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For f a nonzero Bohr almost periodic function on R with a bounded spectrum we proved there exist
Cy > 0 and integer n > 0 such that for every u > 0 the mean measure of the set {x : |f(x)] < u} is less
than CYy u'/™. For trigonometric polynomials with < n+ 1 frequencies we showed that Cy can be chosen
to depend only on n and the modulus of the largest coefficient of f. We showed this bound implies that
the Mahler measure M (h), of the lift h of f to a compactification G of R, is positive and discussed the

relationship of Mahler measure to the Riemann Hypothesis.
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1. Distribution of small values

N :={1,2,...}, Z,R,C,T := {z € C : |z2| = 1} are the natural, integer, real, complex
and circle group numbers, Cy(R) is the C*-algebra of bounded continuous functions and x,, :
R — T, w € R the homomorphisms x,(z) = ¢“% w € R. A finite sum f = > ay Xw

with distinct w is called a trigonometric polynomial with height H; := max,, |a,| and they
comprise the algebra T(R) of trigonometric polynomials. Bohr [9] defined the C*-algebra U(R)
of uniformly almost periodic functions to be the closure of T(R) in C,(R) and proved that their

o~

means m(f) := limz_, . (2L)* f_LL f(t)dt exist. The Fourier transform f: R — C of f € U(R)

~

is f(w) :=m(fx,) and its spectrum Q(f) := support f If f is nonzero then Q(f) is nonempty
and countable and we say f has bounded spectrum if its bandwidth b(f) € [0, 0], defined by
b(f) :=sup Q(f) — inf Q(f), is finite. We observe that if S C R is defined by a finite number of
inequalities involving functions in U(R) then m(S) := limy_,o(2L)  'measure [—L, L] N S exists
and define Jy : (0,00) — [0, 1] by

Jr(u):=m({z eR : [f(x)] <u}) (1)

Theorem 1.1. If f € U(R) is nonzero and has a bounded spectrum then there exist Cy > 0 and
n € N such that:

Jp(u) < Cruw, u>0. (2)
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There ezists a sequence Cy, such that if f € T(R) has n+ 1 frequencies then
Jp(u) < Cp Hy " uv, u>0. (3)

Proof. For f € UR),w € R,k € N,u > 0 define =5, 1., Ky : (0,00) = [0,1] by

Efwku(v) =m{z €R : |f(2)] <u, |[(x /) (@) <0/ j=1,... Kk}, (4)
._ -1 -1, L -
Ky(u) = inf inf inf 3V2rtb(f) ko ut + ~f,w,k,u(v)] (5)

We first prove Theorem 1 assuming the following result which we prove latter.

Lemma 1.1. Every nonzero f € U(R) with bounded spectrum satisfies Jy < Ky.
f(ax) then J, = Jy
) ( ) JIEb(f) =0
then f = c and J¢(u) < |c|"tu. If b(f) > 0 then Bohr [10] proved that f extends to an entire
function F' of exponential type @ , and Boas [6], ([7], p- 11, Equation 2.2.12) proved that

We observe that for every w € R and every a € R\{0}, if h(z) = xw(z
b(

—

and K = Ky. Without loss of generality we can assume that Q(f) C [

l\j ‘

1 b
timsup | £ (z) # = 2/) 6)
k—oo 2
b
uniformly in z. Therefore for any vy > @ there exists k € N such that =y 4(vo) = 0 so

Lemma 1.1 implies .J; satisfies (2) with Cy = 3271 b(f) kv, ' and n = k. This proves the first
assertion. To prove the second we assume, without loss of generality, that b(f) =1, Q(f) C [0, 1]
and

n+1
x):Zajei“’jm, 0=wi < <wpp1 =1, Hf =max{|aj| : j=2,...,n+1}.

1
Define C; := . If n =1 and f has n+ 1 = 2 terms and f = ag + a1x1 with |a1| = Hy and

h = Hp(1— x1), then Jy(u) < Jp(u) = (2/7)sin~*(u/(2H})) < C’le_lu therefore (3) holds for
n = 1. For n > 2 we assume by induction that (3) holds for n — 1 and therefore, since f(*) has n
terms and Hya) = Hy, it follows that for all v > 0,

[\

1

Jp (v) < Cpoy Hf 7F o1, (7)

1
Ef70717u(’0) g Cn—l H;_l yn-1, (8)
Therefore Lemma 1 with w =0, b(f) =k =1 gives

J¢(u) < 11)I>1f(‘) 3v2rt v_lu—l—Cn,lHJZ’f1 vt | =G, Hf% uw 9)
where Gy, == C2 77 [3v2 71 (n — 1)]% n(n — 1)~ (10)

Remark 1.1. Computation of 200 million terms shows that n='C,, — 0.900316322

Conjecture 1.1. In (3) C,, can be replaced by a bounded sequence.
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Lemma 1.2. If ¢ : [a,b] = C is differentiable and ¢'([a,b]) is contained in a quadrant then
max [$|([a, b])
b—a<2V2 — 11
min |6/ (0, 1) .

Proof of Lemma 1.2. We first proved this result in ( [18], Lemma 1) where we used it to give a
proof, of a conjecture of Boyd [11] about monic polynomials related to Lehmer’s conjecture [20],
which was reviewed in ([13], Section 3.5) and extended to monic trigonometric polynomials in
([19], Lemma 2). The triangle inequality |¢'| < |R¢'| + |S¢'| gives

b b
(b*a)min\¢’\([a,b])</ |¢’(y)|dy</ (IR¢' ()l +1S¢'()l) dy.

Since ¢'([a,b]) is contained in a quadrant of C there exist ¢,d € {1,—1} such that |R¢'(y)| =
cRY (y) and |S¢' (y)| = dS ¢/ (y) for all y € [a,b]. Therefore

b
/ (RS W +1S ' W)]) dy = (cRp(D) + dSG(b)) — (cR(a) + dI¢(a)).

The result follows since the right side is bounded above by 2v/2 max |¢|([a, b]). O

Proof of Lemma 1.1, Assume that f € U(R) is nonzero. We may assume without loss of
generality that Q(f) C [—@7 @] For k € N,u > 0,v > 0 we define the set

Struw ={z€R :|f(u)] <u, max |f(j)(ac)|% >0} (12)
je€{l, k)
We observe that the set of functions in U(R) whose spectrums are in [—@, @] is closed under

differentiation, and define s(f, k,u,v) := m(Sf kuv)-
It suffices to prove that  s(f,k,u,v) <3V27 'b(f) kv " u*. (13)

Define v; := u' T vlj € {0,...,k}, and Z := set of closed intervals I satisfying, for some
j€40,1,...,k — 1}, the following three properties:

1. fU+(I) is a subset of a closed quadrant,
2. max |f9|(I) < 75 and min |fUHD|(1) > vy,
3. I is maximum with respect to properties 1 and 2.

Define £ := set of endpoints of intervals in Z, and

k—1
o= [TORFDNSLTDN D @) =D @) = 27). (14)
j=0
Lemma 1.2 implies that  length (I) < 2v/2 Tk — 92y ur, Iel, (15)
Vk+1
and (12) and Property 3 implies that S 4,0 C U I (16)
Iez

Clearly ¢ = U|g where ¥ is the product of 6k entire functions each having bandwidth b(f) so
a theorem of Titchmarsh [25] implies that the density of real zeros of ¥ is bounded above
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by 37~ 1b(f)k. Property 3 implies that all points in & are zeros of ¥ so the upper den-
sity of intervals in Z is bounded by 277! b(f)k. Combining these facts gives s(f,k,u,v) <
Grlb(f) k) (2v20  ur) = 3v2r 1 b(k) kv~ 'u* which proves (13) and concludes the proof of
Lemma 1. ]

For p € [1, 00) Besicovitch [4] proved that the completion B?(R) of U(R) with norm (m(|f|p))%
is a subset of LI (R). For > 0 we define log™ (z) := log(max{1,z}) € [0,00), log™ (z) =

log(min{1,z}) € [-00,0], and |z|; := max{|z], %} for j € N.

Corollary 1.1. If f € U(R) satisfies (2), then log™ o|f| € B’(R),

1
m(|log™ o|f[[") S/ [ log(u)[P dCyur = Cyn? T(p), (17)
0

and logo|f| € BP(R).

Proof of Corollary 1.1. Since the means of the functions log™ o| f|; |? are nondecreasing and
bounded by the right side of (17), the sequence log™ o|f|; is a Cauchy sequence in BP(R) so
it converges to a function n € BP(R). Therefore log™ o|f| = 7 since it is the pointwise limit of
log™ o|f|; and n € L} (R). The last fact follows since log = log™ +1log™ . o

loc

2. Compactifications and Hardy Spaces

Definition 2.1. A compactification of R is a pair (G,0) where G is a compact abelian group
and 0 : R — G is a continuous homomorphism with a dense image.

C(G) is the set of continuous functions on G and LP(G),p € [1,00) are Banach spaces. If
h € C(G) then f :=ho# € U(R) since by a theorem of Bochner [8] every sequence of translates
of f has a subsequence that converges uniformly. We call h the lift of f to G. The Pontryagin
dual [24] G of a compact abelian group G is the discrete group of continuous homomorphisms
X : G — T under pointwise multiplication. Bohr proved the existence of a compactification
(B, ) such that UR) = {ho8 : h € C(B)}. The group B is nonseparable and B is isomorphic
to R4 := real numbers with the discrete topology.

Lemma 2.1. For every f € U(R) there exists a compactification (G(f),0), with G(f) separable,
and h € C(R) such that f = ho6.

Proof of Lemma 2.1. If f € U(R) is nonzero its spectrum Q(f) is nonempty and countable
so the product group T(f) is compact and separable. The function 8 : R — T®() defined
by 0(x)(w) := xw(z) is a continuous homomorphism. Define G(f) := 8(R). Then (G(f),0) is a
compactification. The function h : 6(R) — C defined by h(6(x) := f(z) is uniformly continuous

so extends to a unique function A : G — C and f =ho6. |

Lemma 2.2. If (G,0) is a compactification, h € C(G), f = ho 8, and logo|f| € BP(R), then
logolh| € LP(G) and [, |logolh||P = m(|logo|f|[) for all p € [1,00).

Proof of Lemma 2.2. The theorem of averages ( [3], p. 286) implies that

/G [log™ o|h|; |” = m(|log™ o[ f[; [") < m(|log™ o f["). (18)

The result follows from Lebesgue’s monotone convergence theorem since the sequence | logo|h|; |7
is nondecreasing, converges pointwise to |logol|h||? pointwise and by (18) their integrals are
uniformly bounded. d
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Definition 2.2. The Fourier transform § : LY(G) — (°°(G) is defined by F(h)(x) := | fx.
G
We define the spectrum Q(h) := support §(h). The Hausdorff-Young theorem [15,26] implies
that the restrictions give bounded operators § : LP(G) — ¢4(G) for p € [1,00) and p~1+¢~1 = 1.

Definition 2.3. A compactification (G,0) induces an injective homomorphism £ : G — R,

&(x) == w where x o 0 = x,, by which we will identity G as a subset of R with the same
archimedian order. Therefore if h € C(G) is the lift of f € UR), then Q(h) = Q(f). The
compactification gives Hardy spaces HP (G, 0) := {h € LP(G) : Q(h) C [0,00)}, p € [1,00].

Definition 2.4. A function h € HP(G,0) is outer if [ h # 0, logo|h| € L*(G), and
G

/ logo|h| = log ’/ h‘ . (19)
G G

A function h € HP(G,0) is inner if |h| = 1.

A polynomial h is outer iff it has no zeros in the open unit disk since a formula of Jensen [16]
gives [logol|h| = log|h(0)] — > log™(|A). Beurling [5] proved that a function h € H?(T)
a R(N)=0

admits a factorization h = h, h;, with h, outer and h; inner, iff logo |h| € L'(T).

Let (G, ) be a compactification. If h € C(G) has a bounded spectrum Q(h) C [0,00) and
J hdo > 0 then f = ho 6 extends to an entire function F bounded in the upper half plane. We
G

observe that if F' has no zeros in the upper half plane, then x_ps)/2F" is the Ahiezer spectral
factor [1] of the entire function F'(2)F(Z).

Conjecture 2.1. h above is outer iff F' has no zeros in the open upper half plane.

3. Mahler Measure and the Riemann Hypothesis
Definition 3.1. For G a compact abelian group the Mahler measure [22, 23] of h € LY(G) is
M(h) := exp <f10go|h|) € [0,00). We also define M*(h) := exp (flogi o|h|> .

G G

Since M(h) = M*(h)M~(h) and M*(h) € [1, max{1, |||/ }], it follows that M(h) > 0
iff log™ o|h| € L'(G) and then M~ (h) = exp (—|| log” o|h|||1) . Lemma 2.2 implies that this
condition holds whenever h € C(G) is nonzero and Q(h) is bounded.

Definition 3.2. For N € N, &y = product of the first N cyclotomic polynomials.

Amoroso ([2], Theorem 1.3) proved that the Riemann Hypothesis is equivalent to
log Mt (®y) < N2, > 0. (20)

Define fy := ®x o x1 € UR) and define Jy,, : (0,00) — [0,1] by (1). Jensen’s formula implies
that M(®y) = 1 therefore

1
log M+ (@) = = [ log(u) Ty (w. (21)

The bounds that we obtained for Jy in (2) and (3) were exceptionally crude and totally inadequate
to obtain (20). When deriving (3) for general polynomials we used the bound (8) Z¢,0,1,.(v) =
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=m({z : |f(x)] <u|fD@) <v} <m{z: |[fV(z) < v}. Conjecture (1.1) was based on
our intuition that a smaller upper bound holds. We suspect that much smaller upper bounds
hold for specific sequences of polynomials as illustrated by the following examples. Construct
sequences of height 1 polynomials

Po2):=1+4z+-+2"; Qu(z):= ([7:;2])_ 1+ 2)" (22)

and p, := P, o X1, ¢n := Qn o x1. Both polynomials have maxima at z = 1, || Py|loc = n + 1,
Stirling’s approximation gives ||Qn||c = /7 n/2 for large n, and for u € (0, 1]

Ip, (1) < %sin_1 (min{1,u}) <u=log(M~(P,)) > —1, (23)

I (1) = %sin_1 (min{ 1, % ( [7:22] ) " un }) > %u = log(M™(Qn)) < - (24)

Differences between these polynomials arise from their root discrepancy. Those of P, are nearly
evenly spaced. Those of @, all at z = —1, have maximally discrepancy.

Conjecture 3.1. If R, is a polynomial with n+1 terms and height H(R,,) = 1 then M~ (Q,) <
M~ (R,) < M~ (P,).

The roots of @ have the form exp(2miag),k = 1,...,deg & where aj are the Farey series
consisting of rational numbers in [0, 1) whose denominators are < N. Bounds on the discrepancy
of the Farey series were shown by Franel [14] and by Landau [17]| to imply the Riemann Hy-
pothesis. The relationship between the discrepancy of roots of a polynomial and its coefficients,
and the distributions of roots of entire functions have been extensively studied since the seminal
paper by Erdos and Turdn [12] and the extensive work by Levin and his school [21]. We suggest
that investigation of the functions = ., kv, in (4) and derived functions Ky in (5) may further
elucidate how the distribution of small values of polynomials and entire functions depend on
their coeflicients and roots.

The author thanks Professor August Tsikh for insightful discussions.
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Pacnpenenenne MajiblX 3HAYEHU NOYTH IMIEPUOANIECKIX
dbysknuii bopa ¢ orpaHnm4YeHHBIM CHEKTPOM

¥aiitn M. JIoyTon

WNucTturyT MaTeMaTuku u QpyHIaMEHTAIbHON UHMOPMATHKHI
Cubupckuii deepasbHbIl YHUBEPCUTET

Csobogubtit, 79, Kpacuosipck, 660041

Poccua

Has | nenyaesoti nowmu nepuoduveckots pynrkyuu Bopa na R ¢ oegpanuvenmnvim cnexkmpom moul dokasanu,
wmo cyuecmeyrom Cy > 0 u yeaoe wucao n > 0 maxue wmo das xascdozo u > 0 cpednas mepa

1
/n. ,ﬂ./l,ﬂ mpu20HOMEMPUHECKUL NOAUHOMOE C HacCImomamuy

yemanosumo { z ¢ | f(z)| < u} menvwe Cru
< n 4+ 1 wmo nokazaau, wmo Cy mootcno 6vbpamsd mak, wmobvl OH 3G6UCEA MOABKO OM N U MOOYAb
naubosvwezo Koappuyuenma f. Uz amot oyenku caedyem, wmo mepa Manepa M (h), nodsema h us f «

romnakmupurayuu G u3 R nosootcumenvra u obcyorcdena ceasv mepwv Masepa ¢ 2unomesoti Pumana.

Knaouesvie crosa: nouwmu nepuoduneckas GyHKuuL, ueaas Gyrruus, dgaxmopusdavus Bepaunea, mepa
Maunepa, ecunomesa Pumana.
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