Original Research Paper

Ion reduction in iron oxide and oxyhydroxide nanoparticles during ultrasonic treatment

S.V. Stolyar, O.A. Bayukov, R.N. Yaroslavtsev, Yu.V. Knyazev, V.P. Ladygina, Yu.V. Gerasimova, R.S. Iskhakov

Abstract

The effect of ultrasonic treatment of iron oxide and iron oxyhydroxide nanoparticles (ferrihydrite nanoparticles synthesized by Klebsiella oxytoca microorganisms, ferrihydrite nanoparticles synthesized by a chemical method and hematite nanoparticles) is studied. Samples of nanoparticles were investigated using transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction methods. The formation of the α-Fe metal phase from nanoparticles of iron oxides and iron oxyhydroxides was detected. The metal phase is formed as a result of the reduction of iron ions during cavitation treatment. According to the experimental results, the presence of a protein or a polysaccharide component is necessary for the course of this reaction.

1. Introduction

Ultrasound is used in various fields such as medicine, microbiology, chemical and biotreatment, synthesis of new compounds, etc. [1]. Sonochemical synthesis is a promising method for the preparation of nanomaterials with unique properties, due to the extreme conditions achieved in the process of ultrasonic cavitation [2,3]. Acoustic and thermal effects of cavitation, in particular, contribute to the thermolysis of water molecules with the appearance of free hydrogen bonds [4]. As a result of subsequent reactions, various free radicals are formed, including those with reducing properties. The latter opens opportunities for the realization of chemical reactions and the synthesis of new compounds [3,5]. The formation of metallic noble metal nanoparticles in solutions of their salts during the ultrasonic treatment in the cavitation regime does not require a chemical reducing agent and proceeds at a tremendous rate [2]. The reduction of 3d metal ions was reported in [6], in which it was shown that ultrasonic treatment in the cavitation regime leads to the reduction of divalent copper oxide in the glyceral solution to monovalent copper oxide.

In this study, we investigated the effect of ultrasonic treatment in the cavitation regime on the magnetic nanoparticles of iron oxide and oxyhydroxide. We used ferrihydrite nanoparticles synthesized by Klebsiella oxytoca microorganisms, ferrihydrite nanoparticles synthesized by a chemical method and hematite nanoparticles.

Microorganisms are well known in microbiology and geochemistry, due to their ability to mineralize large amounts of iron under anaerobic conditions, in particular, synthesizing and storing ferrihydrite [7,8]. One such microorganism is Klebsiella oxytoca, which synthesizes biogenic polysaccharide-ferrihydrite nanoparticles, known as Fe(III)-exopolysaccharide (Fe-EPS) [7,9]. Ferrihydrite (5Fe2O3·9H2O) is a metastable form of iron oxyhydroxide and a precursor of such minerals as hematite and goethite [10]. The importance of ferrihydrite for the iron circulation in the environment and metallurgical processes attract much attention of the scientific community for a long time [7,11,12]. Ferrihydrite is an antiferromagnetic compound (T_N = 350 K) [13], but, in the nanodispersed form, it turns out to be ferrimagnetic state due to compensation of the magnetic moments of Fe^{3+} ions on the surface and in the volume of particles. The magnetic susceptibility of ferrihydrite particles, enhanced by the superantiferromagnetism effect, provides ample opportunities for magnetic control of these objects [14–16], which opens the way for their use in nanomedicine and biotechnology.
2. Experimental

All the chemicals used in this work were of analytical grade and used without further purification. Hematite nanoparticles (α-
Fe2O3) were synthesized by chemical deposition from a solution. Synthesis of nanoparticles was carried out at room temperature
and constant stirring by dropwise adding an aqueous solution of
ammonia (15 vol%) to an aqueous solution of iron (III) chloride
(1 wt%). The precipitate was washed with distilled water.

Synthetic ferrihydrite was synthesized by slow addition of an
alkaline NaOH solution (1 M) to a solution of ferric chloride FeCl3
(0.02 M) at room temperature with constant stirring until the pH
reached a neutral value [17].

We used the biomass of Klebsiella oxytoca microorganisms,
which were cultivated for 7–14 days to obtain ferrihydrite
nanoparticles [18]. Bacterial biomass was separated from the
supernatant by centrifugation to separate the ferrihydrite and pro-
duce the sol. The resulting precipitate was incubated in acetone for
30 min to remove the fatty acids, washed with distilled water and
then sonicated. The resulting precipitate was washed with distilled
water with the addition of NaCl to a neutral pH supernatant and
again sonicated in cavitation mode.

The ultrasonic treatment in the cavitation regime of the synthe-
sized samples was carried out in a Volna UZTA-0.4/22-OM setup
(22 kHz, 50 W/cm2).

The nanoparticle samples were examined with a Hitachi
HT7700 transmission electron microscope (accelerating voltage
100 kV) of the Center for Collective Use, Krasnoyarsk Scientific
Center, Krasnoyarsk, Russia. Mössbauer spectra were measured on
an MC-1104E5m spectrometer with the 57Co(Cr) source at
room temperature on powder samples with a thickness of 5–
10 mg/cm2 on the basis of the natural iron content. Isomer chem-
ical shifts are accounted in reference to α-Fe. X-ray diffraction
(XRD) patterns were obtained on a diffractometer with the Cu(Kα)
radiation in a 2-theta range of 20–80°.

3. Results and discussion

3.1. Biogenic ferrihydrite nanoparticles

The FTIR spectrum was obtained and analyzed (Fig. 1) to iden-
tify the organic shell covering the ferrihydrite nanoparticles. IR
spectra were recorded over the spectral range of 350–4000 cm−1
on the samples inserted into the KBr matrix. The inset of Fig. 1 pre-
sents the spectrum of this sample in a polyethylene matrix in the
spectral region of 200–700 cm−1.

The spectrum has a broad absorption maximum at 3420 cm−1
caused by stretching vibrations of the O–H groups, and the large
peak width is, in part, due to the O–H surface bonds [19,20]. Bend-
ing vibrations of H2O appear at a frequency of 1630 cm−1 [21,22].
Antisymmetric and symmetric C–O vibrations of adsorbed carbon-
ad are observed at 1498 and 1410 cm−1, respectively [21,23].

It is known that the strains of the bacteria Klebsiella oxytoca
produce exopolysaccharides [24], which are involved in the bind-
ing of iron ions. The authors of [24] determined that the IR biomass
spectrum contains modes corresponding to glucose, polysaccha-
drides, and amines of proteins. The infrared spectra of proteins
and their degradation products (peptides) are characterized by
the presence of two main absorption bands: amide I (1650 cm−1)
and amide II (1550 cm−1), due to stretching vibrations of the
C–O bond (amide I) and planar deformation vibrations of the NH
bond (amide II) [25]. Thus, if both bands are present in the spectra
of tested substance, then it can be argued, with a high probability,
that there is a polypeptide or protein in the sample. In the spec-
trum of the sample under study, modes with such frequencies do
not appear, or their intensity is too low against an increasing back-
ground of this region.

The following regions and absorption bands are characteristic of
polysaccharides: stretching vibrations of bound OH groups at 3400 cm−1;
stretching vibrations of CH groups from 2800 to 3000 cm−1;
stretching vibrations of the CH groups of non-ionized and ionized acids at 1740 and 1620 cm−1; latitudinal vibrations of
CH groups from 1400 to 1450 cm−1; oscillation bands of the frame of the molecule in the region from 1000 to 1100 cm−1. Analy-
sis of the infrared spectrum of the sample showed a rather large
coincidence of the characteristic absorption bands. However, these
frequencies can be attributed to the absorption frequencies of fer-
rihydrite with a minor shift in frequency, and it is possible that this
shift determines the presence of the polysaccharide.

The absorption spectrum in the region of fewer than 1300 cm−1
is an individual characteristic of the compound; therefore, it is
called the “fingerprint” area and pay special attention to it when
determining the substance. Complicated band (doublet) in the
region of 1100 cm−1 may be attributed to the stretching vibrations
of the Fe–OH bonds. In the region below 700 cm−1, there are
modes 603, 564, 448, 304 cm−1 (see inset in Fig. 1), which we
attribute to bending O–Fe–O vibrations, Fe–O stretching modes for
octahedral and tetrahedral iron cations [26]. Thus, the IR spec-
troscopy method has shown that nanoparticles of biogenic ferri-
hydrite are embedded in iron-binding exopolysaccharides.

Fig. 2 shows the results of transmission electron microscopy of
two samples. Fig. 2(a) shows the image of the ferrihydrite nanoparti-
cles sample. The average particle size was ~3 nm. Fig. 2(b) shows
the image of the sample of ferrihydrite nanoparticles after sonica-
tion, on which dense formations (whiskers) with a length of 40 nm
and a diameter of 3 nm are observed. The diffraction pattern is
characteristic of the so-called 2-line ferrihydrite. [27,28]. Two dif-
fuse reflections with d1 = 1.5 Å and d2 = 2.59 Å interplanar dis-
tances are observed.

Fig. 3 shows the Mössbauer spectra obtained at room tempera-
ture of the ferrihydrite nanoparticles (curve (a) representing the
doublet) and ferrihydrite nanoparticles after sonication (curve
(b)). It can be seen that curve (b), in comparison with curve (a),
is characterized by an additional sextet. In Table 1, the interpreta-

![Fig. 1. FTIR spectrum of biogenic ferrihydrite nanoparticles.](image-url)
tion of the Mössbauer spectra is given. In the paramagnetic component of (a) and (b) spectra, three main non-equivalent positions of Fe$^{3+}$ ions with octahedral coordination are recorded. These positions can be divided into two groups: positions Fe1 and Fe2 with a relatively small degree of distortion of local symmetry ($QS(Fe1)\sim0.5\text{ mm/s}$, $QS(Fe2)\sim0.8\text{ mm/s}$) and positions Fe3 with a high degree of distortion ($QS(Fe3)\sim1–1.5\text{ mm/s}$). The crystalline structure of ferrihydrite was discussed in [29]. The sextet parameters given in Table 1 indicate the presence of α-Fe metal nanoparticles in the sediment. The Mössbauer sextets recorded at room temperature with α-Fe parameters reveal that the ferromagnetic particle size exceeds 100 Å [30]. The metal component in the sample is equal to 18% (see Table 1).

3.2. Hematite nanoparticles

Hematite is characterized by the lowest thermodynamic stability among iron oxides and oxyhydroxides. In this part of the work, we investigated the process of ultrasonic treatment of hematite powder in an aqueous medium and in an albumin solution. The use of hematite is due to its thermodynamic stability and known values of magnetic parameters. Since chemically synthesized hematite particles do not have an organic shell, unlike ferrihydrite

![Fig. 2. TEM-images of the biogenic ferrihydrite nanoparticles before sonication (a) and after sonication (b) and microdiffraction patterns of this sample (c, d).](image)

![Fig. 3. Mössbauer spectra of the biogenic ferrihydrite nanoparticles before sonication (a) and after sonication (b).](image)

<table>
<thead>
<tr>
<th>Sample</th>
<th>IS, mm/s</th>
<th>H, kOe</th>
<th>QS, mm/s</th>
<th>W, mm/s</th>
<th>A</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Before sonication</td>
<td>0.346</td>
<td>–</td>
<td>0.51</td>
<td>0.37</td>
<td>0.58</td>
<td>Fe1</td>
</tr>
<tr>
<td>0.348</td>
<td>–</td>
<td>0.81</td>
<td>0.29</td>
<td>0.27</td>
<td>Fe2</td>
<td></td>
</tr>
<tr>
<td>0.351</td>
<td>–</td>
<td>1.14</td>
<td>0.30</td>
<td>0.15</td>
<td>Fe3</td>
<td></td>
</tr>
<tr>
<td>(b) After sonication</td>
<td>0.024</td>
<td>318</td>
<td>0</td>
<td>0.11</td>
<td>0.18</td>
<td>α-Fe</td>
</tr>
<tr>
<td>0.349</td>
<td>–</td>
<td>0.52</td>
<td>0.35</td>
<td>0.37</td>
<td>Fe1</td>
<td></td>
</tr>
<tr>
<td>0.352</td>
<td>–</td>
<td>0.80</td>
<td>0.36</td>
<td>0.38</td>
<td>Fe2</td>
<td></td>
</tr>
<tr>
<td>0.348</td>
<td>–</td>
<td>1.17</td>
<td>0.22</td>
<td>0.05</td>
<td>Fe3</td>
<td></td>
</tr>
</tbody>
</table>

IS is isomeric shift relative to α-Fe, QS is quadrupole splitting, W is absorption line width, H is hyperfine field at the iron core, and A is iron position occupancy.

Please cite this article as: S. V. Stolyar, O. A. Bayukov, R. N. Yaroslavtsev et al., Ion reduction in iron oxide and oxyhydroxide nanoparticles during ultrasonic treatment. Advanced Powder Technology, https://doi.org/10.1016/j.apt.2019.08.009
nanoparticles, in addition to processing in an aqueous medium, the experiment was also carried out in aqueous solution of albumin (2%).

XRD patterns of the original sample and samples subjected to ultrasonic treatment in an aqueous medium and in albumin solution are shown in Fig. 4. All observed reflections in the three samples refer to hematite. After sonication, the lines broaden and its intensity decreases. In the case of a sample subjected to sonication in an albumin solution, a weak reflection near 44.2° is observed which we refer to the \(\alpha \)-Fe \((1 1 0)\) reflection.

Fig. 5a and b shows the TEM-image and the microdiffraction pattern of the original hematite powder. The average particle size, according to several images, was 40 nm.

Fig. 5c, d, and e, f show the results of transmission electron microscopy of hematite nanoparticles after sonication in an aqueous medium and in an albumin solution, respectively. The sample sonicated in water is characterized by more diffuse diffraction rings, compared with those of original sample, and higher scatter of nanoparticle sizes. In the case of a sample treated in an albumin solution, the particle sizes become much smaller (~20 nm), and the diffraction pattern is even more diffuse.

Fig. 4. XRD patterns of hematite samples: before sonication and after sonication in water and in albumin solution.

Fig. 5. TEM-images and microdiffraction patterns of hematite nanoparticles. The insets show the particle size distribution. a, b – before sonication; c, d – after sonication in water; e, f – after sonication in albumin solution.

Fig. 6. Mössbauer spectra of the hematite nanoparticles before (a) and after (b) sonication in albumin solution.

Please cite this article as: S. V. Stolyar, O. A. Bayukov, R. N. Yaroslavtsev et al., Ion reduction in iron oxide and oxyhydroxide nanoparticles during ultrasonic treatment, Advanced Powder Technology, https://doi.org/10.1016/j.apt.2019.08.009
Fig. 6 shows the Mössbauer spectra of hematite nanoparticles measured at T = 300 K. The spectrum of the sample treated with ultrasound in water does not differ from the spectrum of the original sample and it has a sextet characteristic of hematite. The Mössbauer spectrum of the sample sonicated in an albumin solution (Fig. 6b) is characterized by the presence of an additional sextet. The spectrum interpretation (Table 2) showed that the hyperfine structure parameters of the formed phase are characteristic of α-Fe.

3.3. Synthetic ferrihydrite nanoparticles

In addition to studying the effect of ultrasound cavitation on biogenic ferrihydrite nanoparticles, the behavior of synthetic nanoparticles was also carried out. The difference between nanoparticles synthesized by chemical means from biogenic nanoparticles is the absence of an organic shell on the surface. Fig. 7a shows the Mössbauer spectrum of synthetic ferrihydrite nanoparticles, and the results of interpretation are summarized in Table 3. Chemical shift values of Fe$^{3+}$ ions in the case of nanoparticles, obtained by the chemical method are smaller than those of biogenic nanoparticles. This suggests that in the nanoparticles obtained chemically, the number of OH groups surrounding Fe$^{3+}$ ions is less than in the biogenic nanoparticles.

Ultrasonic treatment of synthetic nanoparticles in the aquatic medium did not lead to significant changes in Mössbauer parameters. Fig. 7b shows the Mössbauer spectrum of synthetic ferrihydrite nanoparticles after treatment in the albumin solution. The interpretation results indicate the formation of the α-Fe phase in chemically obtained nanoparticles when treated in the albumin solution, as well as in biogenic nanoparticles. Thus, the formation of the α-Fe phase after ultrasonic treatment of nanoparticles is caused by both cavitational effects and the presence of an organic component (protein or polysaccharide).

4. Conclusion

In this work, we investigated the effects of ultrasonic treatment in the cavitation mode on nanoparticles of iron oxides and oxyhydroxides. The method of infrared spectroscopy was used to identify the organic shell of ferrihydrite nanoparticles synthesized by Klebsiella oxytoca microorganisms. It has been shown that the shell consists of exopolysaccharides. The study of the effect of ultrasonic cavitation on the biogenic ferrihydrite nanoparticles showed that as a result of the treatment, the formation of the metallic phase α-Fe occurs. The reduction of iron ions also occurred by sonication of nanoparticles of synthetic ferrihydrite and hematite with the addition of albumin to the solution. Thus it is determined that this process occurs only in the presence of an organic component (protein or polysaccharide).

Acknowledgements

The reported study was carried out with the financial support of the Russian Foundation for Fundamental Research, the Government of the Krasnoyarsk Territory, the Krasnoyarsk Territory Fund for Support of Scientific and Technical Activity in the framework of scientific Projects No. 18-43-243003 and No. 18-42-243011. The work is supported by the Special Program of the Ministry of Education and Science of the Russian Federation for the Siberian Federal University.

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>IS, mm/s</th>
<th>H, kOe</th>
<th>QS, mm/s</th>
<th>W, mm/s</th>
<th>A</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Before sonication</td>
<td>0.377</td>
<td>517</td>
<td>-0.43</td>
<td>0.27</td>
<td>1.00</td>
<td>α-Fe$_2$O$_3$</td>
</tr>
<tr>
<td>(b) After sonication in albumin solution</td>
<td>0.380</td>
<td>517</td>
<td>-0.41</td>
<td>0.27</td>
<td>0.93</td>
<td>α-Fe$_2$O$_3$</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>IS, mm/s</th>
<th>H, kOe</th>
<th>QS, mm/s</th>
<th>W, mm/s</th>
<th>A</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Before sonication</td>
<td>0.351</td>
<td>–</td>
<td>0.51</td>
<td>0.35</td>
<td>0.53</td>
<td>Fe1</td>
</tr>
<tr>
<td>(b) After sonication in albumin solution</td>
<td>0.006</td>
<td>332</td>
<td>0</td>
<td>0.25</td>
<td>0.19</td>
<td>α-Fe</td>
</tr>
<tr>
<td></td>
<td>0.350</td>
<td>–</td>
<td>0.53</td>
<td>0.35</td>
<td>0.35</td>
<td>Fe1</td>
</tr>
<tr>
<td></td>
<td>0.351</td>
<td>–</td>
<td>0.84</td>
<td>0.36</td>
<td>0.37</td>
<td>Fe2</td>
</tr>
<tr>
<td></td>
<td>0.357</td>
<td>–</td>
<td>1.22</td>
<td>0.30</td>
<td>0.10</td>
<td>Fe3</td>
</tr>
</tbody>
</table>

Please cite this article as: S. V. Stolyar, O. A. Bayukov, R. N. Yaroslavtsev et al., Ion reduction in iron oxide and oxyhydroxide nanoparticles during ultrasonic treatment, Advanced Powder Technology, https://doi.org/10.1016/j.apt.2019.08.009
References

