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Abstract. In the paper, we propose an efficient method based on the
use of a bicubic Hermite finite element coupled with collocation for the
diffusion equation. This enables one to reduce the dimension of the sys-
tem of equations in comparison with the standard finite element scheme.
Numerical experiments confirm a theoretical convergence estimate and
demonstrate the advantage of the proposed method.
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1 Introduction

The application of Hermite finite elements to the solution of a partial differential
equation results in a system of linear algebraic equations whose dimension is
several times less than in the case of full or incomplete (serendipity) Lagrange
elements of the same degree which provide the same order of convergence [8].
Besides, a finite element with the values of second-order derivatives at the nodes
in the set of degrees of freedom (DoF) provides a way to use the collocation
technique for some equations. Requiring the residual to vanish at the nodes, we
express one DoF in terms of other ones from the original equation and eliminate
the related equations from the system. This enables one to reduce still further
the dimension of the system of equations. In [4] we propose this approach for
the Poisson equation and confirm its efficiency with numerical experiments.

In the paper, we extend this approach to the diffusion equation with a con-
stant coefficient on a rectangular domain. To construct a discrete problem, we
use the bicubic Hermite element on a rectangular cell proposed in [4] and elimi-
nate the unknowns being the values of the second-order derivative with respect

⋆ Supported by Project 17-01-00270 of Russian Foundation for Basic Research.
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to one of variables. We prove an error estimate for the modified problem. Nu-
merical experiments confirm that the elimination of 1/3 of the unknowns and
the equations retains the order of convergence of an approximate solution.

A direct application of Hermite elements on a rectangular cell is restricted to
the case of domains composed of rectangles. However, to extend the area of the
application of the bicubic Hermite element considered in the paper to the case of
a polygonal domain or a domain with the curved boundary, we can complement
it with the appropriate triangular elements proposed and studied in [5].

2 Notations

Let Ω = (0,H1)×(0,H2) ⊂ R2 be a rectangle with the boundary Γ. To construct
a uniform triangulation Th, we subdivide Ω̄ into N1 × N2 closed rectangles by
the lines

x = ih1, y = jh2, i = 0, ..., N1, j = 0, ..., N2,

where hk = Hk/Nk, k = 1, 2. Denote

h = max {h1, h2}.

For functions u, v defined and measurable on Ω, introduce the inner product
and the induced norm:

(u, v) =

∫
Ω

uv dΩ, |u|0,Ω = (u, u)1/2.

Denote by L2(Ω) the space of all functions u defined and measurable on Ω with
the finite norm |u|0,Ω. Introduce also the semi-norms

|u|k,Ω =

( ∑
i1+i2=k

∣∣∣∣ ∂ku

∂xi1∂yi2

∣∣∣∣2
0,Ω

)1/2

.

Denote by Hk(Ω) the space of all functions u defined and measurable on Ω
together with their partial derivatives up to order k with the finite norm [1]

∥ u ∥k,Ω= (|u|20,Ω + |u|21,Ω + ...+ |u|2k,Ω)1/2.

Denote by Pk the space of all polynomials in two variables up to degree k:∑
0≤i1+i2≤k

ai1,i2x
i1yi2 .

Define a “reference” finite elements as a triple (ê, P̂ , Σ̂) where ê is a “refer-
ence” cell, P̂ is a space of polynomials defined on ê, and Σ̂ is a set of functionals
called degrees of freedom.
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3 A Bicubic Hermite Element

In [4] we propose a new Hermite element defined as follows (Fig. 1):

ê = [0, 1]2,

P̂ = span{1, x̂, ŷ, x̂ŷ, x̂2, ŷ2, x̂2ŷ, x̂ŷ2, x̂3, ŷ3, x̂3ŷ, x̂ŷ3},
Σ̂ = {ψ̂s,i(s = 0, 1, 2) : ψ̂0,i(p) = p(âi), ψ̂1,i(p) = ∂2p/∂x̂2(âi), (1)

ψ̂2,i(p) = ∂2p/∂ŷ2(âi), i = 1, ..., 4, ∀ p ∈ P̂}.

Fig. 1. A double arrow shows the DoF being the value of the second-order derivative
it the corresponding direction at the node.

The Lagrange basis for (1) is given by

φ̂0,1 = (1− x̂)(1− ŷ), φ̂0,3 = x̂ŷ,
φ̂1,1 = x̂(1− x̂)(x̂− 2)(1− ŷ)/6, φ̂1,3 = x̂(x̂2 − 1)ŷ/6,
φ̂2,1 = (1− x̂)ŷ(1− ŷ)(ŷ − 2)/6, φ̂2,3 = x̂ŷ(ŷ2 − 1)/6,
φ̂0,2 = x̂(1− ŷ), φ̂0,4 = (1− x̂)ŷ,
φ̂1,2 = x̂(x̂2 − 1)(1− ŷ)/6, φ̂1,4 = x̂(1− x̂)(x̂− 2)ŷ/6,
φ̂2,2 = x̂ŷ(1− ŷ)(ŷ − 2)/6, φ̂2,4 = (1− x̂)ŷ(ŷ2 − 1)/6.

(2)

For the partition Th, the usual affine mapping of the ”reference” element onto
an elementary cell [xi, xi + h1]× [yj , yj + h2] is of the form

x = xi + h1x̂, y = yj + h2ŷ. (3)

Since P̂ ⊃ P3, for the interpolant ũI of a function u ∈ H4(Ω) on the trian-
gulation Th we have the usual accuracy estimates [3, 2]

|u− ũI |0,Ω ≤ ch4 ∥ u ∥4,Ω,

(4)∥ u− ũI ∥k,Ω≤ ch4−k ∥ u ∥4,Ω, k = 1, 2.

From here on, c denotes a positive constant independent of u and h.
A feature of element (1) is that for some partial differential equations we can

use the collocation technique requiring the residual to vanish at the nodes of
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the elements. This results in considerably reducing the number of unknowns in
the system of linear algebraic equations of the finite element method. In [4] this
approach is applied to the Poisson equation with numerical results confirming
its efficiency.

4 A Discrete Problem for the Diffusion Equation

Without loss of generality, for simplicity sake we assume that Ω = (0, 1)× (0, 1).
Consider the problem

−∆u+ ku = f inΩ, (5)

u = 0 onΓ, (6)

where ∆ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian, f ∈ H2(Ω), k=const ≥ c > 0.
For (5)–(6) we construct the standard scheme of the finite element method

with Hermite element (1). Notice that when constructing the partition of Ω, we
have N1 = N2 = N , h1 = h2 = h. We look for an approximate solution in the
form

ũh =

N−1∑
i,j=1

ũh(zi,j)φ0,i,j(x, y) +

+ h2
N∑

i,j=0

(
ũhxx(zi,j)φ1,i,j(x, y) + ũhyy(zi,j)φ2,i,j(x, y)

)
where zi,j = (xi, yj), xi = ih, yj = jh; the unknowns ũh(zi,j), ũ

h
xx(zi,j), and

ũhyy(zi,j) are the values of the approximate solution and the approximate val-
ues of the second-order derivatives of the solution of (5)–(6) at the grid nodes,
respectively. The functions φs,i,j form a basis of the finite element space. They
are obtained from basis functions (2) of the ”reference” element with the affine
mapping of the form (3).

As a result, we get a system of linear algebraic equations. The number of
equations (and the number of unknowns) equals 3Nint where Nint is the number
of interior nodes. The values of ũh, ũhxx, and ũhyy at the boundary nodes are
determined from (5)–(6).

For convenience sake, we introduce some notations. Consider the grid expres-
sion

j+1∑
l=j−1

i+1∑
k=i−1

ak,lg
h(zk,l)

where ak,l are coefficients and gh(zk,l) is a grid function. Introduce the nine-point
stencil

[A] =

ai−1,j+1 ai,j+1 ai+1,j+1

ai−1,j ai,j ai+1,j

ai−1,j−1 ai,j−1 ai+1,j−1

 (7)
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Fig. 2. The nodes of nine-point stencil (7).

where the coefficients ak,l are arranged according to the position of the related
nodes (Fig. 2).

Put

[A]gh =

j+1∑
l=j−1

i+1∑
k=i−1

ak,lg
h(zk,l).

Besides, we use the notation [AT ] for the stencil with the coefficients aTk,l = al,k.

Introduce the grid functions uh, uhxx, and u
h
yy defined by uh(zi,j) = ũh(zi,j),

uhxx(zi,j) = ũhxx(zi,j), and u
h
yy(zi,j) = ũhyy(zi,j). Calculating directly the entries

of the stiffness matrix, we arrive at the grid equations of three types(
[A0] + kh2[A1]

)
uh +

(
[A2] + kh2[A4]

)
h2uhxx + (8)

+
(
[AT

2 ] + kh2[AT
4 ]
)
h2uhyy =

∫
Ω

fφ0,i,j dΩ,

(
[A2] + kh2[A4]

)
uh +

(
[A3]− [A4] + kh2[A5]

)
h2uhxx + (9)

+ kh2[A6]h
2uhyy =

∫
Ω

fφ1,i,j dΩ,

(
[AT

2 ] + kh2[AT
4 ]
)
uh + kh2[AT

6 ]h
2uhxx + (10)

+
(
[AT

3 ]− [AT
4 ] + kh2[AT

5 ]
)
h2uhyy =

∫
Ω

fφ2,i,j dΩ,

for all i, j = 1, ..., N − 1 with the stencils

[A0] =

−1/3 −1/3 −1/3
−1/3 8/3 −1/3
−1/3 −1/3 −1/3

 , [A1] =

1/36 1/9 1/36
1/9 4/9 1/9

1/36 1/9 1/36

 ,

[A2] =

 7/360 2/45 7/360
−7/180 −4/45 −7/180
7/360 2/45 7/360

 , [A3] =

−31/15120 −4/945 −31/15120
31/7560 8/945 31/7560

−31/15120 −4/945 31/15120

 ,
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[A4] =

−7/2160 −1/135 −7/2160
−7/540 −4/135 −7/540
−7/2160 −1/135 −7/2160

 , [A5] =

31/90720 2/2835 31/90720
31/22680 8/2835 31/22680
31/90720 2/2835 31/90720

 ,
[A6] =

49/129600 7/8100 49/129600
7/8100 4/2025 7/8100

49/129600 7/8100 49/129600

 .
At the nodes near the boundary equations (8)–(10) are modified in an obvious
way.

Notice that the values of uhxx and uhyy are equipped with the factor h2. We use

the DoF ψ0,i,j(ũ
h) = ũh(zi,j), ψ1,i,j(ũ

h) = h2ũhxx(zi,j), ψ2,i,j(ũ
h) = h2ũhyy(zi,j)

as the unknowns of system (8)–(10). This is convenient for several reasons, in
particular, this improves properties of the stiffness matrix.

5 The Elimination of Unknowns by Collocation

The grid functions uh, uhxx, and u
h
yy satisfy the algebraic identity

−uhxx(zi,j)− uhyy(zi,j) + kuh(zi,j) = fh(zi,j)− rh(zi,j), (11)

where rh is the residual, fh is a grid function defined by fh(zi,j) = f(zi,j).
Assuming the residual is known, neglect one group of equations, for instance,

(10); express uhyy(zi,j) from (11) and substitute it into (8)–(9). As a result, we
obtain the following system(

[A0] + kh2
(
[A1] + [AT

2 ]
)
+ k2h4[AT

4 ]
)
uh +

+
(
[A2]− [AT

2 ] + kh2
(
[A4]− [AT

4 ]
))
h2uhxx = (12)

=

∫
Ω

fφ0,i,j dΩ+
(
[AT

2 ] + kh2[AT
4 ]
)
h2(fh − rh),

(
[A2] + kh2[A4] + k2h4[A6]

)
uh +

(
[A3]− [A4] + kh2 ([A5]− [A6])

)
h2uhxx =

=

∫
Ω

fφ1,i,j dΩ+ kh4[A6](f
h − rh), (13)

for all i, j = 1, ..., N − 1, reducing the number of equations by a factor of 1/3.
Now introduce grid functions vh, vhxx, and vhyy being the values of a new

approximate solution and new approximate values of the second-order derivatives
at the nodes, respectively, and require that the residual vanish at the nodes:

−vhxx(zi,j)− vhyy(zi,j) + kvh(zi,j) = fh(zi,j). (14)

In (12)–(13), replace uh and uhxx by vh and vhxx, respectively, and put rh = 0.
This gives a system of equations for the new unknowns. Once the system has
been solved, vhyy(zi,j) can readily be determined from (14).
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We are interested in accuracy of the new approximate solution. In [4] we use
finite element (1) coupled with collocation for the Poisson equation. Numerical
experiments show that a solution on the reduced system is of the same order of
accuracy as that of the original system of the finite element method. Below we
prove this result.

6 An Error Estimate

Consider an arbitrary function

w̃ =

N−1∑
i,j=1

wi,jφ0,i,j(x, y) + h2
N∑

i,j=0

(
(wxx)i,j φ1,i,j(x, y) + (wyy)i,j φ2,i,j(x, y)

)
of the finite element space. To this function, there corresponds the vector of the
coefficients

W =

({
wi,j

}N−1

i,j=1
,
{
h2 (wxx)i,j

}N

i,j=0
,
{
h2 (wyy)i,j

}N

i,j=0

)
of a linear vector space M . The function w̃ is called a prolongation of the vector
W .

In the vector space M we introduce the weighted Euclidean norm

∥W ∥=

N−1∑
i,j=1

w2
i,j + h4

 N∑
i,j=0

(
(wxx)

2
i,j + (wyy)

2
i,j

)1/2

.

It is equivalent to the norm |w̃|0,Ω of the prolongation up to the factor h [7]:

c∗h ∥W ∥≤ |w̃|0,Ω ≤ c∗∗h ∥W ∥ . (15)

Denote the prolongation of the vector

V h =

({
vh(zi,j)

}N−1

i,j=1
,
{
h2vhxx(zi,j)

}N
i,j=0

,
{
h2vhyy(zi,j)

}N
i,j=0

)
by ṽh.

Theorem 1. An approximate solution ṽh of problem (5)–(6) satisfies the esti-
mate

|u− ṽh|0,Ω ≤ ch4 ∥ u ∥4,Ω . (16)

Proof. We have system (12)–(13) for the unknowns uh and h2uhxx and the sys-
tem with the same matrix for the unknowns vh and h2vhxx. The only difference
between these systems is in the terms

δ0,h =
(
[AT

2 ] + kh2[AT
4 ]
)
h2rh, (17)
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δ1,h = kh4[A6]r
h. (18)

in the right-hand side.

Introduce the vectors

Uh =
({
uh(zi,j)

}N−1

i,j=1
,
{
h2uhxx(zi,j)

}N
i,j=0

,
{
h2uhyy(zi,j)

}N
i,j=0

)
,

Ūh =
({
uh(zi,j)

}N−1

i,j=1
,
{
h2uhxx(zi,j)

}N
i,j=0

)
V̄ h =

({
vh(zi,j)

}N−1

i,j=1
,
{
h2vhxx(zi,j)

}N
i,j=0

)
.

The matrix of system (12)–(13) is equivalent to the matrix of finite element
system with less number of DoF which are reduced by equality (11). Therefore
it has the same property of stability. Thus, taking into account (17)–(18), we
have the estimate [6]

∥ Ūh − V̄ h ∥≤ ch2 ∥ rh ∥ . (19)

All vector norms are the Euclidean norms in the vector spaces of corresponding
dimension.

Now we estimate ∥ Uh −V h ∥. Using (11), (14), and the algebraic inequality
(a+ b+ c)2 ≤ 4(a2 + b2 + c2), we get

∥ Uh − V h ∥2=
N−1∑
i,j=1

(
uh(zi,j)− vh(zi,j)

)2
+

N∑
i,j=0

(
h4
(
uhxx(zi,j)− vhxx(zi,j)

)2
+ h4

(
k
(
uh(zi,j)− vh(zi,j)

)
+ vhxx(zi,j)− uhxx(zi,j) + rh(zi,j)

)2)
≤ c

N−1∑
i,j=1

(
uh(zi,j)− vh(zi,j)

)2
+ h4

N∑
i,j=0

(
uhxx(zi,j)− vhxx(zi,j)

)2
+ ch4

N∑
i,j=0

(
rh(zi,j)

)2
= c ∥ Ūh − V̄ h ∥2 +ch4 ∥ rh ∥2 .

Combining this inequality with (19) gives

∥ Uh − V h ∥≤ ch2 ∥ rh ∥ . (20)

From (5) and (11) we have

rh(zi,j) = uhxx(zi,j)−
∂2u

∂x2
(zi,j) + uhyy(zi,j)−

∂2u

∂y2
(zi,j) + k

(
u(zi,j)− uh(zi,j)

)
.
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Hence,

∥ rh ∥2≤ c

N−1∑
i,j=1

(
uh(zi,j)− u(zi,j)

)2
+

N∑
i,j=0

((
uhxx(zi,j)−

∂2u

∂x2
(zi,j)

)2

+

(
uhyy(zi,j)−

∂2u

∂y2
(zi,j)

)2
))

≤ ch−4

N−1∑
i,j=1

(
uh(zi,j)− u(zi,j)

)2
+

N∑
i,j=0

(
h4
(
uhxx(zi,j)−

∂2u

∂x2
(zi,j)

)2

+ h4
(
uhyy(zi,j)−

∂2u

∂y2
(zi,j)

)2
))

= ch−4 ∥ Uh − UI ∥2

where the vector UI consists of the coefficients of the interpolant ũI . Taking into
account norm equivalence (15), we obtain

∥ rh ∥≤ ch−3|ũh − ũI |0,Ω. (21)

For the interpolant ũI we have estimate (4). Besides, the approximate solu-
tion ũh satisfies the estimate [4]

|u− ũh|0,Ω ≤ ch4 ∥ u ∥4,Ω . (22)

Hence, with the help of the triangle inequality from (21) we get

∥ rh ∥≤ ch−3
(
|u− ũh|0,Ω + |u− ũI |0,Ω

)
≤ ch ∥ u ∥4,Ω . (23)

Finally, from (20), (15), and (23) we conclude that

|ũh − ṽh|0,Ω ≤ ch ∥ Uh − V h ∥≤ ch4 ∥ u ∥4,Ω,

which together with (22) proves the theorem. 2

7 Numerical Results

Let Ω = (0, 1)×(0, 1) and Γ be the boundary of Ω. Consider the boundary value
problem

−∆u+ 0.5u = f in Ω, (24)

u =


0 for x = 0,
0 for y = 0,
−10000y sin y for x = 1,
−10000y sinx for y = 1

(25)

with the right-hand side

f(x, y) = 5000 (4(x+ y) cos(1− x− y) + 5xy sin(1− x− y)) . (26)
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The exact solution of (24)–(26) has the form

u(x, y) = 10000xy sin(1− x− y). (27)

To construct a discrete problem, we subdivide Ω into elementary squares
for mesh size h = 1/N . In numerical experiments we use N = 5, 10, 20, 40, 80.
On the obtained partition, along with the standard system of the finite element
method for Hermite element (1), we construct and solve the modified system of
smaller dimension obtained with the help of collocation.

Since exact solution (27) is known, the error u(zi,j) − uh(zi,j) or
u(zi,j)−vh(zi,j) of an approximate solution at the node zi,j can be calculated ex-
plicitly. Besides, we can calculate ∂2u/∂x2(zi,j) − uhxx(zi,j) and
∂2u/∂y2(zi,j)−uhyy(zi,j) or ∂2u/∂x2(zi,j)−vhxx(zi,j) and ∂2u/∂y2(zi,j)−vhyy(zi,j)
to estimate convergence of the second-order derivatives. We use the discrete
norms

∥ uh ∥h=

N−1∑
i,j=1

(
uh(zi,j)

)2
h2

1/2

,

∥ u− uh ∥h=

N−1∑
i,j=1

(
u(zi,j)− uh(zi,j)

)2
h2

1/2

.

In addition, we also use the following discrete norm for a relative error:

∥ u− uh ∥relh =
∥ u− uh ∥h
∥ uh ∥h

.

Table 1. Accuracy of the approximate solution for the standard system.

h εh(uh) σh
x(u

h) σh
y (u

h) σh
∆(uh)

0.2 4.22E − 1 1.46E + 2 1.46E + 2 2.86E + 2
0.1 2.97E − 2 3.90E + 1 3.90E + 1 7.60E + 1

0.05 1.97E − 3 9.93E + 0 9.93E + 0 1.94E + 1
0.025 1.27E − 4 2.51E + 0 2.51E + 0 4.91E + 0

0.0125 7.17E − 6 6.30E − 1 6.30E − 1 1.24E + 0

In Tab. 1–3 we present results of calculations for the standard system of the
finite element method. We use the following notations:

εh(uh) =∥ u− uh ∥h, ε̄h(uh) =∥ u− uh ∥relh ,

σh
x(u

h) =
∥∥∥∂2u
∂x2

− uhxx

∥∥∥
h
, σ̄h

x(u
h) =

∥∥∥∂2u
∂x2

− vhxx

∥∥∥rel
h
,

σh
y (u

h) =
∥∥∥∂2u
∂y2

− uhyy

∥∥∥
h
, σ̄h

y (u
h) =

∥∥∥∂2u
∂y2

− vhyy

∥∥∥rel
h
,
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Table 2. Relative error for the standard system.

h ε̄h(uh) σ̄h
x(u

h) σ̄h
y (u

h) σ̄h
∆(uh)

0.2 1.86E−4 1.50E−2 1.50E−2 1.68E−2
0.1 1.47E−5 4.02E−3 4.02E−3 4.38E−3

0.05 1.05E−6 1.02E−3 1.02E−3 1.11E−3
0.025 6.99E−8 2.58E−4 2.58E−4 2.78E−4

0.0125 4.03E−9 6.49E−5 6.49E−5 6.98E−5

Table 3. A numerical convergence estimate for the standard system.

h log

(
εh(u2h)

εh(uh)

)
log

(
σh
x(u

2h)

σh
x(uh)

)
log

(
σh
y (u

2h)

σh
y (uh)

)
log

(
σh
∆(u2h)

σh
∆(uh)

)
0.1 3.8 1.9 1.9 1.9

0.05 3.9 2.0 2.0 2.0
0.025 4.0 2.0 2.0 2.0

0.0125 4.1 2.0 2.0 2.0

σh
∆(uh) =

∥∥∥∆u−∆uh
∥∥∥
h
, σ̄h

∆(uh) =
∥∥∥∆u−∆uh

∥∥∥rel
h
,

where ∆uh(zi,j) = uhxx(zi,j) + uhyy(zi,j) is an approximate value of ∆u at the
node.

Observe that the error εh(uh) tends to be of order 4 as h decreases while
σh
x(u

h) and σh
y (u

h) tend to be of order 2. This is in good agreement with theo-
retical estimate (22).

Another series of calculations is related to the solution of the reduced system
for the unknowns vh(zi,j) and v

h
xx(zi,j). In this case the values of vhyy are deter-

mined from (14). Besides, from (14) we also directly determine the approximate
values of ∆u at the nodes:

∆vh(zi,j) = kvh(zi,j)− fh(zi,j). (28)

The results of calculations are presented in Tab. 4–6.

Table 4. Accuracy of the approximate solution for the reduced system.

h εh(vh) σh
x(v

h) σh
y (v

h) σh
∆(vh)

0.2 2.45E−1 1.39E+2 1.39E+2 1.22E−1
0.1 1.87E−2 3.84E+1 3.84E+1 9.34E−3

0.05 1.21E−3 9.88E+0 9.88E+0 6.04E−4
0.025 7.59E−5 2.50E+0 2.50E+0 3.79E−5

0.0125 5.18E−6 6.30E−1 6.30E−1 2.59E−6

Notice that the errors εh(vh), σh
x(v

h), and σh
y (v

h) are close to those for uh

which confirms estimate (16). Moreover, in the case of the reduced system the
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Table 5. Relative error for the reduced system.

h ε̄h(vh) σ̄h
x(v

h) σ̄h
y (v

h) σ̄h
∆(vh)

0.2 1.07E−4 1.44E−2 1.44E−2 7.20E−6
0.1 9.28E−6 3.96E−3 3.96E−3 5.38E−7

0.05 6.42E−7 1.02E−3 1.02E−3 3.44E−8
0.025 4.19E−8 2.58E−4 2.58E−4 2.15E−9

0.0125 2.92E−9 6.49E−5 6.49E−5 1.46E−10

Table 6. A numerical convergence estimate for the reduced system.

h log

(
εh(v2h)

εh(vh)

)
log

(
σh
x(v

2h)

σh
x(vh)

)
log

(
σh
y (v

2h)

σh
y (vh)

)
log

(
σh
∆(v2h)

σh
∆(vh)

)
0.1 3.7 1.9 1.9 3.7

0.05 4.0 2.0 2.0 4.0
0.025 4.0 2.0 2.0 4.0

0.0125 3.9 2.0 2.0 3.9

accuracy is even slightly better. In addition, from (28) we can calculate approx-
imate values of ∆u within O(h4).

Thus, numerical experiments confirm the theoretical estimate and demon-
strate the advantage of the proposed approach.
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