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Abstract. The summertime hydrothermal regime of the Yenisei River downstream of the 

Krasnoyarsk hydroelectric power plant is modeled using a remote sensing and deterministic 

approach. The Fourier equation is used, and the following physical processes contributing to 

the heat exchange between the water and the surroundings are taken into consideration: the 

absorption of direct and scattered solar radiation by water, the absorption of downwelling 

thermal infrared radiation (TIR) from the atmosphere by water surface, TIR back from the 

water surface, the convection of heat and the heat loss due to evaporation of water. A clear-

skies river thermal regime under no wind condition is studied at 32-km downstream the power 

plant, and the obtained results are compared against remote sensing data.   

1. Introduction 

The Yenisei River in terms of runoff is the largest in Russia (599 km3/year) and the seventh largest in 

the world (1.5% of the global runoff) [1]. The stream flows in the meridian direction through various 

climatic zones. The river basin with a total area of 2.6×106 km2 houses the largest region in Russia, 

Krasnoyarsky Krai. There are 6 hydroelectric power plants (HPP) in the basin of the river. One of 

them, the Krasnoyarsk HPP, is among the top ten world's most powerful hydroelectric power plants 

(6000 MW) and the key anthropogenic factor influencing the Yenisei river. The river dam is 124 m in 

height and 1065 m in width. Upstream, above the dam, a reservoir of 73 km3 capacity has been built. 

Depending on the climatic and economic conditions, the water discharge ranges from 7000 m3sec-1 to 

2000 m3sec-1. Water from the bottom strata of this reservoir flows through the dam and enters the 

afterbay of the Krasnoyarsk HPP. The incoming water temperature varies over the year from 2ºС to 

12ºС. As a result, downstream of the HPP the summer water temperatures are lower and the winter 

temperatures are higher than those before the stream was regulated. Temperature is an important 

parameter, since it influences the behavior of the hydrophysical, hydrochemical, and hydrobiological 

processes. 

http://creativecommons.org/licenses/by/3.0
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The water temperature, in turn, depends on the meteorological conditions [2, 3], including solar 

radiation, air temperature, relative humidity, wind speed, cloud cover, and barometric pressure. The 

stream water temperature is also affected by the discharge of water, the inflow temperature, and the 

morphometric river characteristics [4–12]. 

The heat exchange mechanism underlies the following physical processes in a river: absorption of 

solar radiation by water, TIR emission and TIR absorption from the atmosphere by water, convection 

and evaporation, heat transport due to the river flow and thermal conductivity, as well as the heat 

exchange between the water and streambed. 

Temperature is a key indicator of the natural environment. It can be measured by ground based 

methods or satellite data. Remote sensing techniques provide temperature data on a regular grid with 

high spatial resolution, with incomparably greater detail than the data of several irregular weather or 

hydrological stations of official governmental services [13]. 

The first images of the Earth from space in the thermal infrared range were obtained by American 

meteorological satellites in the 1960s. Despite the fact that these satellite data had low spatial 

resolution and practical application, they showed the principal possibility of solving a number of 

problems in the field of environmental studies by remote sensing. Currently one of the most interesting 

satellites which regularly surveys the earth's surface in the thermal infrared (IR) range is Landsat 8. 

The recorded IR data has a high spatial resolution of 100 meters per pixel, and the repeatability of the 

survey is 16 days. Landsat 8 is not the only thermal infrared satellite, but because of a combination of 

data availability and high spatial resolution, it is considered to be the leader in the subject area [14]. 

2. Subject of research 

Here we consider the summertime hydrothermal regime in a 32-km river reach downstream of the 

Krasnoyarsk HPP on July 3, 2016 based on a deterministic modeling approach. We apply a physically-

based heat balance modeling approach, since it requires minimum additional information, which is of 

particular importance for the poorly developed areas of the Yenisei River. The physical heat exchange 

processes include absorption of direct and scattered solar radiation by water, absorption of 

downwelling thermal infrared radiation (TIR) from the atmosphere by the water surface, TIR back 

from the water surface, convection of heat and heat loss due to evaporation of water. To carry out 

mathematical simulation, we use the Fourier equation. We show that under our conditions the water 

flow is turbulent and the thermal conductivity of water can be safely ignored. Next we switch to a 

coordinate system moving with water and end up with a simple differential equation for water 

temperature. With this equation we can predict the longitudinal water temperature fluctuation along 

the river at various times considering real morphometric characteristics. 

The method of assessing the temperature of the Earth's land surface and, in particular, the water 

surface, is the subject of numerous studies [15, 16]. Unlike a number of other satellite data, Landsat 

temperature data must be calculated. Each pixel of Landsat 8 TIR data is stored as Digital Numbers 

(DNs) with a value between 0 and 215. To obtain the actual surface temperature, we need first to a) 

convert these DNs to top-of-the-atmosphere (ToA) radiance values, and then b) convert the ToA 

radiance values to ToA brightness temperature in Kelvin. The last step is the estimation of Land 

(Water or Sea) Surface Temperature (LST). Land Surface Temperature can be calculated from ToA 

Brightness Temperature TB [17]: 

 T = TB/[1 + (λ·TB/c2)·ln(
w )],  

where λ = wavelength of emitted radiance, c2 =h·c/s=1.4388·10-2 m K, 

h = Planck’s constant = 6.626·10-34 J s, c = velocity of light = 2.998·108 m/s, 

s = Boltzmann constant =1.38·10-23 J/K, 
w = emissivity of the water surface. 
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3. Mathematical Modeling of the hydrothermal regime 

Water from the upstream reservoir is released through the dam and enters the afterbay of surface width 

B (m) and cross-sectional area S (m2). The water discharge through the dam body is characterized by 

the quantity Q (m3sec-1). The mean streamflow velocity V (km hr-1) is  

 .
Q

V
S

  (1) 

The hydrothermal river regime in this situation can be described by the Fourier equation [18]:  

 

2

2

( , ) ( , ) ( , ) ( ) ( )
( ) .

( )

w w wT x t T x t T x t W t B x
V x D

t x x c S x

  
   

  
 (2) 

The first term in the right-hand side refers to the rate of change in the temperature caused by 

advection, the second one is associated with the rate of change in the temperature due to dispersion, 

and the third term describes the heat exchange between the water and the surrounding environment. 

Here 
wT (ºС) is the cross-sectional average water temperature in degrees Celsius, t (hour) is time, 

x (km) is the distance downstream of the dam, ρ (103 kg m3) is the specific water density, c (4.19·10-3 

J kg-1 ºС-1) is the specific heat of water, D (m2sec-1) is the dispersion coefficient in the direction of the 

flow, W (W·m-2) is the heat transfer power between the water and the surroundings, which equals 

 ( ) ,s ss a w c eW t W W W W W W       (3) 

where 
sW  and 

ssW are, respectively, the direct and scattered downwelling solar radiation absorbed by 

water; 
aW  is the atmospheric TIR absorbed by water; 

wW  is the TIR from the water surface to the 

atmosphere; 
cW  is the convective heat transfer from the atmosphere to the water, and 

eW  is the loss of 

heat due to evaporation. In this paper we deal with uniform streams for which Q is independent of 

time. In this situation the streambed temperature adjusts to the temperature of water and, therefore, the 

thermal exchange between the water and the streambed surface can be neglected [18].  

For 
310V 

m sec-1 the thermal conductivity can be neglected. Then in the system of coordinates 

moving at a velocity V(x) equation (2) is rewritten as 

 
 

 

( )( ) ( )
,

( )

w
B x tdT t W t

dt c S x t
  (4) 

whose solution is found from the expression 

 

0 0

0

1 ( ( ))
( ) ( ) (0, ), ( ) .
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t t

w w

t t

B x t dt
T t W t dt T t x t Q

c S x t S x t
     (5) 

Here 
0(0, )wT t is the outflow temperature of water leaving the dam at time 

0t . 

The power of extraterrestrial solar radiation equals [19, 20] 

 
0 cos , cos sin sin cos cos cos ,F F E t              (6) 

where
0 1367F  Wm-2 is the solar constant, E is the eccentricity correction factor, θ is the zenith 

angle, t is the time from noon, and   is the rotational speed of the Earth around its polar axis. Here 

 = 55.94º is the geographic latitude of the HPP location. The solar declination on July 3, 2016 was 

 = 22.97º and 0.966E  . Note that the diurnal variation of  was insignificant and, therefore, the 

sunrise and sunset times are both determined by the condition 0.F   From (6) we have 

 
0cos tg tg .t      (7) 
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Consequently, the negative root of the expression, 
0t , refers to the sunrise and the positive one, 

0t , to the sunset. Since t is the time from noon, we further have 

 cos cos ,
12

nt t
t 

 
   

 
 (8) 

where 
nt is the time of solar noon and t is the time from midnight. From (7) we have tsr = 4.06 hours 

for the sunrise and tss = 21.57 hours for the sunset. Then the length of day is 15.51 hours and the time 

of noon will be 
пt =12.81 hours. The temporal behaviour of the power of extraterrestrial solar radiation 

is described by expression (6) and is shown in Figure 1 (curve 1). 

When solar radiation enters the Earth's atmosphere, a part of the incident energy is removed by 

scattering and a part by absorption and, according to the Bouguer-Lambert-Beer law, the power of 

solar radiation reaching the ground (water) surface is 

 0exp ,
cos

F F




 
    

 
 (9) 

where the clear sky optical thickness of the atmosphere is 
0 0.12  taking into account the scattered 

radiation [19, 20]. 

The power of direct and scattered solar radiation incident on the water surface is found from 

expression (9) and is shown in Figure 1 (curve 2). 

 

 
Figure 1. Temporal dependence of solar radiation power: 1 – incident on the Earth's  

atmosphere, 2 – transferred through the atmosphere, 3 – absorbed by water. 

 

Upon reaching a plane water surface, solar radiation is partially reflected. The reflection coefficient 

R is calculated by the Fresnel's formula. The remaining part of solar energy (1-R) is absorbed by 

water. Thus, 

 (1 ) .s ssW W R F    (10) 

The power of solar radiation absorbed by water is shown in Figure 1 (curve 3). 

The water surface emits TIR defined by the Stefan-Boltzmann law as 

 
4(273 ) ,w w wW T    (11) 
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where 
w is the emissivity of the water surface, which is 0.995w   according to [21]. For 

7.2wT C   we have 
2290W mwW  . While emitting this energy the water gets colder. 

Atmospheric radiation is also determined by the Stefan-Boltzmann law. Over years, various 

empirical formulas have been proposed to calculate the atmospheric emission coefficient 
a . An 

overview of these is given in [22]. Our analysis has shown that the best formula for our situation is the 

one proposed in [23], because the optical thickness of the atmosphere in the wavelength range of 9.8 

µm where the atmosphere emits is close to unity [24]: 

 
100

1 0.4 exp ,
273

a
a

a

e

T


 
    

 
 (12) 

where aT is the temperature of the atmosphere in ºС, and 
ae  (mb) is the atmospheric water vapor 

pressure. 

Now we can carry out calculations for July 3, 2016. At noon Ta = 26 ºС and the humidity was 

Н = 45%, at midnight Ta = 14 ºС, Н = 85%. Then we have 0.99a  , 
2460 W maW  at noon and 

20.99, 390 Wma aW   at midnight. The atmospheric thermal infrared radiation is absorbed by 

water surface and increases the water temperature. 

The energy spent on water evaporation, 
eW , is estimated as [25–27]  

 ( )( ),e s aW L f w e e   (13) 

where L = 2.26.106 J kg-1 is the latent heat of evaporation, 
se  is the saturation vapor pressure. When 

the wind velocity is w= 0, we have 
9 1 13 10 (mb ms )f     according to the data from [28]. For the 

quoted data we have 31eW  W m-2 at noon and 
eW = 4.6 W m-2 at midnight, which results in a drop 

of the water temperature. 

The convective heat flux is estimated as [29]: 

 0.61 ( ).c w aW L f T T   (14) 

Thus, the convective heating is 25 W m-2 at noon and 1.3 W m-2 at midnight. The difference 

between the evaporation and convection is 6 W m-2 during the daytime and 3.3 W m-2 at night. Hence, 

the heat budget is dominated by evaporation and the water gets colder.  

We consider a 32-km reach of the Yenisei River downstream the dam of the Krasnoyarsk HPP. The 

reach is divided by 5 cross-section lines (7 km, 17 km, 22 km, 28 km, and 32 km). The streamflow 

velocity is assumed constant from section to section and is found from equation (1) at Q = 2900 m3sec-

1; S is equal to the cross-sectional area of the downstream lowest reach section. The flow time between 

the section lines is found as the section-to-section distance divided by the flow velocity. The water 

temperature 0(0, )WT t = 7.2 ºС remained constant during the time period under consideration. The 

power emitted by water is 290 Wm-2. The atmospheric radiation power was assumed to be 460 Wm-2 

in the daytime and 390 Wm-2 at night. The difference in power between the evaporation and 

convection is 6 Wm-2 during the daytime and 3.3 Wm-2 during the nighttime. 

The data for each cross-section of the river from high resolution remote sensing imagery and river 

navigation (pilot) maps with data on the depth of the river were calculated. The results are shown in 

Table 1.  It also shows the streamflow velocity and the time of the flow between the adjacent sections

it , as well as the B/S relation. 
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Table 1. Morphometric and hydrophysical characteristics of studied part of the river. 

River cross-section number 1 2 3 4 5 

Distance from dam (7 km) (17 km) (22 km) (28 km) (32 km) 

Width В, m 640 652 544 767 830 

Cross-sectional area S, m2 1883 1738 1968 1667 2260 

Streamflow velocity, km/hour 5.4 6.0 5.3 6.3 4.6 
Flow time between adjacent  
cross-section lines, it , hours 

0.90 1.67 0.94 0.96 0.87 

Relation В/S, m-1 0.34 0.37 0.28 0.46 0.37 

The change in the water temperature in each section of the river, it , will be determined according 

to formula (5) by the expression 

    1

( ( ))1
( ) ( )

( ( ))

i i
i i i a w e c i

i i

B x t
T A t A t W W W W t

c S x t
        , (15) 

where
1( )iA t 

(Wm-2hour) is the solar energy absorbed by water at the river part number i from the 

sunrise to the time 1it  , ( )iA t is the solar energy absorbed by the water from the sunrise to time it . 

Respectively, their difference in formula (15) is equal to the solar energy absorbed by the water in the 

part of the river between i-1 and i cross-section lines. 

In order to compare the temperature change along the river based on the solar energy absorption 

with the values obtained from remote sensing data, it is necessary to perform calculations of the solar 

energy absorption corresponding to the date and time of the satellite imagery. In our case the Landsat-

8 satellite took a survey of the study area on July 3, 2016 at about 11:50 local time (in the decimal 

format it is 11.83).  

The study area is divided into 5 segments, and each of them has all necessary parameters. Knowing 

the water flow rates on all segments, it is possible to determine the timing of the displacement of the 

water in the river. In particular, the water droplets located at the time of shooting in cross-section 1 

passed through the dam at 10.93. The water droplets located at the time of shooting in cross-section 2 

passed through cross-section 1 at 10.16, and through the dam at 9.26. All these data for all cross-

sections are grouped in Table 2. 

 

Table 2. Timing of displacement of the water in the river. 

River cross-section number at dam 1 2 3 4 5 

Distance from dam (0 km) (7 km) (17 km) (22 km) (28 km) (32 km) 

Timing for water part 1, hour 10.93 11.83     

                                    2 9.26 10.16 11.83    

                                    3 8.32 9.22 10.89 11.83   

                                    4 7.36 8.26 9.93 10.87 11.83  

                                    5 6.49 7.39 9.06 10.00 10.96 11.83 

 

For all moments of time in Table 2, the corresponding values of absorbed solar energy were 

calculated based on the above formula (10). The results are presented in Table 3.  

 

Table 3. The amount of solar energy absorbed by water from sunrise to a given point in time. 

Time, hour 6.49 7.36 7.39 8.26 8.32 9.06 9.22 9.26 

A, Wm-2hour 196 465 478 854 884 1298 1403 1418 

Time, hour 9.93 10.00 10.16 10.87 10.89 10.93 10.96 11.83 

A, Wm-2hour 1875 1955 2043 2592 2615 2645 2664 3401 

         



ENVIROMIS2018

IOP Conf. Series: Earth and Environmental Science 211 (2018) 012022

IOP Publishing

doi:10.1088/1755-1315/211/1/012022

7

 

 

 

 

 

 

Then calculations of the water temperature changes for different cross-sections using the 

expression (15) were performed. For example, for a portion of water that reached cross-section 2 at the 

time of the survey, the 1st section (from the dam to section 1) passed from time 9.26 to 10.16, the 

water temperature increased by 0.22 °C, and the second section (from section 1 to section 2) passed 

from time 10.16 to 11.83, and the temperature increase was 0.52 °C. Thus, the total temperature 

increase of the considered part of water was 0.74 °C. All these results of calculations are collected in 

Table 4. Figure 2 summarizes the obtained results on the temperature change along the river (curve 1). 

 

                
Figure 2. Water temperature depending on distance: mathematical modeling (1)  

and remote sensing data (2). 

 

Table 4. Water temperature increasing by absorbing solar energy. 

River part  dam – 1 1 – 2 2 – 3 3 – 4 4 – 5 Total ΔT, ºC 

ΔT for water part 1, ºC 0.26     0.26 

                             2 0.22 0.52    0.74 

                             3 0.19 0.47 0.23   0.89 

                             4 0.15 0.42 0.21 0.38  1.16 

                             5 0.12 0.34 0.19 0.34 0.27 1.26 

 

4. Remote sensing temperature data preparation 

The relevant tarball file containing the data was downloaded using the United States’ Geological 

Survey’s (USGS) EarthExplorer tool; the area of interest was encompassed by [scene identifier: path 

143 row 021] in the WRS-2 scheme, scene id = LC81430212016185LGN00. When the tarball is 

unpacked fully, the band used from the TIRS instrument is band 10; the relevant .TIF file is 

[“identifier”_B10.tif], and it was clipped to the study area. 

In accordance with the standard procedure noted above, the calculations were carried out. At the 

first step Dark Object Subtraction (DOS) atmospheric correction was performed. Then DNs were 

converted to top-of-the-atmosphere (ToA) radiance values, the ToA radiance values to ToA brightness 

temperature, and the ToA brightness temperature to Land (Water) Surface Temperature in Celsius 

degrees. Open source GIS software QGIS 2.18 with the Semi-Automatic Classification Plugin (SACP) 

plug-in was used to process the satellite data [30].  
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On the basis of the prepared satellite temperature map data, estimation of the water temperature at 

the mentioned cross-section lines was performed. Figure 2 summarizes the obtained results on the 

temperature change along the river (curve 2). It shows the data of the calculations and the results of 

remote sensing data processing. 

 

5. Conclusions 

We have proposed a simple model for simulating the summertime hydrothermal regime of a river 

based on the calculation of water temperature in a coordinate system moving with the water. A 

physically based estimation of the water heat budget takes into account the absorption of solar 

radiation by water surface, the emission and absorption of atmospheric TIR by water, the convective 

heating of water, as well as the heat loss due to evaporative processes. The temporal fluctuation 

pattern of direct and scattered solar radiation depends on the zenith angle and atmospheric absorption. 

The dominant water heating factor is solar radiation during the daytime and atmospheric TIR at night.  

The water temperatures at 32 km downstream of the Krasnoyarsk HPP on the Yenisei River computed 

using the above-proposed model with consideration of morphometric characteristics are close to the 

temperatures obtained from Landsat 8 satellite remote sensing data. This proves that the physical-

mathematical model provides an adequate description of the actual hydrothermal processes. 

The above-proposed approach, which combines methods of physical and mathematical modeling 

and remote sensing, is promising and effective for use in problems and models associated with specific 

areas and taking into account their specificity in the conditions of natural and climatic changes. It 

gives high-quality scientific and practical results in management decision-making for various tasks of 

analysis, assessment, and monitoring of the environment. 
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