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Abstract. New approach for classification of the state of technological pumping equipment is 

presented in the paper. The approach involves the use of pumping equipment parameters 

operative monitoring data for indirect fault identification. The proposed method is a part of 

developed integrated approach for decision support in the management of technological 

equipment of oil and gas fields. The method realizes a multi-stage classification scheme based 

on an ensemble approach to the intelligent data analysis. The scheme involves the creation of 

simple classifiers of the first level, which can be implemented on the basis of artificial neural 

networks or other effective classifying methods. The second level of the scheme is realized by 

a dynamically tunable aggregators of the first level solutions. The results of an experimental 

numerical study of the proposed approach and a number of data analysis techniques are 

presented. The obtained results allow to confirm that it is possible to detect different states of 

the pumping technological equipment more effectively by the usage of the proposed approach 

as a part of intelligent data driven diagnostics system. 

1.  Introduction 

Modern machine building is being improved together with increasing requirements for quality, 

reliability and accuracy of technical diagnostics of technological machines and equipment. The 

science of reliability and durability requires an integrated approach. Requirements to systems for the 

collection and analysis of diagnostic information are constantly increasing together with introduction 

of highly efficient technological processes, automated design and production systems, complex 

systems. Effective means for technological equipment state analysis can prevent the occurrence of 

serious failures. This contributes to reducing the costs of repair and operation, ensuring the safety of 

maintenance personnel. 

The development of technological data collection tools and oil and gas equipment allows us to 

conduct in-depth monitoring of the equipment parameters. It makes it possible to switch from repair 

and maintenance to repair determined by technical state of the equipment. This will reduce the cost of 

repairs and maintenance. One of the aspects of solving problems of the oil and gas industry machines 

and equipment technical diagnostics is the further improvement of the methodology for technical state 

classification. Such a classification involves the determination of mainly hidden operational defects 

based on information obtained by methods of nondestructive testing and the assignment of the current 

state of the diagnosed equipment to one of the classes. Each class can then be interpreted by decision 



 

 

 

 

 

 

maker for the necessary corrective actions. In this case vibration diagnostics is one of the most 

informative methods of nondestructive testing for a wide range of types of oil and gas equipment. 

An important aspect which affects the effectiveness of vibration diagnostics is the model for 

detecting and determining equipment defects based on diagnostic information. The analysis of 

vibration monitoring data manually is practically impossible. Therefore the processing of vibration 

monitoring data can be effectively performed with the use of automated defect recognition procedures. 

This forms a scientific problem and the result of its solution leads to the creation of an effective 

system for the analysis of diagnostic information obtained by vibration diagnostics methods. Analysis 

of information sources on this issue indicates the possibility of improving the efficiency of diagnostic 

information processing by using modern means of solving the classification problem. Data mining 

techniques are significantly effective approaches which demonstrate fairly high efficiency in solving 

classification problems in many industries. 

As for methods of data analysis a number of works suggest using a neural networks for diagnostic 

information analysis in the oil and gas industry. To reduce the training time of neural networks and 

improve the quality of the neural network classification a data processing method using parallel neural 

networks was proposed [1]. Several researchers consider multidivariate adaptive regression splines as 

the basic models of data analysis [2]. The method makes it possible to obtain models that give a fairly 

accurate approximation, even in cases where the connections between predictor and dependent 

variables are nonmonotonic and complex for approximation by parametric models. Automatically 

generated decision trees and fault tree analysis are also applicable [3]. 

In this paper we propose a multi-stage approach (system) for diagnostic information analysis. Such 

a system makes it possible to combine several or all of the above mentioned methods of data analysis 

within a single classifier. The proposed multi-stage classifier is to be formed using methods of 

automatic generation of analytical models due to high computational and topological complexity. This 

will significantly improve the computational efficiency of the approach and achieve a synergistic 

effect based on the use of heterogeneous classifiers within the framework of a single model. 

The main theoretical aspects of the proposed multi-level system for processing diagnostic 

information are described below. A description of the practical application of the system for 

processing vibration diagnostics data of centrifugal pumping units which are widely used in the oil and 

gas industry is also given. The results of the proposed multi-stage classification system application in 

comparison to usual classification scheme techniques are presented. 

2.  Multi-stage intelligent classifier for vibration monitoring data analysis 

2.1.  Ensemble classifier 

It is possible to represent ensemble classifier as a pair  ,C D , where  1 2, ,..., nC C C C  is a set of n  

individual classifiers, solution of which are taken into account in the formation of a common ensemble 

solution; D  is the method of calculating an ensemble solution based on the solutions of individual 

classifiers (combining strategy). To use an ensemble classifier to solve a specific problem it is 

necessary to perform the following basic steps: 

1. Creation of a set of individual classifiers C  ; 

2. Design of a scheme for calculating the ensemble solution D . 

The execution of each stage is a separate problem for the solution of which various methods can be 

used. The most resource-intensive stage is the first stage. During this stage the structure and 

parameters of single classifiers are determined. Often such classifiers are initially formed in the form 

of simple structures. Such simple classifiers are relatively easy to train and they are less likely to 

retrain because of their simple structure. The choice of simpler classifiers is due to the fact that each of 

them theoretically solves a simpler problem obtained due to the decomposition of the original problem 

in an explicit or implicit form. 

The second stage is the choice of a strategy for combining solutions. It usually requires less 

computational resources. Its complexity depends on the chosen combining strategy and the complexity 



 

 

 

 

 

 

of the problem being solved. This stage takes considerably less time than the first stage in the case of 

choosing the most simple combination strategies. One of the main directions for increasing the 

efficiency of solving problems in the case of using an ensemble approaches is to use more complex 

combining strategies. It leads to the situation when more and more computing resources are 

redistributed in favor of the second stage. Accordingly the importance of this stage is growing both in 

ensuring a higher quality of the solution of the problem, and in the amount of the resource spent on the 

solution of the problem as a whole. That is why it becomes urgent to improve existing and develop 

new effective combining strategies. It would ensure intensive use of the computing resource and allow 

to increase the efficiency of solving problems. An overview of some combination strategies as well as 

a description of the proposed approach to the formation of a common solution in ensemble classifiers 

are presented below. 

2.2.  Combining strategy for ensemble classifier 

There are two main types of combining strategies used to solve classification problems using 

ensembles of classifiers: selection and fusion. Selection approach is based on the assumption that each 

individual classifier specializes on a specific local subspace of the problem. Each subspace has a 

separate classifier, as in [4], or, in some cases, a separate classifier can correspond to several local 

subspaces of the solution of the problem [5]. Fusion strategy assumes simultaneous use of all 

technologies in the entire space of the problem under consideration. 

Concerning the use of an input signal in the formation of a collective solution, methods can be 

divided into two groups. The first group includes approaches that use static structures to develop a 

common ensemble solution. Such approaches can be called traditional. The decision-making schemes 

in such approaches are static and do not depend on the values of the input variables. The second group 

includes methods that take into account not only the decisions of individual classifiers but also the 

input variables themselves. Such methods are called “dynamic” because of the direct dependence of 

the method of forming a general solution on input variables values. 

The first group is customary to distinguish two subgroups: 

 Approaches using non-adaptive structures. Such schemes include, in particular, the following 

traditional approaches: averaging, maximum rule, median rule, and voting and the Borda rule. 

 Approaches using various techniques for adapting combining strategies schemes. Such 

approaches are of the greatest interest due to many possible options for their implementation 

and the possibility of improving the quality of classification without performing the most 

costly stage of the formation of individual classifiers.  

The development of such methods are connected with the search for additional opportunities for the 

adaptation of ensemble systems to a specific task. Involving some additional computing resource such 

methods allow increasing the efficiency of ensemble classifiers. It is important that such methods 

allow intensive use of computing resources. Let's list some known approaches: 

 Decision templates method [6]. 

 Weighted averaging - there are a large number of approaches that differ in the way we 

calculate the weight coefficients. Different methods also use different procedures to select 

those classifiers whose solutions will be taken into account when forming a common solution. 

 The stacked generalization method - the technology of using collective classifiers, which 

allows to organize a two-step procedure for the formation of solutions by a group of classifiers 

with a nonlinear combination of individual solutions. There are also various modifications to 

this method, for example, a dynamically modified multilevel generalization method [7]. 

2.3.  Proposed multi-stage classification approach 

To increase the efficiency of the implementation of the stage of forming solution in classifiers 

ensembles an evolutionary three-level approach was proposed. It involves decomposition of the 

problem implicitly at the second level. In general the approach is an extension of the multilevel 

generalization method by introducing an additional intermediate level in the structure of the process of 



 

 

 

 

 

 

forming the solution of the problem. The stages of the proposed three-stage approach of forming an 

ensemble classifier are described below. 

Stage 1. At this stage a pool classifiers are formed. This stage is common to all ensemble 

approaches. In the general case any available effective method of forming separate classifiers of a 

selected type can be used. The amount of resources available for use at this stage is determined by the 

general requirements for the time, the required accuracy and available computing power.  

Stage 2. At the second stage a set of classifiers of the second level is formed independently. 

Number of classifiers coincides with the number of classes in the problem under consideration. The 

inputs of the classifiers of this level are the values obtained at the output of the classifiers of the first 

level. At the same time, for each second-level classifier training is performed according to the 

following rule: the target value at the output of the classifier for all examples corresponding to the 

class with the number is equal to 1; for all other examples, the target value of the classifier output is 

equal to zero. 

Thus in the second stage the problem decomposition is performed - each classifier of the second 

level forms a surface in space that cuts objects of one class from objects belonging to any of the other 

classes. To solve this problem we suggest using a method based on the use of hybrid genetic 

programming for combining the solutions of individual classifiers [8]. 

Stage 3. At the third stage the aggregation of the solutions of classifiers of the second level is 

carried out with the purpose of working out a general solution (class assignment value for the input 

set). The choice of a scheme for ensemble solution calculation is the subject for further research. 

Within the framework of the proposed approach we used the following simple and obvious rule: a 

classifiable object belongs to the class for which the corresponding classifier of the second level 

produced the maximum value of the output signal. 

3.  Experimental study 

3.1.  Pumping unit and collection of vibration monitoring data 

А monitoring and diagnostic scheme is necessary to obtain raw vibration monitoring data for 

exploring efficiency of the proposed multi-stage approach. For the processing and analysis, centrifugal 

pumps will be used for the centrifugal section pump type 60-330. The number of pumps for which 

data analysis is performed is 87 units. Figure 1 shows the pump and the location of the vibration 

sensors. For the reading of the vibration sensors, a vibration diagnostic analyzer, ADP-3101, was used. 

The analyzer has four measuring inputs, which allows simultaneous connection of four vibration 

transducers. 

 

 
Figure 1. Points for installing vibration sensors on a centrifugal pump model 60-330. 

 



 

 

 

 

 

 

For the analysis such indicators as speed and amplitude of vibration in horizontal, axial and vertical 

directions for each of four points for installing vibration sensors on a centrifugal pump model 60-330 

was used. Each of 89 pumps is assigned a fault class: 1 - problem in the assembly, 2 - bearing failure, 

3 - mechanical loosening, 4 - deformation of the shaft supports, 5 - unbalance, 6 normal condition. 

3.2.  Conditions of numerical experiments 

To evaluate the effectiveness of the method proposed in Section 2 a number of numerical experiments 

were carried out. In the course of numerical research for the comparative analysis results were also 

obtained for other methods of forming ensemble classifiers and approaches using other ("non-

ensemble") classification techniques. Results for ensemble approaches were obtained in the program 

system "IT-Pegas" developed by authors. In the course of the research in addition to the proposed 

methods results were obtained for the following methods of combining classifier decisions: simple 

averaging, equal voting, Borda rule and a multilevel generalization method.. A complete list of 

methods is given in the first column of Table 1. 

In the course of the experiments a 5-fold cross-check was used to evaluate the effectiveness. Each 

time the results were averaged based on the results of designing and solving the problem with the help 

of five ensemble classifiers of the same type. As an efficiency measure, the average value of the 

classification reliability estimate was used, which was calculated as the ratio of correctly classified 

examples to the total number of examples in the exam sample. ANOVA technique was used for the 

proposed approach to assess the statistical significance of the results [9]. 

As classifiers of the second level in the proposed three-stage method classifiers obtained by the 

method of genetic programming were used [10]. The number of classifiers at this step is equivalent to 

the number of classes in a particular task. The number of generations in the genetic programming 

method for each classifier is 200, the number of individuals per generation is 100. 

3.3.  Results 

Results of numerical experiments are given in table 1. 

 

Table 1. Results of numerical experiments. 

Classification techniques 
Classification Reliability 

Training Sample Examination Sample Test Sample 

Ensemble Fuzzy Logic Classifier  0.921 0.821 0.757 

Fuzzy Logic Classifier 0.891 0.794 0.725 

Bayesian Classifier 0.847 0.679 0.629 

Multilayer Perceptron  0.833 0.716 0.693 

Boosting 0.760 0.700 0.656 

Bagging 0.847 0.684 0.630 

Random Subspaces 0.852 0.677 0.632 

Neural Network Ensemble with 

Simple Averaging  
0.892 0.805 0.740 

Neural Network Ensemble with 

Voting 
0.918 0.815 0.783 

Neural Network Ensemble with 

Borda Rule [11] 
0.905 0.831 0.772 

Neural Network Ensemble with 

Stack Generalization 
0.925 0.852 0.785 

Proposed Approach 0.947 0.857 0.804 

 

In general the results of numerical experiments show that the proposed approach is no less effective 

than most other methods whose results of the effectiveness evaluation were considered in a 



 

 

 

 

 

 

comparative study. The proposed approach shows the best results on the problem of diagnosing the 

technical condition of the pumping unit.  

4.  Conclusion 

The article outlines the main ideas of ensemble classifiers and describes some particular techniques for 

combining solutions of individual classifiers used to solve a wide range of problems. A new three-

stage ensemble approach for solving classification problems is proposed. Techniques for designing 

individual classifiers at each stage of the proposed approach are described. The results of a numerical 

study of the effectiveness of the proposed method and some known competing approaches are 

presented. The results of experimental study show that the proposed method makes it possible to 

classify more reliably in comparison with methods using other combination strategies and some 

known "non-ensemble" approaches. In the future it is planned to test the proposed three-stage scheme 

on a number of complex problems and use it to solve a wide range of practical problems. 
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