
 
 
 
 
 
 

The task of setting the parameters of metaheuristic 
optimization algorithms 

N M Lugovaya1, A S Mikhalev1, V V Kukartsev1, V S Tynchenko1, V A Baranov1, 
A O Kolbina1 and E A Chzhan1 
 

1 Siberian Federal University, 79, Svobodny pr., Krasnoyarsk, 660041, Russia  
 

 
E-mail: vlad_saa_2000@mail.ru 
 
Abstract. When solving global optimization problems, many problems arise related to their 
multi-extremity, nonlinearity, high computation complexity, and other. To solve these problems, 
a large number of algorithms were created. This article focuses on analyzing the class of 
metaheuristic algorithms for searching for extrema: testing them on various functions and 
comparing their behavior at the most optimal parameters. Particle swarm algorithms are 
considered; bats, swarming bees, swarming fireflies, bacterial. In the framework of this article, 
a study of various metaheuristic extremum search algorithms, the selection of optimal parameters 
for each of them using various functions as an example was conducted. Also, these algorithms 
solved the problem of designing a cylindrical spring with a constant axial load. 

1.  Introduction 
Today, one of the most pressing problems in the field of computational mathematics is the development 
of effective methods for solving global optimization problems. In the simplest case, the optimization 
problem is to maximize or minimize the objective function, that is, to ensure that we find the best option 
for all possible. 

Global optimization methods have a greater advantage over standard local search methods, since 
they are often not able to go beyond the zone of attraction of local optima, and therefore are unable to 
detect the global optimum [1-3]. Using the found local solutions may not be appropriate due to the fact 
that the global optimum may provide a significant advantage in relation to the local optimum. [4-7] 

When solving global optimization problems, many problems arise related to their multi-extremity, 
nonlinearity, high computation complexity, and other. To solve these problems, a large number of 
algorithms were created. Furthermore, among them there is no universal algorithm for solving any 
problem. Moreover, despite the abundance of algorithms, the task of researching and tuning existing 
global optimization algorithms remains relevant. [8-11] 

This article focuses on the analysis of classical extremum search algorithms: testing them for various 
functions and comparing their behavior with the most optimal parameters. The following algorithms are 
considered [1, 2, 4, 6, 9, 10]: 

 
• Particle swarming. 
• Bats. 
• Swarming bees. 
• Swarm of fireflies. 



 
 
 
 
 
 

• Bacterial. 
 
Also, these algorithms solved the problem of designing a cylindrical spring with a constant axial 

load. 
 

2.  The task of finding a global extremum 
In a general formulation, the global optimization problem is formulated as following: 

 𝑓∗ = 𝑓 𝑋∗ = 𝑚𝑖𝑛
(∈*+

𝑓(𝑥),	 (1) 

where 𝑓(𝑥) – objective function, 𝑋∗ – globally optimal point or globally optimal solution, 𝑋 =
{𝑥2, 𝑥3, … , 𝑥5} – 𝑚-dimensional	vector	of	the	sought	variables, 𝑅5 – Euclidean space.  

The area in which the solution of the global optimization problem is sought is given as follows: 

 𝐷 = {𝑋|𝑥M5MN ≤ 𝑥M ≤ 𝑥M5PQ, 𝑖 = 1,𝑚} ⊂ 𝑅5.	 (2) 

The optimized function satisfies the Lipschitz condition with a constant L, i.e. inequality holds: 

 𝑓 𝑥 − 𝑓 𝑧 ≤ 𝐿 𝑥 − 𝑧 X, 	 𝑥 X = 𝑚𝑎𝑥
2ZMZN

𝑥M .	 (3) 

This condition limits the growth of the function. The function is limited and continuous almost 
everywhere on X. 

Algorithms for solving global optimization problems are divided into two classes: deterministic and 
stochastic [8]. Stochastic algorithms are algorithms that use randomness when searching for optimum. 
Accident manifests itself in estimating the value of a function at various points in the search area, 
followed by processing the data.  Deterministic algorithms are more rigorous, they get a global solution 
by exhaustive search on the entire search range. At the same time, they lose their accuracy, speed and 
efficiency with increasing dimension of the task. In turn, stochastic algorithms do not give an absolute 
guarantee of finding a global optimum [4, 6-8]. But despite this, the class of stochastic algorithms gives 
the highest efficiency in solving problems [3, 9]. Its efficiency, as a rule, varies widely depending on 
the initial approximation obtained at the stage of population initialization. In this regard, to evaluate the 
effectiveness of these algorithms, multiple runs of the algorithm based on different initial 
approximations are used. The main criteria for the effectiveness of population-based algorithms are the 
reliability of the algorithm — an estimate of the localization probability of the global extremum, as well 
as its rate of convergence — an estimate of the expectation of the required number of tests (calculations 
of the value of the function to be optimized). 

 
3.  Statement of the problem of finding optimal parameters 
The efficiency of the algorithms when searching for a global optimum is due to the adjustment of the 
corresponding parameters. It is required to reveal a set of parameter values that is universal for the 
classes of functions under consideration.  

Let 𝑎(𝜃) be a considered algorithm for solving problems of a given class, where  𝜃 – vector of tunable 
algorithm parameters. Suppose that for each of the components of the parameter the intervals of its 
permissible values are set, so that the set of permissible combinations of the algorithm parameters is 
defined: 

 𝐷\ = 𝜃M 𝜃M] ≤ 𝜃 ≤ 𝜃M^, 𝑖 ∈ 1: 𝐵 .	 (4) 

The set of possible settings for the algorithm parameters: 

 𝐴 = 𝑎 𝜃 𝜃 ∈ 𝐷\ .	 (5) 

For each class of functions, it is required to find a combination of algorithm parameters that provides 
the minimum value of the objective function of the form: 

 𝑚𝑖𝑛
\∈bc

𝜇 𝑓, 𝑎 𝜃 = 𝜇 𝑓, 𝑎 𝜃∗ . (6) 



 
 
 
 
 
 

The resulting task (6) is also an optimization task. Let us dwell on its solution on the random search 
method. The complex characteristic of the search for the global minimum was chosen to estimate the 
probability of finding the true solution 𝑃fghi. For each test task, the study was conducted using multiple 
runs of each algorithm with different combinations of the parameter under consideration with the others 
fixed. The estimate of the probability of finding a true solution is usually calculated as the ratio of the 
number of favorable outcomes to the total number of launches. At the same time, the launch is 
considered “favorable” if the found value of the objective function is as close as possible to the correct 
answer, i.e. if the condition is met: 

 𝑚𝑖𝑛
\∈bc

𝜇 𝑓, 𝑎 𝜃 = 𝜇 𝑓, 𝑎 𝜃∗ . (7) 

where 𝑥∗– found position of global minimum, 𝑥∗∗– true position of the global minimum. 
For research, we selected fundamentally different test properties: De Jong, Goldman-Pryce, 

Shestigorbogo camel, Himmelblau, Schweifel, as well as multi-extremal potential function. All classes 
behave in their own special way; therefore, the best for them are their algorithm parameters. 

 
4.  Customizable parameters 
According to the results of the selection of parameters for each algorithm, the following ranges of 
optimal parameters were obtained. 

For Firefly swarm algorithm (FSA): 
• Num = 200; 400  – number of fireflies. 
• Iter = 1000 – number of loop iterations. 
• γ = 1 – gamma (local variable setting the boundaries for the firefly position). 
• β = 1 – base beta (local variable setting the boundaries for the firefly position). 
• α = 0.1 – alpha (local variable setting the boundaries for the firefly position). 

 
For Bacterial algorithm (BCA): 
• S = [100; 700] – number of bacteria. 
• Nс = [150; 	200]  – bacterium lifetime. 
• Ny = [6; 	8] – maximum number of steps in the chosen direction. 
• N|} = 4– the number of the type of event destruction - «dispersion». 
• N~| = 5 – number of generations in the population. 
• P|} = 0.25 – probability of killing bacteria. 
• C = 0.05 – basic movement length for each bacterium in one step. 

 
For Bats algorithm (BTA): 
• Num = 100; 600  – number of bats. 
• R = 0.9 – volume gain coefficient. 
• Iter = [700; 1000] – number of iterations. 
• A = 0.8 – bat volume attenuation coefficient. 
• λ = 0; 2 − [1; 3] – bat wavelength. 
• r = 0.8 – pulse frequency. 
• a = [0,1; 	0,9] – bat volume. 
• ϑ = [−2; 		2] − [−3; 		3] – bat flight speed. 

 
For Bee swarm algorithm (BSA): 
• S = 200; 300  – the number of scout bees. 
• Threshold = 1 – threshold value of the distance between the bees at the initial moment. 
• ∆	= [0,8; 	0,85] – local scope parameter. 
• B = [10; 	12] – the number of bees sent to the «best areas». 
• P = 3 – the number of bees sent to «promising areas». 



 
 
 
 
 
 

• K = [80; 	60] – maximum number of iterations. 
• b = 2 – number of selected best values. 
• p = 3 – the number of selected promising values. 
• R = 0.9 – area reduction coefficient. 

 
For Particle swarm algorithm (PSA): 
• K = [80; 120] – maximum number of iterations. 
• NP = [30; 100] – number of particles in the swarm. 
• NI��� = [10; 17] – least number of neighbours. 
• NI��� = [20; 35] – greatest number of neighbours. 
• ω = 0.5 – weight coefficient characterizing particle memory. 
• α = 0.5 и β = 0.8 – parameters used in calculating particle velocity. 

 
5.  Experimental study on the problem of a cylindrical spring construction. 
The parameters found during the research were used to solve a real problem. The task was to design a 
cylindrical spring at a constant axial load (Figure 1). The goal is to minimize the total cost of the spring. 

 

 
Figure 1. Cylindrical spring. 

 
In the problem, it is necessary to calculate D (diameter of the ring), d (diameter of the wire) and N 

(the number of turns in the spring). 
Let: 
• x2 – the number of turns in the spring (N), 5 ≤ x2 ≤ 20, x2– integer. 
• x3 – diameter of the ring (D), 0.207 ≤ x3 ≤ 0.5.  
• x� – diameter of the wire (d), 0.207 ≤ x� ≤ 0.5. 

 
Then the task is formulated as follows: 

 𝑓 𝑥 = ��Q�Q�� Q�^3
�

,	 (7) 

 𝑔2 𝑥 = ����+��Q�
�Q��

− 𝑆,	 (8) 

 𝑔3 𝑥 = 𝐿¡ − 𝐿5PQ,	 (9) 

 𝑔� 𝑥 = 𝑑5MN − 𝑥�,	 (10) 

 𝑔� 𝑥 = 𝑥3 − 𝐷5PQ,	 (11) 

 𝑔£ 𝑥 = 3 − 𝐶,	 (12) 

 𝑔¥ 𝑥 = 𝜎§ − 𝜎§5,	 (13) 

 𝑔¨ 𝑥 = 𝜎§ +
�+��]�ª

«
+ 1.05 𝑥2 + 2 − 𝐿¡,	 (14) 



 
 
 
 
 
 

 𝑔� 𝑥 = 𝜎¬ +
�+��]�ª

«
,	 (15) 

 𝑔M 𝑥 ≤ 0, 𝑖 = 1, … ,8,	 (16) 

 𝑐¡ =
�®]2
�®]�

+ ¯.¥2£Q�
Q�

,	 (17) 

 𝐶 = 	 Q�
Q�
,	 (18) 

 𝐾 = ±Q�²

�Q�Q��
	 (19) 

 𝜎§ =
�ª
«
,	 (20) 

 𝐿¡ =
�+��
«

+ 1.05 𝑥2 + 2 𝑥�.	 (21) 

Also:  
• F��� = 1	000 −	 maximum workload. 
• S = 189 000 – allowable maximum tension. 
• L��� = 14 – maximum spring length. 
• d��� = 0.2 – spring diameter. 
• D��� = 3.0 – maximum outer spring diameter. 
• F¶ = 300 – pressing force. 
• σ¶� = 6 – permissible maximum deviation under preload. 
• σ¸ = 1.25 – deviation from the preload position to the maximum load position. 
• G = 11.5 ∙ 10¨ – material shear modulus. 

 
The results of solving the problem, obtained using the investigated algorithms, are presented in Table 

1. This table also shows the results of solving this problem, obtained by other authors using Branch-
and-Bounds (BNB), AL, Genetic adaptive search (GA) and Hybrid genetics (HG).  

 
Table 1. The results of problem solving. 

Param BNB AL GAS HG FSA BCA BTA BSA PSA 
𝑁 10 7 9 9 9 9 9 9 9 
𝐷 1.18 1.329 1.226 1.2253 1.231 1.223 1.201 1.223 1.202 
𝑑 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 
𝑔2 −5.5001e+3 1.0169e+4 -713.51 -772.22 -73.5 -862.38 -5046.04 -1.36e-4 -675.577 
𝑔3 −8.6523 −9.5436 -8.933 -8.9357 -8.90 -8.943 -8.632 -8.903 -8.932 
𝑔� −0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 -0.083 
𝑔� −1.8200 −1.6710 -1.491 -1.7747 -1.767 -1.776 -1.776 -1.767 -1.774 
𝑔£ −1.1696 −1.700 -1.337 -1.3297 -1.356 -1.323 -1.185 -1.356 -1.333 
𝑔¥ −5.464 -5.464 -5.461 -5.4613 -5.452 -5.464 -5.459 -5.452 -5.46 
𝑔¨ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
𝑔� 0.026 0.026 −0.009 -0.007 -0.002 -0.004 −0.011 0.0 -0.01 
𝑓(𝑥) 2.7995 2.365 2.665 2.6634 2.6740 2.6586 2.6113 2.676 2.6133 
 
Sandgren used the branch and bound method in 1990, Deb and Goyal (1996) used combined genetic 

adaptive search, Rao and Shong used hybrid genetics in 2005. It should be noted that the decision of 



 
 
 
 
 
 

Cannan and Kramer (1995), obtained using the Lagrange methods, is among the optimal ones listed. 
However, it violates g2 constraint and cannot be considered a valid solution. 

Among the algorithms studied, the bat method showed the best result compared to all the works listed 
- the method allowed to achieve the value of the objective function equal to 2.6116 and ensure that all 
the problem’s constraints are satisfied. 

 
6.  Conclusion 
In the framework of this article, a study was conducted of various metaheuric algorithms for the search 
for extrema, the selection of optimal parameters for each of them using various functions as an example. 
Later, the algorithms were compared by the example of a real problem, particularly the construction of 
a cylindrical spring. 

The selection of the optimal parameters was carried out due to a complete search. Moreover, the task 
of selecting parameters requires the development of more optimal approaches to the selection of these 
parameters. 

By adjusting the parameters of each algorithm, a high level of speed and accuracy of the search for 
extremes was achieved. As a result of the comparison, it was found that the best value was obtained 
using the bat algorithm. This algorithm showed high results when testing on various types of functions: 
from simple to complex (multiextreme). 
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