly 

decrease. This fact is explained by nonuniformity of value 
distribution of a random value that leads to decrease of best 
values of coefficients of a diffuseness and increase in 

dispersion of statisticians  xp ,  xp1 . Noted regularity 

especially is shown when using the procedure of sampling 
Heinhold and Gaede. However advantage of nonparametric 

assessment of a probability density  xp1  over  xp  remains 

when using nuclear functions (5), (7) and formulas of sampling 
(10), (11). 
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Use of the smoothing operator at synthesis of 
nonparametric probability density estimation like Rosenblatt-
Parzen allows receiving its modifications with the increased 
approximating properties. The offered modifications unlike 
traditional nonparametric assessment of a probability density 
differ implicitly in the given form of kernel function. This 
feature allows changing not only definition range of kernel 
function, but also its look by their optimization. The procedure 
of optimization of the studied statisticians is implemented by 
the serial choice of coefficient of a diffuseness of kernel 
function from a condition of a maximum of function of 
credibility and parameter of the smoothing operator. At the 
same time formulas of sampling of an interval of values of a 



random value are used. In comparison with nonparametric 
assessment of a probability density of Rosenblatt-Parzen the 
studied its modification is characterized by great value of shift, 
but smaller dispersion and a mean squared deviation. Noted 
properties remain under much different conditions of 
computing experiments: a type of the restored probability 
density and kernel function, and also the used rules of sampling 
of an interval of values of a random value. 

The received results create a basis of creation of 
nonparametric estimates of many-dimensional probability 
densities from implicitly given kernel function, and also for 
development of analytical criteria of quality of approximation. 
The studied estimates of a probability density are important at 
creation of nonparametric algorithms of information processing 
and a decision making in the conditions of statistical data of 
restricted volume. 

REFERENCES 

[1] E. Parzen, “On estimation of a probability density function and mode,” 
Ann. Math. Statistic., vol. 33, pp. 1065-1076, 1962. 

[2] L. Devroyes and L. Gyorfi, Nonparametric Density Estimation: The L1 
View. Wiley, New York, 1984. 

[3] V.A. Epanechnikov, “Nonparametric estimator of multidimensional 
probability density,” Teor. Veroyatn. Ee Primen., vol. 14, Iss. 1, pp. 
156–161, 1969. 

[4] A.V. Lapko and V.A. Lapko, “Regression estimate of the 
multidimensional probability density and its properties,” Opt. Instrum. 
Data Proc., vol. 50, no. 2, pp.148-153, 2014. 

[5] A.V. Lapko and V.A. Lapko, “Comparison of the effectiveness of 
methods for sampling the range of variation of random quantities in 
synthesis of nonparametric estimates of probability density,” Measur. 
Techn., vol. 57, no. 3, pp. 222 – 227, 2014. 

[6] A.V. Lapko and V.A. Lapko, “Construction of confidence limits for the 
probability density function on the basis of nonparametric estimation of 
the function,” Measur. Techn., vol. 56, no. 12, pp. 1354 – 1357, 2014. 

[7] A.V. Lapko and V.A. Lapko, “Nonparametric estimate of a parzen-type 
probability density with an implicitly specified form of the kernel,” 
Measur. Techn., vol. 59, no. 6, pp. 571 – 576, 2016. 

[8] H.A. Sturges, “The Choice of a Class Interval,” J. Amer. Stat. 
Association, vol. 21, no. 153, pp.65–66, 1926. 

[9] I. Heinhold and K. W. Gaede, Ingenieur Statistik, Springer-Verlag, 
Munich, Vienna, 1964. 

 

 


