УДК 517.55

Distribution of Small Values of Bohr Almost Periodic Functions with Bounded Spectrum

Wayne M. Lawton*

Institute of Mathematics and Computer Science Siberian Federal University Svobodny, 79, Krasnoyarsk, 660041

Russia

Received 10.05.2019, received in revised form 10.06.2019, accepted 20.09.2019

For f a nonzero Bohr almost periodic function on \mathbb{R} with a bounded spectrum we proved there exist $C_f > 0$ and integer n > 0 such that for every u > 0 the mean measure of the set $\{x : |f(x)| < u\}$ is less than $C_f u^{1/n}$. For trigonometric polynomials with $\leq n + 1$ frequencies we showed that C_f can be chosen to depend only on n and the modulus of the largest coefficient of f. We showed this bound implies that the Mahler measure M(h), of the lift h of f to a compactification G of \mathbb{R} , is positive and discussed the relationship of Mahler measure to the Riemann Hypothesis.

Keywords: almost periodic function, entire function, Beurling factorization, Mahler measure, Riemann hypothesis.

DOI: 10.17516/1997-1397-2019-12-5-571-578.

1. Distribution of small values

 $\mathbb{N}:=\{1,2,\dots\},\,\mathbb{Z},\mathbb{R},\mathbb{C},\mathbb{T}:=\{z\in\mathbb{C}:|z|=1\}$ are the natural, integer, real, complex and circle group numbers, $C_b(\mathbb{R})$ is the C^* -algebra of bounded continuous functions and χ_ω : $\mathbb{R}\to\mathbb{T},\ \omega\in\mathbb{R}$ the homomorphisms $\chi_\omega(x):=e^{i\omega x},\ \omega\in\mathbb{R}$. A finite sum $f=\sum_\omega a_\omega\,\chi_\omega$ with distinct ω is called a trigonometric polynomial with height $H_f:=\max_\omega|a_\omega|$ and they comprise the algebra $T(\mathbb{R})$ of trigonometric polynomials. Bohr [9] defined the C^* -algebra $U(\mathbb{R})$ of uniformly almost periodic functions to be the closure of $T(\mathbb{R})$ in $C_b(\mathbb{R})$ and proved that their means $m(f):=\lim_{L\to\infty}(2L)^{-1}\int_{-L}^L f(t)dt$ exist. The Fourier transform $\widehat{f}:\mathbb{R}\to\mathbb{C}$ of $f\in U(\mathbb{R})$ is $\widehat{f}(\omega):=m(f\,\overline{\chi}_\omega)$ and its spectrum $\Omega(f):=\mathrm{support}\,\widehat{f}.$ If f is nonzero then $\Omega(f)$ is nonempty and countable and we say f has bounded spectrum if its bandwidth $b(f)\in[0,\infty]$, defined by $b(f):=\sup\Omega(f)-\inf\Omega(f)$, is finite. We observe that if $S\subseteq\mathbb{R}$ is defined by a finite number of inequalities involving functions in $U(\mathbb{R})$ then $m(S):=\lim_{L\to\infty}(2L)^{-1}$ measure $[-L,L]\cap S$ exists and define $J_f:(0,\infty)\to[0,1]$ by

$$J_f(u) := m (\{ x \in \mathbb{R} : |f(x)| < u \})$$
 (1)

Theorem 1.1. If $f \in U(\mathbb{R})$ is nonzero and has a bounded spectrum then there exist $C_f > 0$ and $n \in \mathbb{N}$ such that:

$$J_f(u) \leqslant C_f u^{\frac{1}{n}}, \quad u > 0. \tag{2}$$

^{*}wlawton50@gmail.com

[©] Siberian Federal University. All rights reserved

There exists a sequence C_n such that if $f \in T(\mathbb{R})$ has n+1 frequencies then

$$J_f(u) \leqslant C_n H_f^{-\frac{1}{n}} u^{\frac{1}{n}}, \quad u > 0.$$
 (3)

Proof. For $f \in U(\mathbb{R}), \omega \in \mathbb{R}, k \in \mathbb{N}, u > 0$ define $\Xi_{f,\omega,k,u}, K_f : (0,\infty) \to [0,1]$ by

$$\Xi_{f,\omega,k,u}(v) := m\{ x \in \mathbb{R} : |f(x)| < u, |(\chi_{\omega}f)^{(j)}(x)| < v^j, j = 1, \dots, k \},$$
(4)

$$K_f(u) := \inf_{\omega \in \mathbb{R}} \inf_{k \in \mathbb{N}} \inf_{v > 0} \left[3\sqrt{2} \pi^{-1} b(f) k v^{-1} u^{\frac{1}{k}} + \Xi_{f,\omega,k,u}(v) \right]. \tag{5}$$

We first prove Theorem 1 assuming the following result which we prove latter.

Lemma 1.1. Every nonzero $f \in U(\mathbb{R})$ with bounded spectrum satisfies $J_f \leqslant K_f$.

We observe that for every $\omega \in \mathbb{R}$ and every $a \in \mathbb{R} \setminus \{0\}$, if $h(x) = \chi_{\omega}(x) f(ax)$ then $J_h = J_f$ and $K_h = K_f$. Without loss of generality we can assume that $\Omega(f) \subset \left[-\frac{b(f)}{2}, \frac{b(f)}{2}\right]$. If b(f) = 0 then f = c and $J_f(u) \leqslant |c|^{-1}u$. If b(f) > 0 then Bohr [10] proved that f extends to an entire function F of exponential type $\frac{b(f)}{2}$, and Boas [6], ([7], p. 11, Equation 2.2.12) proved that

$$\limsup_{k \to \infty} |f^{(k)}(x)|^{\frac{1}{k}} = \frac{b(f)}{2} \tag{6}$$

uniformly in x. Therefore for any $v_0 > \frac{b(f)}{2}$ there exists $k \in \mathbb{N}$ such that $\Xi_{f,0,k,u}(v_0) = 0$ so Lemma 1.1 implies J_f satisfies (2) with $C_f = 3\sqrt{2}\pi^{-1}b(f)kv_0^{-1}$ and n = k. This proves the first assertion. To prove the second we assume, without loss of generality, that b(f) = 1, $\Omega(f) \subset [0,1]$ and

$$f(x) = \sum_{j=1}^{n+1} a_j e^{i \omega_j x}, \quad 0 = \omega_1 < \dots < \omega_{n+1} = 1, \quad H_f = \max\{|a_j| : j = 2, \dots, n+1\}.$$

Define $C_1 := \frac{1}{2}$. If n = 1 and f has n + 1 = 2 terms and $f = a_0 + a_1 \chi_1$ with $|a_1| = H_f$ and $h = H_f(1 - \chi_1)$, then $J_f(u) \leq J_h(u) = (2/\pi) \sin^{-1}(u/(2H_f)) \leq C_1 H_f^{-1} u$ therefore (3) holds for n = 1. For $n \geq 2$ we assume by induction that (3) holds for n - 1 and therefore, since $f^{(1)}$ has n terms and $H_{f^{(1)}} = H_f$, it follows that for all v > 0,

$$J_{f^{(1)}}(v) \leqslant C_{n-1} H_f^{\frac{1}{n-1}} v^{\frac{1}{n-1}}, \tag{7}$$

$$\Xi_{f,0,1,u}(v) \leqslant C_{n-1} H_f^{\frac{1}{n-1}} v^{\frac{1}{n-1}}.$$
 (8)

Therefore Lemma 1 with $\omega = 0$, b(f) = k = 1 gives

$$J_f(u) \leqslant \inf_{v>0} \left[3\sqrt{2} \pi^{-1} v^{-1} u + C_{n-1} H_f^{\frac{1}{n-1}} v^{\frac{1}{n-1}} \right] = C_n H_f^{\frac{1}{n}} u^{\frac{1}{n}}$$
 (9)

where
$$C_n := C_{n-1}^{1-\frac{1}{n}} \left[3\sqrt{2} \pi^{-1} (n-1) \right]^{\frac{1}{n}} n(n-1)^{-1}$$
. (10)

Remark 1.1. Computation of 200 million terms shows that $n^{-1}C_n \to 0.900316322$

Conjecture 1.1. In (3) C_n can be replaced by a bounded sequence.

Lemma 1.2. If $\phi:[a,b]\to\mathbb{C}$ is differentiable and $\phi'([a,b])$ is contained in a quadrant then

$$b - a \le 2\sqrt{2} \, \frac{\max |\phi|([a, b])}{\min |\phi'|([a, b])}. \tag{11}$$

Proof of Lemma 1.2. We first proved this result in ([18], Lemma 1) where we used it to give a proof, of a conjecture of Boyd [11] about monic polynomials related to Lehmer's conjecture [20], which was reviewed in ([13], Section 3.5) and extended to monic trigonometric polynomials in ([19], Lemma 2). The triangle inequality $|\phi'| \leq |\Re \phi'| + |\Im \phi'|$ gives

$$(b-a)\min|\phi'|([a,b]) \le \int_a^b |\phi'(y)| \, dy \le \int_a^b (|\Re \phi'(y)| + |\Im \phi'(y)|) \, dy.$$

Since $\phi'([a,b])$ is contained in a quadrant of \mathbb{C} there exist $c,d \in \{1,-1\}$ such that $|\Re \phi'(y)| = c \Re \phi'(y)$ and $|\Im \phi'(y)| = d \Im \phi'(y)$ for all $y \in [a,b]$. Therefore

$$\int_{a}^{b} (|\Re \phi'(y)| + |\Im \phi'(y)|) dy = (c \Re \phi(b) + d \Im \phi(b)) - (c \Re \phi(a) + d \Im \phi(a)).$$

The result follows since the right side is bounded above by $2\sqrt{2} \max |\phi|([a,b])$.

Proof of Lemma 1.1, Assume that $f \in \mathrm{U}(\mathbb{R})$ is nonzero. We may assume without loss of generality that $\Omega(f) \subset \left[-\frac{b(f)}{2}, \frac{b(f)}{2}\right]$. For $k \in \mathbb{N}, u > 0, v > 0$ we define the set

$$S_{f,k,u,v} := \{ x \in \mathbb{R} : |f(u)| < u, \max_{j \in \{1,\dots,k\}} |f^{(j)}(x)|^{\frac{1}{j}} \geqslant v \}.$$
 (12)

We observe that the set of functions in $U(\mathbb{R})$ whose spectrums are in $\left[-\frac{b(f)}{2}, \frac{b(f)}{2}\right]$ is closed under differentiation, and define $s(f, k, u, v) := m(S_{f,k,u,v})$.

It suffices to prove that
$$s(f, k, u, v) \leq 3\sqrt{2}\pi^{-1}b(f)kv^{-1}u^{\frac{1}{k}}$$
. (13)

Define $\gamma_j := u^{\frac{k-j}{k}} v^j, j \in \{0, ..., k\}$, and $\mathcal{I} := \text{set of closed intervals } I$ satisfying, for some $j \in \{0, 1, ..., k-1\}$, the following three properties:

- 1. $f^{(j+1)}(I)$ is a subset of a closed quadrant,
- 2. $\max |f^{(j)}|(I) \leq \gamma_j$ and $\min |f^{(j+1)}|(I) \geq \gamma_{j+1}$,
- 3. I is maximum with respect to properties 1 and 2.

Define $\mathcal{E} := \text{set of endpoints of intervals in } \mathcal{I}$, and

$$\psi := \prod_{j=0}^{k-1} (\Re f^{(j+1)}) (\Im f^{(j+1)}) (|f^{(j)}(x)|^2 - \gamma_j^2) (|f^{(j+1)}(x)|^2 - \gamma_{j+1}^2). \tag{14}$$

Lemma 1.2 implies that length
$$(I) \leq 2\sqrt{2} \frac{\gamma_k}{\gamma_{k+1}} = 2\sqrt{2} v^{-1} u^{\frac{1}{k}}, \quad I \in \mathcal{I},$$
 (15)

and (12) and Property 3 implies that
$$S_{f,k,u,v} \subset \bigcup_{I \in \mathcal{I}} I.$$
 (16)

Clearly $\psi = \Psi|_{\mathbb{R}}$ where Ψ is the product of 6k entire functions each having bandwidth b(f) so a theorem of Titchmarsh [25] implies that the density of real zeros of Ψ is bounded above

by $3\pi^{-1}b(f)k$. Property 3 implies that all points in $\mathcal E$ are zeros of Ψ so the upper density of intervals in $\mathcal I$ is bounded by $\frac{3}{2}\pi^{-1}b(f)k$. Combining these facts gives $s(f,k,u,v)\leqslant (\frac{3}{2}\pi^{-1}b(f)k)(2\sqrt{2}v^{-1}u^{\frac{1}{k}})=3\sqrt{2}\pi^{-1}b(k)kv^{-1}u^{\frac{1}{k}}$ which proves (13) and concludes the proof of Lemma 1.

For $p \in [1, \infty)$ Besicovitch [4] proved that the completion $B^p(\mathbb{R})$ of $U(\mathbb{R})$ with norm $(m(|f|^p))^{\frac{1}{p}}$ is a subset of $L^p_{loc}(\mathbb{R})$. For $x \geq 0$ we define $\log^+(x) := \log(\max\{1, x\}) \in [0, \infty)$, $\log^-(x) := \log(\min\{1, x\}) \in [-\infty, 0]$, and $|x|_j := \max\{|x|, \frac{1}{j}\}$ for $j \in \mathbb{N}$.

Corollary 1.1. If $f \in U(\mathbb{R})$ satisfies (2), then $\log^- \circ |f| \in B^p(\mathbb{R})$,

$$m(|\log^- \circ |f||^p) \le \int_0^1 |\log(u)|^p dC_f u^{\frac{1}{n}} = C_f n^p \Gamma(p),$$
 (17)

and $\log \circ |f| \in B^p(\mathbb{R})$.

Proof of Corollary 1.1. Since the means of the functions $\log^- \circ |f|_j|^p$ are nondecreasing and bounded by the right side of (17), the sequence $\log^- \circ |f|_j$ is a Cauchy sequence in $B^p(\mathbb{R})$ so it converges to a function $\eta \in B^p(\mathbb{R})$. Therefore $\log^- \circ |f| = \eta$ since it is the pointwise limit of $\log^- \circ |f|_j$ and $\eta \in L^p_{loc}(\mathbb{R})$. The last fact follows since $\log = \log^+ + \log^-$.

2. Compactifications and Hardy Spaces

Definition 2.1. A compactification of \mathbb{R} is a pair (G, θ) where G is a compact abelian group and $\theta : \mathbb{R} \to G$ is a continuous homomorphism with a dense image.

 $\mathcal{C}(G)$ is the set of continuous functions on G and $L^p(G), p \in [1, \infty)$ are Banach spaces. If $h \in \mathcal{C}(G)$ then $f := h \circ \theta \in \mathcal{U}(\mathbb{R})$ since by a theorem of Bochner [8] every sequence of translates of f has a subsequence that converges uniformly. We call h the lift of f to G. The Pontryagin dual [24] \widehat{G} of a compact abelian group G is the discrete group of continuous homomorphisms $\chi: G \to \mathbb{T}$ under pointwise multiplication. Bohr proved the existence of a compactification (\mathbb{B}, θ) such that $\mathcal{U}(\mathbb{R}) = \{h \circ \theta: h \in \mathcal{C}(\mathbb{B})\}$. The group \mathbb{B} is nonseparable and $\widehat{\mathbb{B}}$ is isomorphic to $\mathbb{R}_d := \text{real numbers}$ with the discrete topology.

Lemma 2.1. For every $f \in U(\mathbb{R})$ there exists a compactification $(G(f), \theta)$, with G(f) separable, and $h \in C(\mathbb{R})$ such that $f = h \circ \theta$.

Proof of Lemma 2.1. If $f \in \mathrm{U}(\mathbb{R})$ is nonzero its spectrum $\Omega(f)$ is nonempty and countable so the product group $\mathbb{T}^{\Omega(f)}$ is compact and separable. The function $\theta : \mathbb{R} \to \mathbb{T}^{\Omega(f)}$ defined by $\theta(x)(\omega) := \chi_{\omega}(x)$ is a continuous homomorphism. Define $G(f) := \overline{\theta(\mathbb{R})}$. Then $(G(f), \theta)$ is a compactification. The function $\widetilde{h} : \theta(\mathbb{R}) \to \mathbb{C}$ defined by $\widetilde{h}(\theta(x) := f(x))$ is uniformly continuous so extends to a unique function $h : G \to \mathbb{C}$ and $f = h \circ \theta$.

Lemma 2.2. If (G, θ) is a compactification, $h \in C(G)$, $f = h \circ \theta$, and $\log \circ |f| \in B^p(\mathbb{R})$, then $\log \circ |h| \in L^p(G)$ and $\int_G |\log \circ |h| |^p = m(|\log \circ |f| |^p)$ for all $p \in [1, \infty)$.

Proof of Lemma 2.2. The theorem of averages ([3], p. 286) implies that

$$\int_{G} |\log^{-} \circ| h|_{j} |^{p} = m(|\log^{-} \circ| f|_{j} |^{p}) \leqslant m(|\log^{-} \circ| f||^{p}). \tag{18}$$

The result follows from Lebesgue's monotone convergence theorem since the sequence $|\log \circ|h|_j|^p$ is nondecreasing, converges pointwise to $|\log \circ|h||^p$ pointwise and by (18) their integrals are uniformly bounded.

Definition 2.2. The Fourier transform $\mathfrak{F}:L^1(G)\to \ell^\infty(\widehat{G})$ is defined by $\mathfrak{F}(h)(\chi):=\int\limits_G f\,\overline{\chi}.$

We define the spectrum $\Omega(h) := \text{support } \mathfrak{F}(h)$. The Hausdorff-Young theorem [15,26] implies that the restrictions give bounded operators $\mathfrak{F}: L^p(G) \to \ell^q(\widehat{G})$ for $p \in [1,\infty)$ and $p^{-1}+q^{-1}=1$.

Definition 2.3. A compactification (G, θ) induces an injective homomorphism $\xi : \widehat{G} \to \mathbb{R}$, $\xi(\chi) := \omega$ where $\chi \circ \theta = \chi_{\omega}$, by which we will identity \widehat{G} as a subset of \mathbb{R} with the same archimedian order. Therefore if $h \in C(G)$ is the lift of $f \in U(\mathbb{R})$, then $\Omega(h) = \Omega(f)$. The compactification gives Hardy spaces $H^p(G, \theta) := \{h \in L^p(G) : \Omega(h) \subset [0, \infty)\}, p \in [1, \infty]$.

Definition 2.4. A function $h \in H^p(G, \theta)$ is outer if $\int_G h \neq 0$, $\log \circ |h| \in L^1(G)$, and

$$\int_{G} \log \circ |h| = \log \left| \int_{G} h \right|. \tag{19}$$

A function $h \in H^p(G, \theta)$ is inner if |h| = 1.

A polynomial h is outer iff it has no zeros in the open unit disk since a formula of Jensen [16] gives $\int_G \log \circ |h| = \log |h(0)| - \sum_{h(\lambda)=0} \log^-(|\lambda|)$. Beurling [5] proved that a function $h \in H^2(\mathbb{T})$ admits a factorization $h = h_o h_i$, with h_o outer and h_i inner, iff $\log \circ |h| \in L^1(\mathbb{T})$.

Let (G, θ) be a compactification. If $h \in C(G)$ has a bounded spectrum $\Omega(h) \subset [0, \infty)$ and $\int_G h \, d\sigma > 0$ then $f = h \circ \theta$ extends to an entire function F bounded in the upper half plane. We observe that if F has no zeros in the upper half plane, then $\chi_{-b(f)/2}F$ is the Ahiezer spectral factor [1] of the entire function $F(z)\overline{F(\overline{z})}$.

Conjecture 2.1. h above is outer iff F has no zeros in the open upper half plane.

3. Mahler Measure and the Riemann Hypothesis

Definition 3.1. For G a compact abelian group the Mahler measure [22, 23] of $h \in L^1(G)$ is $M(h) := \exp\left(\int\limits_G \log \circ |h|\right) \in [0,\infty)$. We also define $M^{\pm}(h) := \exp\left(\int\limits_G \log^{\pm} \circ |h|\right)$.

Since $M(h) = M^+(h)M^-(h)$ and $M^+(h) \in [1, \max\{1, ||h||_{\infty}\}]$, it follows that M(h) > 0 iff $\log^- \circ |h| \in L^1(G)$ and then $M^-(h) = \exp\left(-||\log^- \circ |h|||_1\right)$. Lemma 2.2 implies that this condition holds whenever $h \in \mathcal{C}(G)$ is nonzero and $\Omega(h)$ is bounded.

Definition 3.2. For $N \in \mathbb{N}$, $\Phi_N := product of the first N cyclotomic polynomials.$

Amoroso ([2], Theorem 1.3) proved that the Riemann Hypothesis is equivalent to

$$\log M^+(\Phi_N) \ll_{\epsilon} N^{\frac{1}{2} + \epsilon}, \quad \epsilon > 0.$$
 (20)

Define $f_N := \Phi_N \circ \chi_1 \in \mathrm{U}(\mathbb{R})$ and define $J_{f_N} : (0, \infty) \to [0, 1]$ by (1). Jensen's formula implies that $M(\Phi_N) = 1$ therefore

$$\log M^{+}(\Phi_{N}) = -\int_{0}^{1} \log(u) \, dJ_{f_{N}}(u). \tag{21}$$

The bounds that we obtained for J_f in (2) and (3) were exceptionally crude and totally inadequate to obtain (20). When deriving (3) for general polynomials we used the bound (8) $\Xi_{f,0,1,u}(v) =$

 $= m(\{x: |f(x)| < u, |f^{(1)}(x)| < v\} \le m(\{x: |f^{(1)}(x)| < v\}.$ Conjecture (1.1) was based on our intuition that a smaller upper bound holds. We suspect that much smaller upper bounds hold for specific sequences of polynomials as illustrated by the following examples. Construct sequences of height 1 polynomials

$$P_n(z) := 1 + z + \dots + z^n \; ; \quad Q_n(z) := \binom{n}{\lfloor n/2 \rfloor}^{-1} (1+z)^n$$
 (22)

and $p_n := P_n \circ \chi_1$, $q_n := Q_n \circ \chi_1$. Both polynomials have maxima at z = 1, $||P_n||_{\infty} = n + 1$, Stirling's approximation gives $||Q_n||_{\infty} \approx \sqrt{\pi n/2}$ for large n, and for $u \in (0,1]$

$$J_{p_n}(u) \leqslant \frac{2}{\pi} \sin^{-1}(\min\{1, u\}) \leqslant u \Rightarrow \log(M^-(P_n)) > -1,$$
 (23)

$$J_{q_n}(u) = \frac{2}{\pi} \sin^{-1} \left(\min \left\{ 1, \frac{1}{2} \binom{n}{\lfloor n/2 \rfloor} \right\}^{\frac{1}{n}} u^{\frac{1}{n}} \right\} \right) \geqslant \frac{2}{\pi} u^{\frac{1}{n}} \Rightarrow \log(M^-(Q_n)) < -\frac{2n}{\pi}.$$
 (24)

Differences between these polynomials arise from their root discrepancy. Those of P_n are nearly evenly spaced. Those of Q_n , all at z = -1, have maximally discrepancy.

Conjecture 3.1. If R_n is a polynomial with n+1 terms and height $H(R_n) = 1$ then $M^-(Q_n) \leq M^-(R_n) \leq M^-(P_n)$.

The roots of Φ_N have the form $\exp(2\pi i a_k)$, $k=1,\ldots,\deg\Phi_N$ where a_k are the Farey series consisting of rational numbers in [0,1) whose denominators are $\leq N$. Bounds on the discrepancy of the Farey series were shown by Franel [14] and by Landau [17] to imply the Riemann Hypothesis. The relationship between the discrepancy of roots of a polynomial and its coefficients, and the distributions of roots of entire functions have been extensively studied since the seminal paper by Erdös and Turán [12] and the extensive work by Levin and his school [21]. We suggest that investigation of the functions $\Xi_{f,\omega,k,v,u}$ in (4) and derived functions K_f in (5) may further elucidate how the distribution of small values of polynomials and entire functions depend on their coefficients and roots.

The author thanks Professor August Tsikh for insightful discussions.

References

- [1] N.I.Ahiezer, On the theory of entire functions of finite degree, *Dokl. Akad. Nauk SSSR*, **63**(1948) 475–478 (in Russian).
- [2] F.Amoroso, Algebraic numbers close to 1 and variants of Mahler's measure, *J. Number Theory*, **60**(1996) 80–96.
- [3] V.I.Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978.
- [4] A.S.Besicovitch, On generalized almost periodic functions, *Proc. London Math. Soc.* **25**(1926) no. 2, 495–512
- [5] A.Beurling, On two problems concerning linear transformations Hilbert space, *Acta Math.* **81**(1949), 239–255.

- [6] R.P.Boas, Jr., Representations of entire functions of exponential type, Annals of Mathematics, 39(1938), no. 2, 269–286; 40(1939) 948.
- [7] R.P.Boas, Jr., Entire Functions, Academic Press, New York, 1954.
- [8] S.Bochner, Beitrage zur Theorie der fastperiodischen Funktionen, Math. Annalen, 96(1926) 119–147.
- [9] H.Bohr, Zur Theorie der fastperiodischen Funktionen I, Acta Math., 45(1924), 29–127.
- [10] H.Bohr, Zur Theorie der fastperiodishen Functionen III Teil. Dirichletenwich-lung analytisher Functionen, *Acta Math.*, **47**(1926), 237-281.
- [11] D.W.Boyd, Kronecker's theorem and Lehmer's problem for polynomials in several variables, J. Number Theory, 13(1981), 116–121.
- [12] P.Erdös, P.Turán, On the distribution of roots of polynomials, *Annals of Mathematics*, **51**(1950), no. 1, 105–119.
- [13] G.Everest, T.Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.
- [14] J.Franel, Les suites de Farey et le probléme des nombres premiers, Gött. Nachr., (1924), 198–201.
- [15] F.Hausdorff, Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen, *Mathematische Zeitschrift*, **16**(1923), 163–69.
- [16] J.Jensen, Sur un nouvelet important théorème de la théorie des fonctions, *Acta Mathematica*, **22**(1899), 359–364.
- [17] E.Landau, Bemerkungen zur vorstehenden Abhandlungen von Herrn Franel, Gött. Nachr., (1924), 202–206.
- [18] W.Lawton, A problem of Boyd concerning geometric means of polynomials, *Journal of Number Theory*, **16**(1983), no. 3, 356–362.
- [19] W.Lawton, Multiresolution analysis on quasilattices, *Poincare Journal of Analysis & Applications*, **2**(2015) 37–52. arXiv:1504.03505v1
- [20] D.H.Lehmer, Factorization of certain cyclotomic functions, *Annals of Mathematics*, **34**(1933). no. 2, 461–479.
- [21] B.Ja.Levin, Distribution of Roots of Entire Functions, Translations of Mathematical Monographs, Volume 5, Revised Edition, American Mathematical Society, 1964.
- [22] K.Mahler, An application of Jensen's formula to polynomials, *Mathematica*, 7(1960), 98–100.
- [23] K.Mahler, On some inequalities for polynomials in several variables, *Proc. London Mathematical Society*, **37**(1962), 341–344.
- [24] L.Pontryagin, Topological Groups, Princeton University Press, 1946.
- [25] E.C.Titchmarsh, The zeros of certain integral functions, *Proc. London Mathematical Society*, **25**(1926), 283–302.

[26] W.H.Young, On the determination of the summability of a function by means of its Fourier constants, *Proc. London Math. Soc.*, **12**(1913), 71–88.

Распределение малых значений почти периодических функций Бора с ограниченным спектром

Уэйн М. Лоутон

Институт математики и фундаментальной информатики Сибирский федеральный университет Свободный, 79, Красноярск, 660041 Россия

Для f ненулевой почти периодической функции Бора на \mathbb{R} с ограниченным спектром мы доказали, что существуют $C_f > 0$ и целое число n > 0 такие что для каждого u > 0 средняя мера установить $\{x: |f(x)| < u\}$ меньше $C_f u^{1/n}$. Для тригонометрических полиномов c частотами $\leq n+1$ мы показали, что C_f можно выбрать так, чтобы он зависел только от n и модуль наибольшего коэффициента f. Из этой оценки следует, что мера Малера M(h), подъема h из f к компактификации G из \mathbb{R} положительна u обсуждена связь меры Малера c гипотезой Римана.

Ключевые слова: почти периодическая функция, целая функция, факторизация Берлинга, мера Малера, гипотеза Римана.