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Abstract.  
This paper focuses on new proposed algorithms for cluster problem solving. The proposed 

algorithms is based on Classification EM algorithm (CM-algorithm). The algorithms are new 

algorithms of the greedy heuristic method using the idea of searching in alternating 

neighborhoods. The numerical experiments shows that the proposed algorithms have less mean 

values and/or less standard deviation of objective function, less scatter of obtained values in 

comparison with classical CEM-algorithm.  
 

1. Introduction 

 There are a lot of methods for classifying and clustering data [1, 2]. One of the most popular 

methods includes the EM algorithm (Exception Maximization). The EM algorithm is successfully 

used for statistical tasks related to the analysis of incomplete data (if some statistical data are missing 

due to some reason) or for cases when the likelihood function has a form that does not allow 

"convenient" research methods, but allows serious simplifications when introducing additional 

"unobservable" ("hidden") values [1, 3].  
The separating problem of radio and radio products homogeneous production batches is precisely 

the normal distribution multidimensional data clustering problem with hidden data [4].  

2. EM-algorithm 

 The distribution density on the set X has the form of a mixture of k distributions (we assume that 

the distributions are Gaussian) [5]:  
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here )(xj  - is the likelihood function of the j-th component of the mixture , j
 - is its prior 

probability. 
Let the likelihood functions belong to a parametric set of distributions );(  x  and differ in the 

parameter values only );()( jj xx   . 
The fuzzy clustering problem (separation of the mixture) is to estimate the vector of parameters 

),...,,,...,( 11 kk   with a sample 
mX  of random and independent observations from the 

mixture )(x , knowing the number k and the function  .  



The idea of the expectation maximizing algorithm is to artificially introduce an auxiliary vector of 

hidden variables G with the following features: 
- it can be calculated if the values of the parameter vector are known  ; 
- if the values of hidden variables are known then the search for maximum likelihood is greatly 

simplified. 
This allows us to transform a complex optimization problem to a sequence of iterations for 

recalculating coefficients (hidden variables calculation in the current approximation of the parameter 

vector — E-step) and maximizing the likelihood (it is necessary to find the next approximation of the 

vector — M-step).  
The vector component values G  of the hidden variables are calculated from the current 

approximation of the parameter vector  . Let us denote );( jx   as probability density. The 
);( jx   means that the object x is derived from the j-th component of the mixture using the formula 

of conditional probability: )()|()(),( xхPxx jjjj   . 

Let us take )|( ijij xPg  .  This is the unknown a posteriori probability. The 

)|( ijij xPg  pobability means that the training object i
x is obtained from the j-th component of the 

mixture. These values are used as hidden variables. The 1
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it makes sense for the total probability to belong to the object xi of one of the k components of the 

mixture. 

The likelihood maximizing problem is being solving at the M-step. And then the next 

approximation of vector   is being finding at M-step using current values of the vectors G and  . 

The log likelihood maximizing problem statement:  
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Having solved the Lagrange optimization problem with constraint j
, we find: 
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Therefore, the M-step consists of k independent optimization problems. The weights of the 

components j
 are being calculating as arithmetic averages at M-step. The parameters j  are being 

estimating at M-step. It is worth noting that the separation of variables was made possible by the 

introduction of hidden variables.  

The iteration process stops according to a previously agreed stopping criterion (a pre-selected 

metric ),( 21  and number  ). The process stops at the m-th step, if   ),( )1()( mm
.  

 

3. Modification of the EM-algorithm 

 
In practice, the algorithm based on the method of greedy heuristics and the k-means model [6] is used 

for dividing a sample of electronic components into homogeneous production lots. This algorithm 

does not allow determining the number k (number of clusters) of the components of the mixture.eThe 

k  value should be set before the start of the algorithm or a series of problems with different estimated 

number of clusters should be solved  
It was established experimentally [5] that the  EM-algorithm results has a strong dependence on the 

initial data. For example, replacing one only observation with another can drastically change the final 



estimates that obtained using the EM algorithm in the case of a four-component mixture of normal 

laws with a sample size of 200–300 observations [3]. The median modifications of the basic EM 

algorithm are proposed to exclude this kind of instability [1]. 

Modification of the classical EM algorithm [1] is the Classification EM algorithm (CEM 

algorithm). The CEM algorithm works according to the principle of clear classification of sample data. 

The CEM modification of the algorithm coincides with SEM (Stochastic EM) but has specific feature. 

The specific feature is to use a deterministic rule at each step. The deterministic rule is to put data into 

one of the clusters that has maximum of calculated posteriori probability. 

 

1. The idea of a new algorithms based on the CEM algorithm 

 

The idea of presented paper is to apply the greedy heuristics method for the automatic grouping 

problem solving. 

Given: There are two known (parent) problem solutions. Solutions are represented by set pairs <D, 

W>. The set D is the set of distributions in the mixture. Each distribution is given by parameters. The 

second set W is the prior probabilities corresponding to the distributions. 

 

Algorithm 1. Basic greedy agglomerative heuristics. 

Given: the initial number of clusters K, the required number of clusters k. Moreover, K > k. 

1. Choose an initial solution with K clusters, i.e. randomly select the initial parameters of a pair of 

sets of distributions and their weights     KiINWD inii ,1,,),(,
0200

 .  

2. Run the EM algorithm and get a new (improved) solution represented by <D, W>. 

3. If K = k, then stop.  

4. For each  Ki ,1'  perform:  

4.1. Get a pair of truncated sets   .}{\,),(\','
0

'

20

'

0

'  inii WINDWD   

4.2. Run the EM algorithm with the initial values of the distribution parameters represented by the 

truncated <D ’, W’>. In this case, the EM algorithm is limited to one iteration. Then, it is necessary to 

calculate the objective function L for each solution that is obtained using EM algorithm. Save the 

calculated value of L function as L’i’ 

4.3. Next iteration of loop 4. 

5. Find the index 
'

,1'
maxarg'' i

ki
Li


 . 

6. Obtain a pair of truncated sets    }{\,),(\,
0

''

200

''

''''
'' inii WINDWD  . Run the EM 

algorithm for obtained pair of truncated sets, then go to step 3. 

 

In this paper, the new heuristic procedures are proposed. 

Algorithm 2. A greedy procedure with partial merger No.1.  

Given: a pair of sets of distributions     KiINWD inii ,1,',)','(','
0200

  and 

    KiINWD inii ,1,'',)'',''('',''
0200

  

1. For each  ki ,1'  perform: 

1.1. Merge element by element sets in pairs <D ’, W’> and <D ’’, W 

’’>   .}'{',)'',''(',
0

'

200

' '  inii WINDWD  : 

1.2. Run the basic greedy heuristics (Algorithm 1) with these pairs of merged sets <D, W> as 

the initial solution. Save the obtained result (a pair of the resulting sets, as well as the value of 

the objective function). 

3. The best obtained solution in step 1.2 returns as a result. 

 

Algorithm 3. A greedy procedure with a complete union of parental decisions. 

Given: see Algorithm 2  



1. Merge element by element sets <D ’, W’> and <D ’’, W ’’>: 
.''',''',  WWDDWD  

2. Run Algorithm 1 with merged sets. Take the merged sets as the initial solution. 

 

Algorithm 4. A greedy procedure with a partial merger № 2. 

Given: see Algorithm 2 

1. Choose a random value  12  k,r  with equal probability.  

2. Repeat k-r times:  

2.1. Form a randomly selected subset D’’’ from the elements of the D’’ set. The power of D’’’ 

subset is r. Form subset W’’’ from elements of the W’’ set ( the power of W’’’ is equal r ). 

2.2. Merge sets .'''','''',  WWDDWD  

2.3. Run Algorithm 1 with merged sets as the initial solution.  

3. Return the best (by the value of the objective function)  solution from the solutions obtained in 

step 2.3 as a result. 

 

The first computational experiments showed the extreme inefficiency of Algorithm 4 in 

comparison with Algorithm 3 for all the solved problems [4]. At the same time, efficiency is greatly 

increased if the number of elements added from the solution <D’’, W’’> is limited as follows: 

Step 1 of Algorithm 4: Select random )1;0['r . Assign r = [(k / 2-2) r’2] +2. Here [.] is the integer 

part of the number. 

Proposed heuristic procedures are (not in the strict sense) local search algorithms in the 

neighborhood of a well-known (“parent”) solution that is represented by <D’, W’>. These proposed 

procedures can be used as part of various global search strategies. At the same time, the 

neighborhoods are ("children") solutions that are derived from <D ', W'> solution that is merged with 

the elements of  <D'', W''> solution and using basic greedy agglomerative heuristic (Algorithm 1). 

The EM algorithm and its modifications (CEM, SEM, median EM [1, 7]) can be used quite 

successfully as a local search method. On the one hand, the global search algorithm should 

periodically "knock out" an intermediate solution of the problem from the "region of attraction" of the 

local optimum. On the other hand, solutions formed from elements of various local-optimal solutions 

are more likely to be closer to the global optimum in comparison with randomly selected solutions [8]. 

Thus, it seems promising to search in a neighborhood of a local optimum. The local optimum 

neighborhood is formed by replacing individual elements of a local-optimal solution with elements of 

other local-optimal solutions. Such approach is used in different variants of Algorithm 4. The 

intermediate solutions of Algorithm 4 are represented by pairs of sets of distributions and their 

weights. Each of set pair is the result of the EM-algorithm. That is the local maximum. Therefore, it is 

proposed in this paper to use the VNS algorithm as an extended local search [9, 10]. 

A search in the surroundings formed by adding to the well-known intermediate solution 

represented by a pair of sets <D ', W'> of elements of another solution <D '', W ''> with the subsequent 

removal of the "extra" solutions by greedy agglomerative heuristic procedure is performed by 

Algorithms 2, 3 and 4. Thus, these algorithms search in some neighborhoods of the solution <D ', 

W'>, and the second solution <D'', W''> implicitly sets the parameters of this neighborhood. Thus, 

Algorithm 2 searches in the neighborhood of S (<D’, 

W’>)= |}''|,1}),'',''{','({ DiWDWDgreedy ii  . Here greedy () is the result of Algorithm 1 

applying. Accordingly, Algorithms 3 and 4 search in wider neighborhoods. 

Thus, the general scheme of the search algorithm in alternating neighborhoods can be described as 

follows: 

 

Algorithm 5. CEM-VNS 

1. Run the СEM-algorithm from a random initial solution and get the solution <D, W>.  

2. Set s= sstart (it is a № of search neighborhood)  



3. Set i=0, j=0; (the quantity of unsuccessful iterations in a particular neighborhood and as a whole 

by the algorithm).  

4. Run the CEM algorithm from a random initial solution, get the solution <D’, W’>. 

5. Depending on the value of s (values of 1, 2 or 3 are possible), run Algorithm 2, 3 or 4 with the 

initial solutions <D, W> and <D’, W’>. Thus, a neighborhood is determined by the procedure for 

including distributions from the second known solution (the mentioned Algorithms 2, 3, or 4) and the 

neighborhood parameter that is the second known solution. The search is carried out in this particular 

neighborhood. 

6. If the result value of the objective function is better than <D, W>, then replace <D, W> with this 

new result, assign i = 0, j = 0, go to Step 5.  

7. Assign i = i + 1;  

8. If i <imax, then go to Step 4.  

9. Assign i = 0, j = j + 1. Make the transition to a new neighborhood: s = s + 1; if s> 3, then assign 

s = 1; 

10. If j> jmax, or other stop conditions are satisfied (for example, the maximum running time), 

then STOP. Otherwise, go to Step 5. 

 

The sstart parameter specifies the number of the neighborhood. This number is index of start 

neighborhood from which the search begins, is particularly important [10]. We performed 

computational experiments with all its possible values. Depending on this value, the algorithms are 

designated below, respectively, CEM-VNS1, CEM-VNS2, CEM-VNS3. The start of the search 

algorithm can run from different neighborhoods. 

1. Computational experiment results 

The following abbreviations and abbreviations of algorithms are used: CEM - Classification EM 

algorithm; CEM-VNS1, CEM-VNS2 and CEM-VNS3 are variants of the search algorithm in 

alternating neighborhoods. 

As test data sets, the results of non-destructive test experiments of prefabricated production batches 

of radio products are researched (table 1). These experiments are performed in a specialized test center 

to complete the onboard equipment of spacecraft. 

The DEXP OEM computing system (4-core Intel® Core ™ i5-7400 CPU 3.00 GHz, 8 GB of 

RAM) is used for researching of proposed algorithms. 

 For all data sets, 30 attempts are made to run each algorithm. Only the best obtained results in 

each attempt are recorded. The objective function values: minimum value (Min), average value 

(Average) and standard deviation (RMS) were calculated for each algorithm using the best obtained 

results. 

 

Table 1. Computational experiment results for data set of radio products (10 clusters, 2 minutes, 30 

attempts) 

Algorithm Value of objective function 

Min Max Mean SD 

3OT122A (767 vectors of data, each vector has 13 component) 

CEM 120 947.6 146 428.5 135 777.6 7 985.6992 

CEM-VNS1 108 979.8 152 729.1 141 728.3 11 421.9262 

CEM-VNS2 123 664.4 158 759.2 143 028.5 10 294.3992 

CEM-VNS3 128 282.2 155 761.9 143 506.9 10 058.8266 

1526TL1 (1234 vectors of data, each vector has 157 component) 

CEM 354 007.3 416 538.4 384 883.4 20 792.8068 

CEM-VNS1 376 137.1 477 124.5 438 109.4 29 964.0641 

CEM-VNS2 345 072.6 487 498.3 444 378.1 43 575.3282 

CEM-VNS3 379 352.3 516 777.8 456 271.4 38 323.0246 



2. Conclusion 

 

The computational experiments show that the stability of the results with multiple launches of the 

CEM algorithm is higher than the EM algorithm has. At the same time, the result is in many cases is 

far from the true likelihood function optimum. In general it is practically impossible to determine the 

true optimum for large problems. The analysis of results shows that there exists the available reserve 

for result improving. This reserve can be explained by enough bigger difference between value of the 

best attempts and mean value for both the EM algorithm and its modifications. 

The results of performed computational experiments show that new proposed search algorithms in 

alternating neighborhoods (CEM-VNS) have more stable results (give a lower mean value and / or a 

standard deviation of the objective function, a smaller scatter of the achieved values) and, 

consequently, better performance in comparison with the classical CEM -algorithm. The comparative 

effectiveness of new proposed algorithms on various data sets has been experimentally proven. 

3. Acknowledgements 

Results were obtained in the framework of the state task No. 2.5527.2017/8.9 of the Ministry of 

Education and Science of the Russian Federation. 

References 

[1] Korolev V 2007 EM-algorithm, its modications and their application to the problem of 

separation of mixtures of probability distributions Theoretical review IPIRAN Moscow. 

[2] Cherezov D and Tyukachev N 2009 Overview of basic data classification and clustering 

methods Bulletin "System Analysis and Information Technologies" 2 Voronezh. 

[3] Kazakovtsev L, Orlov V and Stupina A 2015 The choice of a metric for a system for the 

automatic classification of radio products by production batches Software products and systems 

2 124–29  Doi: 10.15827/0236-235X.110.124-129. 

[4] Kazakovtsev L, Orlov V, Stashkov D, Antamoshkin A and Masich I 2017 Improved model for 

detection of homogeneous production batches of electronic components IOP Conference Series: 

Materials Science and Engineering 255  doi:10.1088/1757-899X/255/1/012004. 

[5] Kazakovtsev L, Stashkov D, Gudyma M and Kazakovtsev V 2019  Algorithms with Greedy 

Heuristic Procedures for Mixture Probability Distribution Separation Yugoslav Journal of 

Operations Research 29 51-67 

[6] Kazakovtsev L 2016 The greedy heuristics method for systems of automatic grouping of objects  

Diss ... Dr. tech. of science Krasnoyarsk. 

[7] Celeux G and Diebolt J 1984 Reconnaissance de m´elanges de densit´e et classification Un 

algorithme d’apprentisage probabiliste: l’algorithme SEM Rapport de Recherche de l’INRIA 

RR-0349  Centre de Rocquencourt. 

[8] Celeux G and Govaert A 1991 Classification EM Algorithm for Clustering and Two Stochastic 

Versions Rapport de Recherche de l’INRIA RR-1364  Centrede Rocquencourt. 

[9] Kazakovtsev L, Antamoshkin A and Masich I 2015 Fast Deterministic Algorithm for EEE 

Components Classification IOP Conf. Series: Materials Science and Engineering 94 Article ID 

012015, 10 P. DOI: 10.1088/1757-899X/04/1012015. 

[10] Orlov V, Kazakovtsev L, Rozhnov I, Popov N and Fedosov V 2018 Variable neighbourhood 

search algorithm for k-means clustering IOP Conf. Series: Materials Science and Engineering  

450 Article ID 022035, DOI:10.1088/1757-899X/450/2/022035. 


