
Journal of Siberian Federal University. Mathematics & Physics 2019, 12(5), 606–613

УДК 519.6

Hardware Architectures of the QR-Decomposition Based
on a Givens Rotation Technique

Alexey V. Sokolovskiy∗

Evgeny A.Veisov†

Valery N. Tyapkin‡

Dmitry D.Dmitriev§

Siberian Federal University
Svobodny, 79, Krasnoyarsk, 660041

Russia

Received 18.03.2019, received in revised form 11.05.2019, accepted 20.07.2019

The fixed-point hardware architecture of the QR decomposition is constrained by a several issues that
leads to decrease of a compute accuracy depending on a matrix size. In this article described the hardware
architectures based on CORDIC algorithm and approximation functions. As a basis technique is used a
Givens rotation technique, because it is a most suitable technique for hardware implementation.
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QR decomposition (QRD) is a widely used in a telecommunication systems as a pre-processing
algorithm to advance a characteristics of a processed signals. Known several techniques to imple-
ment QR decomposition, as a Gram–Schmidt orthogonalization, a Householder orthogonalization
and a Givens rotation technique. Usually a Givens rotation technique is used for hardware im-
plementation, because it may be effectively designed based on a CORDIC algorithm and others
effective computing architectures based on a approximation functions. The Givens rotation tech-
nique uses an iterated rotation operations of an adjacent row elements of an input matrix to get
an upper-triangular matrix. The performance of an implemented hardware architecture may be
evaluated in a computing speed and a hardware cost field of views. To improve a computing
speed of the hardware designs may be used a pipelined or parallel architectures [1,2]. A pipelined
architectures as well as a parallel architectures leads to increase a hardware costs, but gives an
ability to improve computation speed up to 100 MHz. In other hand to decrease requirements
to the memory usage may be used coding techniques for an input data or an pre-computed data
such as an approximation function coefficients [3]. Moreover the QR decomposition computation
architecture based on a fixed-point arithmetic is may be evaluated in a computation accuracy
field of view [4]. Usually to increase an computation accuracy of the QR decomposition by using
a Givens rotation technique the input matrix sorting is used. The sorting process has an aim
to maximize a norm of the adjacent row elements, as a result an rotation angle computation
accuracy is increased. In the same time adding a sorting process leads to an adding computation
delay that is proportional an input matrix size.
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1. The QRD-based signal processing

In general the multichannel signal processing model may be exposed as
y1
y2
...
yk

 =


h1,1 h1,2 . . . h1,m

h2,1 h2,2 . . . h2,m

...
...

. . .
...

hk,1 hk,2 . . . hk,m



s1
s2
...
sm

+


n1

n2

...
nk

 . (1)

where Y is the processing result vector, S is the received digital signal vector, H is the trans-
formation matrix, N is the transformation error vector, m is received digital signal index, k is
processing channel index

For QRD-based signal processing algorithms the matrix H may be exposed in form
h1,1 h1,2 . . . h1,m

h2,1 h2,2 . . . h2,m

...
...

. . .
...

hk,1 hk,2 . . . hk,m

 =


q1,1 q1,2 . . . q1,l
q2,1 q2,2 . . . q2,l
...

...
. . .

...
qk,1 qk,2 . . . qk,l



r1,1 r1,2 . . . r1,m
0 r2,2 . . . r2,m
...

...
. . .

...
0 0 . . . rl,m

 , (2)

where Q is the ortogonal matrix, R is the upper-triangular matrix
As an useful example of the QRD-based signal processing algorithm is a direct matrix inver-

sion [4], since a Q matrix is a orthogonal, the inverse matrix of R simply compute as

R−1
i,j =


−

(
j−1∑
k=1

R−1
i,k rk,j

)
/rj,j i < j,

1/rj,j i = j,

0 i > j.

(3)

Matrix inversion in the form (3) may be more effective to hardware implement.

2. The hardware architectures of the QR decomposition

2.1. The QRD hardware architecture based on the Q, R matrices direct
computing

The direct compute QR-decomposition by the Givens rotation techinique may be expressed
as[

rk−1,m

rk,m

]
=

[
R(|Rk−1,m|ej(αm−αn))

I(|Rk−1,m|ej(αm−αn))

]
,

m > n, |Rk−1,m| =
√
h2
k−1,m + h2

k,m ,

αn = arctan

(
hn+1,n

hn,n

)
, αm = arctan

(
hk,m

hk−1,m

)
,

(4)

[
qk−1,m

qk,m

]
=

[
R(|Qk−1,m|ej(βm−αn))

I(|Qk−1,m|ej(βm−αn))

]
,

m > n, |Qk−1,m| =
√

h2
k−1,m + h2

k,m ,

αn = arctan

(
hn+1,n

hn,n

)
, βm = arctan

(
qk,m

qk−1,m

)
,

(5)

where n is the diagonal element index of the H matrix, k is the current processing channel, m is
the current received signal index, r is the term of the R matrix, q is the term of the Q matrix.
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2.2. The QRD hardware architecture based on the CORDIC algorithm

The QR decomposition expressed in (4), (5) may be implemented using the Givens rotation
matrix

Gn =


c s . . . 0
−s c . . . 0
...

...
. . .

...
0 0 . . . 1

 , c = cos(αn), s = sin(αn). (6)

As an equation (6) is the rotation matrix, then is more suitable in hardware costs point of
view to implement based on the CORDIC algorithm. The generalized CORDIC algorithm [5] is
expressed as

x(i+1) = x(i) − µdiy
(i)2−i,

y(i+1) = y(i) + dix
(i)2−i,

z(i+1) = z(i) − die
(i).

(7)

To implement equations (4), (5) the CORDIC algorithm (7) is configured in a vectoring mode
(8), wherein the angles computing is not required, because in back substitution may be use the
same angles as is required for rotation a diagonal terms and adjacent column terms with it of H
matrix.

µ = 1, di = −sign(x(i)y(i)), e(i) = arctan
(
2−i)

)
. (8)

Then taking into account an equations (7), (8) the Givens rotation matrix (6) is expressed
as pseudorotation matrix

G(i)
n =


1 sign

(
x(i)y(i)

)
2−i . . . 0

−sign
(
x(i)y(i)

)
2−i 1 . . . 0

...
...

. . .
...

0 0 . . . 1

 . (9)

When calculating the Givens rotation matrix according to equation (9) the results vec-
tors is stretched [5] with factor K = 1.646760258121, to compensate this for an each adja-
cent row terms rotation iteration a multiplication it on the factor inversed to stretch factor
K−1 = 0.6072529350089 is required.

2.3. The QRD hardware architecture based on the approximation
polynomials

Another hardware architecture of the Givens rotation matrix (6) may be implemented based
on the approximation polynomials for the trigonometric functions [5]

sin(x) = x− 1

3!
x+

1

5!
x5 − 1

7!
x7 + . . .+ (−1)

i 1

(2i+ 1)!
x2i+1 + . . . , (10)

cos(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + . . .+ (−1)

i 1

(2i)!
x2i + . . . , (11)

arctan(x) = x− 1

3
x3 +

1

5
x5 − 1

7
x7 + . . .+ (−1)

i 1

2i+ 1
x2i+1 + . . . , −1 < x < 1, (12)

√
(x) = 1− 1

2
y − 1

2 ∗ 4
y2 − 1 ∗ 3

2 ∗ 4 ∗ 6
y3 − . . .− 1 ∗ 3 ∗ 5 ∗ . . . ∗ (2i− 3)

2 ∗ 4 ∗ 6 ∗ . . . ∗ 2i
yi − . . . , y = 1− x. (13)

– 608 –



Alexey V. Sokolovskiy . . . Hardware Architectures of the QR Decomposition Based . . .

For more effective calculation of the equations (10)–(13) the functions argument x is divided
by two terms according to

x = xH + 2−ixL,

{
0 6 xH 6 4

t+ 2(bits)
,

{
0 6 xL < 1

l − t(bits)
, (14)

where xL is the LSBs of the function argument, xH is the MSBs of the function argument, t is
the LSB shift coefficient, l is the function argument bit length.

Then the functions (10)–(13) may be expressed by the Taylor sequence

f(x) =
∞∑
j=0

f (j) (xH)
(2−txL)

j

j!
, (15)

where f (j) is the j-nd order derivatives and f (0)(xH) = f(xH).
Since an equation (15) is rapidly decreasing with a rising j (16), an acceptable compute

accuracy may be done based on linear approximation (17)

2−jt

j!
≈ 0, j → ∞, (16)

f(x) = f(xH) + 2−txLf
′(xH). (17)

After Givens rotation matrix computation (6) or (9) is done the Q and R matrices is computed
according to

R = G1G2 . . . GnH,

Q = [G1G2 . . . Gn]
T
.

(18)

3. The fixed-point hardware architectures

The hardware implementation of the Givens rotation matrix computing (6), (9) based on the
approximation polynomials (15), (17) may be done according to scheme in below (Fig. 1).

LSB Buf

MSB Buf

LUT f(x)

LUT f ′(x)

Shift Reg

PProduct

PSum

LUT f (n)(x)

Shift Reg

PProduct

PSum

-
x

- -

-

?
-

6 �� . . .

. . .

. . . -

-

6

-

?

?

?

?
-
f(x)

Fig. 1. The structural scheme of the approximation polynomials hardware architecture, where x
is the function argument, LSB Buf is the LSB argument buffer, MSB Buf is the MSB argument
buffer, LUT f(x) is the function values lookup table, LUT f ′(x) is the function’s 1st deriva-
tive lookup table, LUT f (n)(x) is the function’s n-nd derivative lookup table, PProduct is the
pipelined multiplier, PSum is the pipelined adder
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To increase the speed of signal processing device based on this architecture using the pipelining
techique and the hardware DSP-slices is required. This architecture also may be used to direct
compute Q and R matrices according to equations (4), (5).

An another architecture based on CORDIC algorithm is exposed in scheme below (Fig. 2).

CSCheck 1

PSum 1

RStep 1

AInit 1

CSCheck n RStep n

PSum n-
Init registers

?

-

-
x

-
y -

. . .

6

. . . -

?

-

6∆xn 6∆yn6∆x1 6∆y1

-K
√

x2 + y2

-0

µ
. . .

6

6

Fig. 2. The structural scheme of the CORDIC-based algorithm R matrix computation hardware
architecture, where x and y are adjacent row terms of the H matrix that need to rotate, and y is
the term that need to zeroing, CSCheck is the current sign checking unit, PSum is the pipelined
adder, RStep is the rotation angle sampling unit, AInit is the current angle initialization unit,
K is the CORDIC algorithm’s stretching coefficient, n is the rotation sample index

This architecture doesn’t require an FPGA DSP-slices and may be effectively implemented
based on the pipelined adders and shift registers according to (7), (8).

4. The mean square error evaluation of the different QR
decomposition fixed-point hardware architectures

To evaluate the mean square errors for several QR decomposition architectures the Q and R
matrices is computed separately for matrix H then the product of Q and R matrices was taken
to get as a result the matrix H in fixed-point representation. The mean square error is evaluated
according to

MSEH =

√√√√∑1000
n=1

∑LL
x=1,y=1

(
Hfp

x,y −Hfx
x,y

)2
1000L2

, (19)

where Hfp is the H matrix floating-point representation, Hfx is the H matrix fixed-point rep-
resentation, L is the square matrix size, and x, y is the H matrix term indices (Figs. 3, 4, 5).

In the Fig. 4 there are nonlinearity of the mean square error H matrix fixed-point repre-
sentation for 12-bit and 14-bit hardware arithmetic units based on approximating polynomials.
This means that in a rising hardware arithmetic unit bit length the approximation polynomials
(10)–(13) term count increasing is required.

The mean square error of the H matrix in a fixed-point representation is a smallest among
other architectures.
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Fig. 3. The mean square error of the H matrix in a fixed-point representation taken based on
the direct Q and R matrices computation, where s − x − y is the fixed-point arithmetic uses a
signed terms with x bits integer and y bits fractional parts

Fig. 4. The mean square error of the H matrix in a fixed-point representation taken based on the
Q and R matrices computed by the approximating polynomials, where s−x−y is the fixed-point
arithmetic uses a signed terms with x bits integer and y bits fractional parts
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Fig. 5. The mean square error of the H matrix in a fixed-point representation taken based on
the Q and R matrices computed by the CORDIC algorithm, where s − x − y is the fixed-point
arithmetic uses a signed terms with x bits integer and y bits fractional parts

As in view on graphs (Figs. 3, 4, 5) the largest mean square error is in hardware architecture
based on the direct Q and R matrices computation.

The represented hardware architectures of the QR decomposition may be implemented using
DSP-slices, or basic logic elements, pipelined adders and shift registers that in all gives an ability
to take a mind the FPGA or SoC hardware features and constraints. For hardware devices
with small amount of the DSP-slices that utilizes the QR decomposition recommends to use the
hardware architecture based on the CORDIC algorithm. In other hand if high-speed DSP-slices
is in hardware device then using direct Q and R matrices computation is more preferable for
arithmetic units with 12-bit and wider terms. For terms that’s smaller than 12-bit is recommends
to implement hardware architecture based on the approximating polynomials.
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Аппаратная архитектура QR-разложения, основанного
на методе вращения Гивенса

Алексей В. Соколовский
Евгений А.Вейсов

Валерий Н. Тяпкин
Дмитрий Д. Дмитриев

Сибирский федеральный университет
Свободный, 79, Красноярск, 660041

Россия

Аппаратная архитектура QR-разложения с фиксированной точкой ограничена некоторыми про-
блемами, которые приводят к потере точности вычислений в зависимости от размерности
матрицы. В этой статье описаны аппаратные архитектуры на основе алгоритма CORDIC и
функций аппроксимации. За основу взят метод вращения Гивенса, поскольку это наиболее эф-
фективный метод для аппаратной реализации.

Ключевые слова: QR-разложение, ПЛИС, алгоритм CORDIC, функция аппроксимации, арифме-
тика с фиксированной точкой.
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