УДК 517.55

Distribution of Small Values of Bohr Almost Periodic Functions with Bounded Spectrum

Wayne M. Lawton*
Institute of Mathematics and Computer Science
Siberian Federal University Svobodny, 79, Krasnoyarsk, 660041
Russia

Received 10.05.2019, received in revised form 10.06.2019, accepted 20.09.2019
For f a nonzero Bohr almost periodic function on \mathbb{R} with a bounded spectrum we proved there exist $C_{f}>0$ and integer $n>0$ such that for every $u>0$ the mean measure of the set $\{x:|f(x)|<u\}$ is less than $C_{f} u^{1 / n}$. For trigonometric polynomials with $\leq n+1$ frequencies we showed that C_{f} can be chosen to depend only on n and the modulus of the largest coefficient of f. We showed this bound implies that the Mahler measure $M(h)$, of the lift h of f to a compactification G of \mathbb{R}, is positive and discussed the relationship of Mahler measure to the Riemann Hypothesis.

Keywords: almost periodic function, entire function, Beurling factorization, Mahler measure, Riemann hypothesis.
DOI: 10.17516/1997-1397-2019-12-5-571-578.

1. Distribution of small values

$\mathbb{N}:=\{1,2, \ldots\}, \mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ are the natural, integer, real, complex and circle group numbers, $\mathrm{C}_{b}(\mathbb{R})$ is the C^{*}-algebra of bounded continuous functions and χ_{ω} : $\mathbb{R} \rightarrow \mathbb{T}, \omega \in \mathbb{R}$ the homomorphisms $\chi_{\omega}(x):=e^{i \omega x}, \omega \in \mathbb{R}$. A finite sum $f=\sum_{\omega} a_{\omega} \chi_{\omega}$ with distinct ω is called a trigonometric polynomial with height $H_{f}:=\max _{\omega}\left|a_{\omega}\right|$ and they comprise the algebra $T(\mathbb{R})$ of trigonometric polynomials. Bohr [9] defined the C^{*}-algebra $\mathrm{U}(\mathbb{R})$ of uniformly almost periodic functions to be the closure of $T(\mathbb{R})$ in $C_{b}(\mathbb{R})$ and proved that their means $m(f):=\lim _{L \rightarrow \infty}(2 L)^{-1} \int_{-L}^{L} f(t) d t$ exist. The Fourier transform $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ of $f \in \mathrm{U}(\mathbb{R})$ is $\widehat{f}(\omega):=m\left(f \bar{\chi}_{\omega}\right)$ and its spectrum $\Omega(f):=$ support \widehat{f}. If f is nonzero then $\Omega(f)$ is nonempty and countable and we say f has bounded spectrum if its bandwidth $b(f) \in[0, \infty]$, defined by $b(f):=\sup \Omega(f)-\inf \Omega(f)$, is finite. We observe that if $S \subseteq \mathbb{R}$ is defined by a finite number of inequalities involving functions in $\mathrm{U}(\mathbb{R})$ then $m(S):=\lim _{L \rightarrow \infty}(2 L)^{-1}$ measure $[-L, L] \cap S$ exists and define $J_{f}:(0, \infty) \rightarrow[0,1]$ by

$$
\begin{equation*}
J_{f}(u):=m(\{x \in \mathbb{R}:|f(x)|<u\}) \tag{1}
\end{equation*}
$$

Theorem 1.1. If $f \in U(\mathbb{R})$ is nonzero and has a bounded spectrum then there exist $C_{f}>0$ and $n \in \mathbb{N}$ such that:

$$
\begin{equation*}
J_{f}(u) \leqslant C_{f} u^{\frac{1}{n}}, \quad u>0 \tag{2}
\end{equation*}
$$

[^0]There exists a sequence C_{n} such that if $f \in T(\mathbb{R})$ has $n+1$ frequencies then

$$
\begin{equation*}
J_{f}(u) \leqslant C_{n} H_{f}^{-\frac{1}{n}} u^{\frac{1}{n}}, \quad u>0 . \tag{3}
\end{equation*}
$$

Proof. For $f \in \mathrm{U}(\mathbb{R}), \omega \in \mathbb{R}, k \in \mathbb{N}, u>0$ define $\Xi_{f, \omega, k, u}, K_{f}:(0, \infty) \rightarrow[0,1]$ by

$$
\begin{align*}
\Xi_{f, \omega, k, u}(v) & :=m\left\{x \in \mathbb{R}:|f(x)|<u,\left|\left(\chi_{\omega} f\right)^{(j)}(x)\right|<v^{j}, j=1, \ldots, k\right\}, \tag{4}\\
K_{f}(u) & :=\inf _{\omega \in \mathbb{R}} \inf _{k \in \mathbb{N}} \inf _{v>0}\left[3 \sqrt{2} \pi^{-1} b(f) k v^{-1} u^{\frac{1}{k}}+\Xi_{f, \omega, k, u}(v)\right] . \tag{5}
\end{align*}
$$

We first prove Theorem 1 assuming the following result which we prove latter.
Lemma 1.1. Every nonzero $f \in U(\mathbb{R})$ with bounded spectrum satisfies $J_{f} \leqslant K_{f}$.
We observe that for every $\omega \in \mathbb{R}$ and every $a \in \mathbb{R} \backslash\{0\}$, if $h(x)=\chi_{\omega}(x) f(a x)$ then $J_{h}=J_{f}$ and $K_{h}=K_{f}$. Without loss of generality we can assume that $\Omega(f) \subset\left[-\frac{b(f)}{2}, \frac{b(f)}{2}\right]$. If $b(f)=0$ then $f=c$ and $J_{f}(u) \leqslant|c|^{-1} u$. If $b(f)>0$ then Bohr [10] proved that f extends to an entire function F of exponential type $\frac{b(f)}{2}$, and Boas [6], ([7], p. 11, Equation 2.2.12) proved that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left|f^{(k)}(x)\right|^{\frac{1}{k}}=\frac{b(f)}{2} \tag{6}
\end{equation*}
$$

uniformly in x. Therefore for any $v_{0}>\frac{b(f)}{2}$ there exists $k \in \mathbb{N}$ such that $\Xi_{f, 0, k, u}\left(v_{0}\right)=0$ so Lemma 1.1 implies J_{f} satisfies (2) with $C_{f}=3 \sqrt{2} \pi^{-1} b(f) k v_{0}^{-1}$ and $n=k$. This proves the first assertion. To prove the second we assume, without loss of generality, that $b(f)=1, \Omega(f) \subset[0,1]$ and

$$
f(x)=\sum_{j=1}^{n+1} a_{j} e^{i \omega_{j} x}, \quad 0=\omega_{1}<\cdots<\omega_{n+1}=1, \quad H_{f}=\max \left\{\left|a_{j}\right|: j=2, \ldots, n+1\right\}
$$

Define $C_{1}:=\frac{1}{2}$. If $n=1$ and f has $n+1=2$ terms and $f=a_{0}+a_{1} \chi_{1}$ with $\left|a_{1}\right|=H_{f}$ and $h=H_{f}\left(1-\chi_{1}\right)$, then $J_{f}(u) \leqslant J_{h}(u)=(2 / \pi) \sin ^{-1}\left(u /\left(2 H_{f}\right)\right) \leqslant C_{1} H_{f}^{-1} u$ therefore (3) holds for $n=1$. For $n \geqslant 2$ we assume by induction that (3) holds for $n-1$ and therefore, since $f^{(1)}$ has n terms and $H_{f(1)}=H_{f}$, it follows that for all $v>0$,

$$
\begin{gather*}
J_{f(1)}(v) \leqslant C_{n-1} H_{f}^{\frac{1}{n-1}} v^{\frac{1}{n-1}}, \tag{7}\\
\Xi_{f, 0,1, u}(v) \leqslant C_{n-1} H_{f}^{\frac{1}{n-1}} v^{\frac{1}{n-1}} . \tag{8}
\end{gather*}
$$

Therefore Lemma 1 with $\omega=0, b(f)=k=1$ gives

$$
\begin{gather*}
J_{f}(u) \leqslant \inf _{v>0}\left[3 \sqrt{2} \pi^{-1} v^{-1} u+C_{n-1} H_{f}^{\frac{1}{n-1}} v^{\frac{1}{n-1}}\right]=C_{n} H_{f}^{\frac{1}{n}} u^{\frac{1}{n}} \tag{9}\\
\text { where } C_{n}:=C_{n-1}^{1-\frac{1}{n}}\left[3 \sqrt{2} \pi^{-1}(n-1)\right]^{\frac{1}{n}} n(n-1)^{-1} . \tag{10}
\end{gather*}
$$

Remark 1.1. Computation of 200 million terms shows that $n^{-1} C_{n} \rightarrow 0.900316322$
Conjecture 1.1. In (3) C_{n} can be replaced by a bounded sequence.

Lemma 1.2. If $\phi:[a, b] \rightarrow \mathbb{C}$ is differentiable and $\phi^{\prime}([a, b])$ is contained in a quadrant then

$$
\begin{equation*}
b-a \leqslant 2 \sqrt{2} \frac{\max |\phi|([a, b])}{\min \left|\phi^{\prime}\right|([a, b])} \tag{11}
\end{equation*}
$$

Proof of Lemma 1.2. We first proved this result in ([18], Lemma 1) where we used it to give a proof, of a conjecture of Boyd [11] about monic polynomials related to Lehmer's conjecture [20], which was reviewed in ([13], Section 3.5) and extended to monic trigonometric polynomials in ([19], Lemma 2). The triangle inequality $\left|\phi^{\prime}\right| \leqslant\left|\Re \phi^{\prime}\right|+\left|\Im \phi^{\prime}\right|$ gives

$$
(b-a) \min \left|\phi^{\prime}\right|([a, b]) \leqslant \int_{a}^{b}\left|\phi^{\prime}(y)\right| d y \leqslant \int_{a}^{b}\left(\left|\Re \phi^{\prime}(y)\right|+\left|\Im \phi^{\prime}(y)\right|\right) d y
$$

Since $\phi^{\prime}([a, b])$ is contained in a quadrant of \mathbb{C} there exist $c, d \in\{1,-1\}$ such that $\left|\Re \phi^{\prime}(y)\right|=$ $c \Re \phi^{\prime}(y)$ and $\left|\Im \phi^{\prime}(y)\right|=d \Im \phi^{\prime}(y)$ for all $y \in[a, b]$. Therefore

$$
\int_{a}^{b}\left(\left|\Re \phi^{\prime}(y)\right|+\left|\Im \phi^{\prime}(y)\right|\right) d y=(c \Re \phi(b)+d \Im \phi(b))-(c \Re \phi(a)+d \Im \phi(a)) .
$$

The result follows since the right side is bounded above by $2 \sqrt{2} \max |\phi|([a, b])$.
Proof of Lemma 1.1, Assume that $f \in \mathrm{U}(\mathbb{R})$ is nonzero. We may assume without loss of generality that $\Omega(f) \subset\left[-\frac{b(f)}{2}, \frac{b(f)}{2}\right]$. For $k \in \mathbb{N}, u>0, v>0$ we define the set

$$
\begin{equation*}
S_{f, k, u, v}:=\left\{x \in \mathbb{R}:|f(u)|<u, \max _{j \in\{1, \ldots, k\}}\left|f^{(j)}(x)\right|^{\frac{1}{j}} \geqslant v\right\} \tag{12}
\end{equation*}
$$

We observe that the set of functions in $U(\mathbb{R})$ whose spectrums are in $\left[-\frac{b(f)}{2}, \frac{b(f)}{2}\right]$ is closed under differentiation, and define $s(f, k, u, v):=m\left(S_{f, k, u, v}\right)$.

$$
\begin{equation*}
\text { It suffices to prove that } s(f, k, u, v) \leqslant 3 \sqrt{2} \pi^{-1} b(f) k v^{-1} u^{\frac{1}{k}} \tag{13}
\end{equation*}
$$

Define $\gamma_{j}:=u^{\frac{k-j}{k}} v^{j}, j \in\{0, \ldots, k\}$, and $\mathcal{I}:=$ set of closed intervals I satisfying, for some $j \in\{0,1, \ldots, k-1\}$, the following three properties:

1. $f^{(j+1)}(I)$ is a subset of a closed quadrant,
2. $\max \left|f^{(j)}\right|(I) \leqslant \gamma_{j}$ and $\min \left|f^{(j+1)}\right|(I) \geqslant \gamma_{j+1}$,
3. I is maximum with respect to properties 1 and 2 .

Define $\mathcal{E}:=$ set of endpoints of intervals in \mathcal{I}, and

$$
\begin{equation*}
\psi:=\prod_{j=0}^{k-1}\left(\Re f^{(j+1)}\right)\left(\Im f^{(j+1)}\right)\left(\left|f^{(j)}(x)\right|^{2}-\gamma_{j}^{2}\right)\left(\left|f^{(j+1)}(x)\right|^{2}-\gamma_{j+1}^{2}\right) \tag{14}
\end{equation*}
$$

Lemma 1.2 implies that \quad length $(I) \leqslant 2 \sqrt{2} \frac{\gamma_{k}}{\gamma_{k+1}}=2 \sqrt{2} v^{-1} u^{\frac{1}{k}}, \quad I \in \mathcal{I}$,

$$
\begin{equation*}
\text { and (12) and Property } 3 \text { implies that } \quad S_{f, k, u, v} \subset \bigcup_{I \in \mathcal{I}} I \text {. } \tag{15}
\end{equation*}
$$

Clearly $\psi=\left.\Psi\right|_{\mathbb{R}}$ where Ψ is the product of $6 k$ entire functions each having bandwidth $b(f)$ so a theorem of Titchmarsh [25] implies that the density of real zeros of Ψ is bounded above
by $3 \pi^{-1} b(f) k$. Property 3 implies that all points in \mathcal{E} are zeros of Ψ so the upper density of intervals in \mathcal{I} is bounded by $\frac{3}{2} \pi^{-1} b(f) k$. Combining these facts gives $s(f, k, u, v) \leqslant$ $\left(\frac{3}{2} \pi^{-1} b(f) k\right)\left(2 \sqrt{2} v^{-1} u^{\frac{1}{k}}\right)=3 \sqrt{2} \pi^{-1} b(k) k v^{-1} u^{\frac{1}{k}}$ which proves (13) and concludes the proof of Lemma 1.

For $p \in[1, \infty)$ Besicovitch [4] proved that the completion $\mathrm{B}^{p}(\mathbb{R})$ of $\mathrm{U}(\mathbb{R})$ with norm $\left(m\left(|f|^{p}\right)\right)^{\frac{1}{p}}$ is a subset of $L_{l o c}^{p}(\mathbb{R})$. For $x \geqslant 0$ we define $\log ^{+}(x):=\log (\max \{1, x\}) \in[0, \infty), \log ^{-}(x):=$ $\log (\min \{1, x\}) \in[-\infty, 0]$, and $|x|_{j}:=\max \left\{|x|, \frac{1}{j}\right\}$ for $j \in \mathbb{N}$.
Corollary 1.1. If $f \in U(\mathbb{R})$ satisfies (2), then $\log ^{-} \circ|f| \in B^{p}(\mathbb{R})$,

$$
\begin{equation*}
m\left(\left|\log ^{-} \circ\right| f\left|\left.\right|^{p}\right) \leqslant \int_{0}^{1}|\log (u)|^{p} d C_{f} u^{\frac{1}{n}}=C_{f} n^{p} \Gamma(p)\right. \tag{17}
\end{equation*}
$$

and $\log \circ|f| \in B^{p}(\mathbb{R})$.
Proof of Corollary 1.1. Since the means of the functions $\left.\log ^{-} \circ|f|_{j}\right|^{p}$ are nondecreasing and bounded by the right side of (17), the sequence $\log ^{-} \circ|f|_{j}$ is a Cauchy sequence in $B^{p}(\mathbb{R})$ so it converges to a function $\eta \in B^{p}(\mathbb{R})$. Therefore $\log ^{-} \circ|f|=\eta$ since it is the pointwise limit of $\log ^{-} \circ|f|_{j}$ and $\eta \in L_{l o c}^{p}(\mathbb{R})$. The last fact follows since $\log =\log ^{+}+\log ^{-}$.

2. Compactifications and Hardy Spaces

Definition 2.1. A compactification of \mathbb{R} is a pair (G, θ) where G is a compact abelian group and $\theta: \mathbb{R} \rightarrow G$ is a continuous homomorphism with a dense image.
$\mathrm{C}(G)$ is the set of continuous functions on G and $L^{p}(G), p \in[1, \infty)$ are Banach spaces. If $h \in \mathrm{C}(G)$ then $f:=h \circ \theta \in \mathrm{U}(\mathbb{R})$ since by a theorem of Bochner [8] every sequence of translates of f has a subsequence that converges uniformly. We call h the lift of f to G. The Pontryagin dual [24] \widehat{G} of a compact abelian group G is the discrete group of continuous homomorphisms $\chi: G \rightarrow \mathbb{T}$ under pointwise multiplication. Bohr proved the existence of a compactification (\mathbb{B}, θ) such that $\mathrm{U}(\mathbb{R})=\{h \circ \theta: h \in \mathrm{C}(\mathbb{B})\}$. The group \mathbb{B} is nonseparable and $\widehat{\mathbb{B}}$ is isomorphic to $\mathbb{R}_{d}:=$ real numbers with the discrete topology.

Lemma 2.1. For every $f \in U(\mathbb{R})$ there exists a compactification $(G(f), \theta)$, with $G(f)$ separable, and $h \in C(\mathbb{R})$ such that $f=h \circ \theta$.

Proof of Lemma 2.1. If $f \in \mathrm{U}(\mathbb{R})$ is nonzero its spectrum $\Omega(f)$ is nonempty and countable so the product group $\mathbb{T}^{\Omega(f)}$ is compact and separable. The function $\theta: \mathbb{R} \rightarrow \mathbb{T}^{\Omega(f)}$ defined by $\theta(x)(\omega):=\chi_{\omega}(x)$ is a continuous homomorphism. Define $G(f):=\overline{\theta(\mathbb{R})}$. Then $(G(f), \theta)$ is a compactification. The function $\widetilde{h}: \theta(\mathbb{R}) \rightarrow \mathbb{C}$ defined by $\widetilde{h}(\theta(x):=f(x)$ is uniformly continuous so extends to a unique function $h: G \rightarrow \mathbb{C}$ and $f=h \circ \theta$.
Lemma 2.2. If (G, θ) is a compactification, $h \in C(G), f=h \circ \theta$, and $\log \circ|f| \in B^{p}(\mathbb{R})$, then $\log \circ|h| \in L^{p}(G)$ and $\int_{G}|\log \circ| h| |^{p}=m\left(|\log \circ| f| |^{p}\right)$ for all $p \in[1, \infty)$.

Proof of Lemma 2.2. The theorem of averages ([3], p. 286) implies that

$$
\begin{equation*}
\left.\left.\int_{G}\left|\log ^{-} \circ\right| h\right|_{j}\right|^{p}=m\left(\left.\left.\left|\log ^{-} \circ\right| f\right|_{j}\right|^{p}\right) \leqslant m\left(\left.\left|\log ^{-} \circ\right| f\right|^{p}\right) \tag{18}
\end{equation*}
$$

The result follows from Lebesgue's monotone convergence theorem since the sequence $\left.\left.|\log \circ| h\right|_{j}\right|^{p}$ is nondecreasing, converges pointwise to $|\log \circ| h\left|\left.\right|^{p}\right.$ pointwise and by (18) their integrals are uniformly bounded.

Definition 2.2. The Fourier transform $\mathfrak{F}: L^{1}(G) \rightarrow \ell^{\infty}(\widehat{G})$ is defined by $\mathfrak{F}(h)(\chi):=\int_{G} f \bar{\chi}$.
We define the spectrum $\Omega(h):=$ support $\mathfrak{F}(h)$. The Hausdorff-Young theorem [15, 26] implies that the restrictions give bounded operators $\mathfrak{F}: L^{p}(G) \rightarrow \ell^{q}(\widehat{G})$ for $p \in[1, \infty)$ and $p^{-1}+q^{-1}=1$.

Definition 2.3. A compactification (G, θ) induces an injective homomorphism $\xi: \widehat{G} \rightarrow \mathbb{R}$, $\xi(\chi):=\omega$ where $\chi \circ \theta=\chi_{\omega}$, by which we will identity \widehat{G} as a subset of \mathbb{R} with the same archimedian order. Therefore if $h \in C(G)$ is the lift of $f \in U(\mathbb{R})$, then $\Omega(h)=\Omega(f)$. The compactification gives Hardy spaces $H^{p}(G, \theta):=\left\{h \in L^{p}(G): \Omega(h) \subset[0, \infty)\right\}, p \in[1, \infty]$.

Definition 2.4. A function $h \in H^{p}(G, \theta)$ is outer if $\int_{G} h \neq 0, \log \circ|h| \in L^{1}(G)$, and

$$
\begin{equation*}
\int_{G} \log \circ|h|=\log \left|\int_{G} h\right| \tag{19}
\end{equation*}
$$

A function $h \in H^{p}(G, \theta)$ is inner if $|h|=1$.
A polynomial h is outer iff it has no zeros in the open unit disk since a formula of Jensen [16] gives $\int_{G} \log \circ|h|=\log |h(0)|-\sum_{h(\lambda)=0} \log ^{-}(|\lambda|)$. Beurling [5] proved that a function $h \in H^{2}(\mathbb{T})$ admits a factorization $h=h_{o} h_{i}$, with h_{o} outer and h_{i} inner, iff $\log \circ|h| \in L^{1}(\mathbb{T})$.

Let (G, θ) be a compactification. If $h \in \mathrm{C}(G)$ has a bounded spectrum $\Omega(h) \subset[0, \infty)$ and $\int_{G} h d \sigma>0$ then $f=h \circ \theta$ extends to an entire function F bounded in the upper half plane. We ${ }^{G}$ observe that if F has no zeros in the upper half plane, then $\chi_{-b(f) / 2} F$ is the Ahiezer spectral factor [1] of the entire function $F(z) \overline{F(\bar{z})}$.
Conjecture 2.1. h above is outer iff F has no zeros in the open upper half plane.

3. Mahler Measure and the Riemann Hypothesis

Definition 3.1. For G a compact abelian group the Mahler measure [22, 23] of $h \in L^{1}(G)$ is $M(h):=\exp \left(\int_{G} \log \circ|h|\right) \in[0, \infty)$. We also define $M^{ \pm}(h):=\exp \left(\int_{G} \log ^{ \pm} \circ|h|\right)$.

Since $M(h)=M^{+}(h) M^{-}(h)$ and $M^{+}(h) \in\left[1, \max \left\{1,\|h\|_{\infty}\right\}\right]$, it follows that $M(h)>0$ iff $\log ^{-} \circ|h| \in L^{1}(G)$ and then $M^{-}(h)=\exp \left(-\left\|\log ^{-} \circ|h|\right\|_{1}\right)$. Lemma 2.2 implies that this condition holds whenever $h \in \mathrm{C}(G)$ is nonzero and $\Omega(h)$ is bounded.

Definition 3.2. For $N \in \mathbb{N}, \Phi_{N}:=$ product of the first N cyclotomic polynomials.
Amoroso ([2], Theorem 1.3) proved that the Riemann Hypothesis is equivalent to

$$
\begin{equation*}
\log M^{+}\left(\Phi_{N}\right) \ll_{\epsilon} N^{\frac{1}{2}+\epsilon}, \quad \epsilon>0 \tag{20}
\end{equation*}
$$

Define $f_{N}:=\Phi_{N} \circ \chi_{1} \in \mathrm{U}(\mathbb{R})$ and define $J_{f_{N}}:(0, \infty) \rightarrow[0,1]$ by (1). Jensen's formula implies that $M\left(\Phi_{N}\right)=1$ therefore

$$
\begin{equation*}
\log M^{+}\left(\Phi_{N}\right)=-\int_{0}^{1} \log (u) d J_{f_{N}}(u) \tag{21}
\end{equation*}
$$

The bounds that we obtained for J_{f} in (2) and (3) were exceptionally crude and totally inadequate to obtain (20). When deriving (3) for general polynomials we used the bound (8) $\Xi_{f, 0,1, u}(v)=$
$=m\left(\left\{x:|f(x)|<u,\left|f^{(1)}(x)\right|<v\right\} \leqslant m\left(\left\{x:\left|f^{(1)}(x)\right|<v\right\}\right.\right.$. Conjecture (1.1) was based on our intuition that a smaller upper bound holds. We suspect that much smaller upper bounds hold for specific sequences of polynomials as illustrated by the following examples. Construct sequences of height 1 polynomials

$$
\begin{equation*}
P_{n}(z):=1+z+\cdots+z^{n} ; \quad Q_{n}(z):=\binom{n}{[n / 2]}^{-1}(1+z)^{n} \tag{22}
\end{equation*}
$$

and $p_{n}:=P_{n} \circ \chi_{1}, q_{n}:=Q_{n} \circ \chi_{1}$. Both polynomials have maxima at $z=1,\left\|P_{n}\right\|_{\infty}=n+1$, Stirling's approximation gives $\left\|Q_{n}\right\|_{\infty} \approx \sqrt{\pi n / 2}$ for large n, and for $u \in(0,1]$

$$
\begin{gather*}
J_{p_{n}}(u) \leqslant \frac{2}{\pi} \sin ^{-1}(\min \{1, u\}) \leqslant u \Rightarrow \log \left(M^{-}\left(P_{n}\right)\right)>-1, \tag{23}\\
J_{q_{n}}(u)=\frac{2}{\pi} \sin ^{-1}\left(\min \left\{1, \frac{1}{2}\binom{n}{[n / 2]}^{\frac{1}{n}} u^{\frac{1}{n}}\right\}\right) \geqslant \frac{2}{\pi} u^{\frac{1}{n}} \Rightarrow \log \left(M^{-}\left(Q_{n}\right)\right)<-\frac{2 n}{\pi} . \tag{24}
\end{gather*}
$$

Differences between these polynomials arise from their root discrepancy. Those of P_{n} are nearly evenly spaced. Those of Q_{n}, all at $z=-1$, have maximally discrepancy.

Conjecture 3.1. If R_{n} is a polynomial with $n+1$ terms and height $H\left(R_{n}\right)=1$ then $M^{-}\left(Q_{n}\right) \leqslant$ $M^{-}\left(R_{n}\right) \leqslant M^{-}\left(P_{n}\right)$.

The roots of Φ_{N} have the form $\exp \left(2 \pi i a_{k}\right), k=1, \ldots, \operatorname{deg} \Phi_{N}$ where a_{k} are the Farey series consisting of rational numbers in $[0,1)$ whose denominators are $\leqslant N$. Bounds on the discrepancy of the Farey series were shown by Franel [14] and by Landau [17] to imply the Riemann Hypothesis. The relationship between the discrepancy of roots of a polynomial and its coefficients, and the distributions of roots of entire functions have been extensively studied since the seminal paper by Erdös and Turán [12] and the extensive work by Levin and his school [21]. We suggest that investigation of the functions $\Xi_{f, \omega, k, v, u}$ in (4) and derived functions K_{f} in (5) may further elucidate how the distribution of small values of polynomials and entire functions depend on their coefficients and roots.

The author thanks Professor August Tsikh for insightful discussions.

References

[1] N.I.Ahiezer, On the theory of entire functions of finite degree, Dokl. Akad. Nauk SSSR, 63(1948) 475-478 (in Russian).
[2] F.Amoroso, Algebraic numbers close to 1 and variants of Mahler's measure, J. Number Theory, 60(1996) 80-96.
[3] V.I.Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978.
[4] A.S.Besicovitch, On generalized almost periodic functions, Proc. London Math. Soc. 25(1926) no. 2, 495-512
[5] A.Beurling, On two problems concerning linear transformations Hilbert space, Acta Math. 81(1949), 239-255.
[6] R.P.Boas,Jr., Representations of entire functions of exponential type, Annals of Mathematics, 39(1938), no. 2, 269-286; 40(1939) 948.
[7] R.P.Boas,Jr., Entire Functions, Academic Press, New York, 1954.
[8] S.Bochner, Beitrage zur Theorie der fastperiodischen Funktionen, Math. Annalen, 96(1926) 119-147.
[9] H.Bohr, Zur Theorie der fastperiodischen Funktionen I, Acta Math., 45(1924), 29-127.
[10] H.Bohr, Zur Theorie der fastperiodishen Functionen III Teil. Dirichletenwich-lung analytisher Functionen, Acta Math., 47(1926), 237-281.
[11] D.W.Boyd, Kronecker's theorem and Lehmer's problem for polynomials in several variables, J. Number Theory, 13(1981), 116-121.
[12] P.Erdös, P.Turán, On the distribution of roots of polynomials, Annals of Mathematics, 51(1950), no. 1, 105-119.
[13] G.Everest, T.Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.
[14] J.Franel, Les suites de Farey et le probléme des nombres premiers, Gött. Nachr., (1924), 198-201.
[15] F.Hausdorff, Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen, Mathematische Zeitschrift, 16(1923), 163-69.
[16] J.Jensen, Sur un nouvelet important théoréme de la théorie des fonctions, Acta Mathematica, 22(1899), 359-364.
[17] E.Landau, Bemerkungen zur vorstehenden Abhandlungen von Herrn Franel, Gött. Nachr., (1924), 202-206.
[18] W.Lawton, A problem of Boyd concerning geometric means of polynomials, Journal of Number Theory, 16(1983), no. 3, 356-362.
[19] W.Lawton, Multiresolution analysis on quasilattices, Poincare Journal of Analysis \& Applications, 2(2015) 37-52. arXiv:1504.03505v1
[20] D.H.Lehmer, Factorization of certain cyclotomic functions, Annals of Mathematics, 34(1933). no. 2, 461-479.
[21] B.Ja.Levin, Distribution of Roots of Entire Functions, Translations of Mathematical Monographs, Volume 5, Revised Edition, American Mathematical Society, 1964.
[22] K.Mahler, An application of Jensen's formula to polynomials, Mathematica, 7(1960), 98-100.
[23] K.Mahler, On some inequalities for polynomials in several variables, Proc. London Mathematical Society, 37(1962), 341-344.
[24] L.Pontryagin, Topological Groups, Princeton University Press, 1946.
[25] E.C.Titchmarsh, The zeros of certain integral functions, Proc. London Mathematical Society, 25(1926), 283-302.
[26] W.H.Young, On the determination of the summability of a function by means of its Fourier constants, Proc. London Math. Soc., 12(1913), 71-88.

Распределение малых значений почти периодических функций Бора с ограниченным спектром

Уэйн М. Лоутон
Институт математики и фундаментальной информатики
Сибирский федеральный университет Свободный, 79, Красноярск, 660041

Россия

Abstract

Для f ненулевой почти периодической функиии Бора на \mathbb{R} с ограниченным спектром мы доказали, что существуют $C_{f}>0$ и целое число $n>0$ такие что для каждого и >0 средняя мера установить $\{x:|f(x)|<u\}$ менъше $C_{f} u^{1 / n}$. Для тригонометрических полиномов с частотами $\leqslant n+1$ мъ показали, что C_{f} можно выбрать так, чтобъ он зависел только от n и модуль наибольшего коэффициента f. Из этой оченки следует, что мера Малера $M(h)$, подъема h из $f \kappa$ компактификации G из \mathbb{R} положстельна и обсуждена связь меры Малера с гипотезой Римана.

Ключевые слова: почти периодическая функиия, иелая функиия, факторизация Берлинга, мера Малера, гипотеза Римана.

[^0]: *wlawton50@gmail.com
 © Siberian Federal University. All rights reserved

