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Abstract. In this paper, the problem of a two-dimensional stationary flow of two immiscible
viscous heat-conducting fluids in a cylinder is solved. The fluids have a common movable non-
deformable interface. The cylinder has a solid outer wall. At the same time the mass forces are
absent. The total energy condition at the interface is taken into account. The temperature in
liquids is distributed in a quadratic law, which is consistent with the velocity field of the Himenz
type. From a mathematical point of view, this initial-boundary value problem is nonlinear and
inverse with respect to pressure gradients along the cylinder axis. The modified Galerkin
method is used to solve the problem. The effect of the Marangoni number on the fluids flow
was investigated.

1. Introduction
The modeling of convective flows is an important problem in both theoretical and applied
terms. The convective flows of two or more fluid media contacting through the interface play an
important role, for example, in nanotechnology, the nuclear industry, as well as when cooling
devices in microelectronics. The analysis of such flows leads to the study of conjugate problems
with complex boundary conditions on the interfaces, where, in particular, the heat fluxes are
not equal to each other, since the change in the interfacial energy is taken into account [1].
For ordinary fluids at room temperature, the effect of changes in the internal energy of the
interfacial surface on the formation of heat fluxes, temperature fields and velocities in its vicinity
is insignificant relative to its viscous friction and heat transfer [2]. Therefore, the class of
problems associated with these phenomena remains unattended by most researchers. However,
for thin layers or for fluids with reduced viscosity (for example, for some cryogenic fluids, such
as liquid CO2) it is necessary to take into account the energy spent on the deformation of the
interfaces [3], [4]. This effect will appear even in simple cases of a flat interface, when the
velocity field depends on two spatial variables.

2. Statement of the problem
We consider the conjugate stationary nonlinear boundary value problem describing a two-
dimensional two-layer motion of viscous heat-conducting fluids in a cylinder with a solid side
surface r = R2 = const (the variable r is radius cylinder). The fluids form a common interface
r = R1 = const (Fig. 1). The mass forces are absent. The velocity, pressure and temperature
fields of equations systems describing the axisymmetric stationary motion of a viscous heat-
conducting fluid are sought as

uj = uj(r), wj = vj(r)z, pj = pj(r, z), θj = θj(r, z), (1)



Figure 1. The scheme of solution field.

where the index j = 1, 2 is the number of the fluid, uj(r, z) and wj(r, z) are projections of the
velocity vector on the axis r and z of the cylindrical coordinate system, pj(r, z, t) are pressure
that satisfies the ratio
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u2j + dj0, dj0 = const. (2)

The temperature field is searched in the following form

θj(r, z) = aj(r)z
2 + bj(r). (3)

So the temperature is extreme at the point z = 0. It has the maximum at a(r) < 0 and the
minimum at a(r) > 0.

Thus we have the following the equation system for functions uj(r), aj(r), bj(r)
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where νj are kinematic viscosity coefficients, χj are coefficients of thermal diffusivity.
The following conditions are met on a solid wall r = R2

u2(R2) = 0, v2(R2) = 0, (6)

a2(R2) = α, b2(R2) = β, (7)

with given constants α, β.
At the interface r = R1 taking into account the dependence of the surface tension

coefficient on temperature
(
σ (Θ) = σ0 − æ

(
Θ−Θ0

)
,æ = −dσdΘ = const

)
and (3) we obtain

the following conditions [6]

u1(R1) = u2(R1) = 0, v1(R1) = v2(R1), (8)

µ2v2r(R1)− µ1v1r(R1) = −2æa1(R1), (9)

a1(R1), t) = a2(R1), k2a2r(R1)− k1a1r(R1) = æa1(R1)v1(R1), (10)

b1(R1), t) = b2(R1), k2b2r(R1)− k1b1r(R1) = æb1(R1)v1(R1), (11)
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where µj = ρjνj are dynamic viscosity coefficients, ρj are densities, kj are coefficients
conductivity,

Note that the problem is non-linear and inverse, since, along with vj(r), aj(r), bj(r) the
pressure gradients along the layers fj are the searched constant. If we exclude the function
uj(r) from the second equations (4) taking into account the conditions of sticking on the walls,
we will obtain the conjugate boundary value problem for finding functions vj(r), aj(r). With
known uj(r), aj(r) the problem for functions bj(r) will separated. The functions dj(r) are
calculated by the second formula from (2).

We introduce dimensionless functions and parameters
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where M is the Marangoni number, Prj are Prandtl numbers. Then in dimensionless variables
the nonlinear conjugate inverse boundary value problem will take the form
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V2(γ) = 0, A2(γ) = 1, (14)
1∫

0

xV1(x)dx = 0,

γ∫
1

xV2(x)dx = 0, (15)

V2ξ(1)− µV1ξ(1) = −2A1(1), (16)

V1(1) = V2(1), |V1(0)| <∞, (17)

A2ξ(1)− kA1ξ(1) = EA1(1)V1(1), (18)

A1(1) = A2(1), |A1(0)| <∞, (19)

where E = æ2αR2
1/µ2k2 is parameter which determines the influence of internal interfacial

energy on the dynamics of the fluids motion inside the layers. The integral override conditions
(15) allow finding unknown constants (pressure gradients along the layers) Fj , j = 1, 2.

3. Results of numerical calculations
To solve the problem (12)-(19), a modified Galerkin method was applied. This method differs
from the Galerkin method in that the approximate solution does not necessarily have to satisfy
the boundary conditions [7]. The sought functions Vj(ξ) and Aj(ξ) are searched for in the form
of an expansion in basic functions, which have the form of the shifted Legendre polynomials. The
approximate solutions are substituted into the equations, and their discrepancy are calculated.
Further, the requirement of the orthogonality of the residual to the basis functions is advanced.
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The result the closed system of nonlinear algebraic equations for the unknown expansion
coefficients and pressure gradients along the layers is obtained. To solve the obtained system,
the Newton method was used, where the results obtained in solving the model problem [8] were
used as the initial approximation.

For the calculations, water H2O (0 ≤ r ≤ 1) and saturated liquid CO2 (1 ≤ r ≤ γ) at
the temperature of 30oC were used as working media. Their parameters are given in the
following order ”H2O; CO2”: ρ = {995.6; 598} kg/m3, ν = {0.8012 · 10−6; 0.08 · 10−6}m2/s,
χ = {1.4741 · 10−7; 2.7875 · 10−9}m2/s, k= {0.6133; 0.07}W/(m·K), æ = 2.11 · 10−4 N/(m·K),
σ0 = 71.2 · 10−3 N/m. Also the parameters are set n = 10, γ = 1.5, R1 = 10−9 m, M = 9.
It corresponds to the temperature 300.81 K (the temperature value at the critical point for
saturated liquid CO2 is 304.15 ), E ≈ 4. Four different values of dimensionless constants
F1, F2 were found. It is {F 1

1 = −0.88658;F 1
2 = −0.2294}, {F 2

1 = 2.04503;F 2
2 = 0.52953},

{F 3
1 = −9.18797;F 3

2 = −2.37428}, {F 4
1 = 97.13247;F 4

2 = 26.83752} (the superscript denotes
the number of the solution). In this case, the difference between the values obtained for n = 10
and n = 17 is of the order 10−14, 10−12, 10−8, 10−4 for F 1

j , F 2
j , F 3

j F 4
j respectively. This

suggests a good convergence of the tau method in solving the problem.
It should be noted that with a decrease in the Marangoni number for a fixed value of the

parameter E ≈ 4 the solutions obtained F 1
j tends at the exact solution of the creeping flow

problem with a Himenz-type velocity field (1) {F 01
1 = −1.1164715;F 01

2 = −0.28893927} and
{F 02

1 = 27.931;F 02
2 = 7.228}. At M = 10−3 we have {F 1

1 = −1.11641882;F 1
2 = −0.2889256}

and {F 1
1 = 27.883;F 1

2 = 7.216}.
The velocity profiles Ūj(ξ) and the functions V̄j(ξ) for the 1st solution for different values

of the parameter M = {−1; 1; 5; 9; 20} are obtained Fig. 2, 3. Here V̄j(ξ) = MVj(ξ) and on
the interval 0 ≤ ξ ≤ 1 the velocity profile Ū1(ξ) and the function V̄1(ξ) are shown and on the
interval 1 ≤ ξ ≤ γ the velocity profile Ū2(ξ) and the function V̄2(ξ) are shown. The case when
M < 0 means that α < 0 and the temperature on the tube wall has the maximum value at the
point z = 0. From the Fig. 2, 3 we can see, that with an increase in the Marangoni number
when M > 0 the velocity profile values Ūj(ξ) and functions V̄j(ξ) increase. The nature of the
parameter influence M on these functions will not change when considering other solutions.
This dependence for the second solution is shown in the Fig. 4, 5.

Figure 2. The effect of the Marangoni
number on the value of the velocity profiles
Ūj(ξ) for the first solution. 1 – M = −1, 2 –
M = 1, 3 – M = 5, 4 – M = 9, 5 – M = 20.

Figure 3. The effect of the Marangoni
number on the value of the velocity profiles
V̄j(ξ) for the first solution. 1 – M = −1, 2 –
M = 1, 3 – M = 5, 4 – M = 9, 5 – M = 20.

Note that the view figure of Ūj(ξ) for the third and fourth solutions will correspond to the
form of the same graphs, built for the first and second solutions (Fig. 6, 7). At the same time,
as you can see, with each solution the flow of fluids becomes more intense.

Thus, the effect of the Marangoni number on the axially symmetric two-layer stationary
thermocapillary flow in a cylinder has been investigated taking into account the total energy
condition at the interface.
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Figure 4. The effect of the Marangoni
number on the value of the velocity profiles
Ūj(ξ) for the first solution. 1 – M = 1, 2 –
M = 5, 3 – M = 9, 4 – M = 20.

Figure 5. The effect of the Marangoni
number on the value of the velocity profiles
V̄j(ξ) for the second solution. 1 – M = 1, 2 –
M = 5, 3 – M = 9, 4 – M = 20.

Figure 6. The velocity profiles Ūj(ξ) for: 1
– the first solution, 2 – the third solution.

Figure 7. The velocity profiles Ūj(ξ) for: 1
– the second solution, 2 – the fourth solution.
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