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Abstract. In this paper the new family of the stream routing curves was obtained on the basis 

of disparity in the “water stage vs water volume” curve on the rise and the recession of the 

flood wave. The paper contains the results of the numerical experiments with the different 

stream routing curves using the row data about the artificial outflows downstream from 

Novotveretskaya and Ivankovo dams. 

1.  Introduction 

One of the tasks of hydrology is the determination of water discharge (and/or water levels) in an 
outflow section by the known flow characteristics in an upstream inflow section. To the theoretical 

description of the process of accumulation and drawdown of water volume in river reaches and in 

other hydrological systems, the differential equations of the water balance is widely used [1–4]. 

 ( ) ( ),
dW

Q t q t
dt

= −  (1) 

were ( ) ( ( ), ( ), )W t W q t Q t= C is a storage volume given by “water stage vs water volume” curve 

(hereinafter volume curve). Equation (1) determines a relation between storage volume in the reach 

W(t) and the weighted inflow q(t) and outflow Q(t) discharges. 
Since in linear models the volume curve is described by a linear differential expression (may be of 

zeroth order) with constant coefficients, the general solution (1) with zero initial data is the 

convolution integral: 

 ( ) ( ) ( ) ( ) ( )
0

, * , d ,

t

Q t t q t q t    = = −C C  (2) 

where ( ),t C is a kernel (in our case a unit hydrograph or “stream routing curve”), a “*” symbol 

means the convolution operator. Thus, in order to determine the water discharge in the outflow section 



 
 

 

 

 
 

using known water discharge in the upstream inflow section, it is necessary to solve the following 

problems: 1) to specify a volume curve or a stream routing curve according to some physical reasons; 

2) to select values of the vector C  set of parameters characterizing the hydrological system.  

In this paper we discuss in detail a mathematical approach to the first problem. Thus, if the form of 

the volume curve is chosen, then corresponding family of stream routing curves may be constructed 
explicitly. Moreover, there are stream routing curves, which cannot be described by any linear 

differential equations, although these curves are inseparably connected with the native volume curve 

(for example, Gamma distribution, Brovkovich’s curve, etc.). 
In connection with the second problem, we briefly point out the following. If there is a sufficient 

amount of row data for the pair q(t) and Q(t), then optimization methods are used to adjust the set of 

parameters C (see [5, 6], etc.). 

2.  Families of stream routing curves 

To obtain a family of stream routing curves and a physically meaningful interpretation of their 
parameters, it is convenient to use the Laplace transform. Thus, applying Laplace transform to the 

convolution integral (2) gives ( ) ( ) ( ), ,Q p p q p= C where ( )f p  denotes a Laplace transform of the 

function ( )f t . Moreover, the following relation 
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

=

= − = −  (3) 

holds. Here 
rm is a r-th order moment about zero of ( )t  stream routing curve. As D.A. Burakov first 

proposed, (3) allows to determine the parameters of stream routing curve through its statistical 
moments, taking into account the concepts of turbulent diffusion [7–9].  

In tab. 1 the original function and its Laplace transform is shown for two families of stream routing 

curves, namely: 1) a family based on classical Kalinin-Milyukov volume curve ( ) ( )W t kQ t=  [1]; 2) a 

new family using disparity in the volume curve corresponding to the rise and recession of a flood 

wave 1 2( ) ( )
dQ

W t k Q t k
dt

= +  [9]. 

 Since the flow velocity is always finite, the stream routing curve should take into account the 

minimum travel time 
min  of an elementary volume of water from the inflow section to the outflow 

one. In order to take into account 
min  mathematically, we use a time shifting in the initial 

0 ( )t  

stream routing curve. Thus, in tab. 1 any 
0 ( )t  stream routing curve has an additional ( )t  stream 

routing curve with time shifting. The Laplace transform ( )p  and original function ( )t  are 

connected with initial curve 
0 ( )t  and 

0 ( )t  by the following relations: 

 ( ) ( ) ( ) ( ) ( ) ( )0 0

min min minexp ,    ,p p p t t H t      = − = − −   

where ( )H t  is Heaviside step function. 

The probabilistic interpretation of the stream routing curve [7–10] allows to define the parameters 

C  of the curves by minimum characteristics of the hydrological system with clear physical meaning. 

Tables 2-3 contain the main characteristics of the stream routing curves of both families. These 

characteristics are obtained using (3) and the formulae of the moments 1m =  (expected value) and 

2

2M a = (dispersion value) of a distribution of a travel time of an elementary water volume from 

inflow to outflow sections in the homogeneous and inflow free hydrological system. Here   is an 

average value of travel time and a is a coefficient of longitudinal scattering of the flow [10]. 



 
 

 

 

 
 

 

Table 1. Laplace transform and original function for two families of the stream routing curve. 

The name of the 

stream routing 

curve 
Laplace transform original function 

Family generated by Kalinin-Milyukov volume curve 

1. Kalinin-

Milyukov, one 

typical reach 

( )0

KM

1

1
p

kp
 =

+
 ( )0

KM

1
exp

t
t

k k


 
= − 

 
 

2. Kalinin-

Milyukov, n N  

typical reaches  

( )
( )

0

KM,

1

1
n n

p
kp

 =
+

 ( )
( )

1

0

KM,

1
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1 !

n

n

t t
t

k n k k


−

   
= −   

−    
 

3. Gamma 

distribution, 

s R+  
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1
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p
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 ( )
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t t
t

s


  

−



   
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    
 

4. Brovkovich 3
0

Br 3
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( )

(1 ) 6 (1 )s s

b p
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= −
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Family generated by Burakov volume curve 

5. Burakov, one 

typical reach ( )0
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1

1
p
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6. Burakov, n N  

typical reaches (see 

Remark 1)  
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7. Burakov, s R+  
( )
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1
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p
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+ +
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1
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t I t

k k


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−
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 
 = 
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 − 
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where ( )sI z  is the modified Bessel 

function of the first kind [11] 



 
 

 

 

 
 

 

Remark 1. To obtain Burakov's stream routing curves for n typical reaches ( n N ), we can 

restrict Burakov's stream routing curves for general case s R+  using the following formula of 

the modified Bessel function of the first kind of half-integer index [12]:   

 ( ) ( )1
2

1

0 0

1 ( 1) ( ) ( )
( ) exp ( 1) exp .

( ) (2 ) ( ) (2 )2

jn n
n

n j j
j j

n j n j
I z z z

j n j z j n j zz

+

+
= =

 − +  + 
= + − − 

 −   −  
    

Remark 2. The stream routing curves based on Kalinin-Milyukov volume curve are well 

known (for instance, [2]). The curve based on Gamma distribution wide spread in hydrological 

practice. We consider them here to demonstrate a unified approach to the construction of a 

family of different stream routing curves. We propose the new interpretation of the Brovkovich 

curve. The family of the stream routing curves generated by the Burakov volume curve is 

new. 

 
Table 2. The parameters of the stream routing curves of the family  

generated by Kalinin-Milyukov volume curve. 

The name of the 

stream routing 

curve 

Statistic 

parameters 

Without time shifting  

of original function 

With time shifting  

of original function (
min ) 

1. Kalinin-

Milyukov, one 

typical reach 

1m  

v

,

1

k

С

=

=
 min

v

,

1

k

С

 = −
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Milyukov, n N  
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=
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distribution, 
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Table 3. The parameters of the stream routing curves of the family  

generated by Burakov’s volume curve. 

The name of the 

stream routing 

curve 

Statistic 

parameters 

Without time shifting  

of original function 

With time shifting  

of original function ( min
) 

1. Burakov, one 

typical reach 
1 2,  m M  

( )

2

1 1 2

2

2
2

1 2

v

4
, 0,

2
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1
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k k k
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k

k k a
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 
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= −
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2. Burakov, n N  

typical reaches (see 

Remark 1) 
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3.  Numerical experiment 

To numerical experiments, we use row data about two famous Soviet full-scale observations.  
1. Observation data about the artificial water pass on the Tvertsa River below Novotveretskaya 

dam [13]. We consider the reach with length 20.61 km. The optimization was carried out by row 

data from 20:00 of the fifth day from the start of the water pass to 20:00 of the eighth day. Control 
was performed by row data from 20:30 of the eighth day to 06:30 of the twelfth day. The time step 

is 30 minutes. Observations on the Tvertsa River illustrate the influence of a wide plant-filled 

floodplain on the parameters of an unsteady flow. 

2. Observations data about the artificial water pass on the Volga River below Ivankovo dam [14]. 
We consider the reach with length 24.9 km. The optimization was carried out by row data from 

03:30 of the second day to 20:00 of the third day. Control was performed by row data from 06:30 

of the third day to 07:30 of the fourth day. The time step is 10 minutes. Floodplain on this reach has 
a slight effect on the flow. However, in this case, there is a lateral inflow, and optimization leads to

min 0 = . We can improve the criterion of quality in optimization. We use a reduction ratio to take 

into consideration a lateral inflow. 
 

 

 
 



 
 

 

 

 
 

Table 4. Results of the numerical experiments. 

The name of the 

stream routing 

curve 

  

Mathematical 

parameters of the 

stream routing curve 

Statistic parameters of the stream routing curve 

Tvertsa River, 
min 0 =  

Gamma 

distribution 
4.504333  1.910694s = , 

12.29156 =  
23.4854 = , 3.505932a = , 

2 16.99036M = , 

v 0.7234432C = , 
s 1.446886C = , 2 =  

Brovkovich 4.504717  1.910821s = , 

12.29052 = , 

0.503095b =  

23.48497 = , 3.505783a = , 
2 16 98948M =  , 

v 0.7234192C = , 
s 1.637306C = , 2.263287 =  

Burakov 3.908327  1.397947s = , 

1 17.12119k = ,

2 28.0119k =  

23.93452 = , 3.721424a = , 
2 18.20629M = , 

v 0.7606708C = , 
s 1.658605C = , 2.18045 =  

Tvertsa River, 
min is a parameter to optimization 

Gamma 

distribution 
3.400073  1.137918s = , 

18.13212 =  
min 3.786779 = , 

24.41963 = , 3.914122a = , 
2 19.34211M = , 

v 0.7920722C = , 
s 1.874885C = , 2.367063 =  

Brovkovich 3.400227  1.137985s = , 

18.13118 = , 

0.8215682b =  

min 3.786482 = , 

24.41949 = , 3.914046a = , 
2 19.34168M = , 

v 0.7920592C = , 
s 2.551595C = , 3.22147 =  

Burakov 3.395426  1.133657s = , 

2 3.073509k = , 

1 18.35122k = , 

min 3.62296 = , 

24.42695 = , 3.917156a = , 
2 19.36001M = , 

v 0.7925676C = , 
s 1.878163C = , 2.369719 =  

Volga River, after optimization the parameter 
min 0 =  

Gamma 

distribution 
6.222326  3.953681s = , 

2.190842 =  
8.661891 = , 1.480149a = , 

2 4.356241M = , 

v 0.5029203C = , s 1.005841C = , 2 =  

Brovkovich 6.222146  3.953927s = , 

2.190714 = , 

2.111234b =  

8.661924 = , 1.480106a = , 
2 4.356122M = , 

v 0.5029047C = , s 1.27434C = , 2.533959 =  

Burakov 6.222187  1.976949s = , 

2 4.799272k = , 

1 4.381448k =  

8.661899 = , 1.480109a = , 2 4.356126M = , 

v 0.5029065C = , s 1.005813C = , 2 =  

 



 
 

 

 

 
 

An objective function of optimization is the least mean square error 

( )
2

obs num

1

1
( )

M

i i

i

Q t Q
M


=

= − , where 
obs ( )iQ t  and 

num

iQ  are observed and calculated 

discharge in an outflow section in the 
it  instants, M is a number of time segments for optimization. 

4.  Discussion 

Important parameters of the stream routing curves are the skewness (a measure of the asymmetry of 

the distribution) 3
s 3 2

2

M
C

M
=  and the coefficient of variation 

1 2

2
v

1

M
C

m
= . When the stream routing curve 

is considered in the form of a Gamma distribution, we always have 
s v2C C= . However, it does not 

correspond to the real channels (see, for example, [8, 10, 15]). The Burakov’s stream routing curve 

extends the range of possible relations 
sC  and 

vC  to inequality
9

2
4

  . If the channel has no lateral 

inflow then 
s v2C C . In this case, the using 

min 0   significantly improves the model and 

min

9
2

4




 
 

−
 (for instance, the calculation for Tvertsa River from tab. 4). The parameter 

min may 

be determined both by physical considerations and by optimization.  

However, for channels with a significant lateral inflow 
min 0 =  and 

s v2C C . In this case, in 

hydrological calculations, it is reasonable to use the Brovkovich curve [16]. The Brovkovich curve 

generalizes the Gamma distribution. In the framework of our approach, we introduce the Brovkovich 
stream routing curve as follows: 1) the skewness of the curve is proportional to the coefficient of 

variation 
s vC C= , with an additional optimization parameter ratio R  ; 2) the expected value and 

the dispersion value of the stream routing curve are independent of parameter  ; 3) when 
s v2C C=  

the stream routing curve coincides with the Gamma distribution; 4) the stream routing curve is a linear 

combination of Gamma-distributions. 

Note that under these assumptions, the Laplace transform of the stream routing curve can be 

specified in different ways. For example, Laplace transform 
0

Br ( )p  and original 
0

Br ( )t  of 

Brovkovich curve is given in tab. 1 row 4 and its parameters are shown in tab. 2. Indeed, according to 

(3), the second term of the Laplace transform 
0

Br ( )p  does not contribute to the first and the second 

moments about zero, hence the correction of the Gamma distribution by Brovkovich curve does not 

change the expected and dispersion values of the stream routing curve. Moreover, the original 
0

Br ( )t   

is a linear combination of Gamma-distributions. Note that the Brovkovich curve has negative values 

for certain sets of parameters. Since these values do not correspond to real hydrological systems [17], 
the Brovkovich curve are widely used in the model of a channel flow and the hydrological forecasts. 
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