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1. Introduction and preliminaries

The hypergeometric functions constitute a substantial section within the realm of special
functions of Mathematics and Physics. It may therefore appear quite surprising that this wide
class of hypergeometric functions in essence is obtained from a single "exponential" series by
restriction of the summation to a suitable sublattice.

We rewrite the exponential Taylor series as a Laurent series

In

I In l1
N % 0N i B,
exp(a) = Z 1! In! Z Il +1) F(ZN+1)7

leNN kezZN

using the fact that the Euler gamma-function I" has poles in negative numbers. Now consider
the shifted exponential series

eXpyla) = . )
S Tn+h+1) - Pw +1y +1)
with 4 = (71,...,7~5) € CV, and introduce the notion of I'-series.
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Definition 1. Let L be an integer sublattice of ZV . The diagonal subseries

P(a) = Dy (a) = ZGZL Pyp+4+1)---T(yw+inv+1) W

1s called a I'-series.

This definition was introduced by Gelfand, Kapranov and Zelevinsky [1]. They observed that
choosing bases of L, one can rewrite any I'-series as a product of a monomial ¢ with a formal
Laurent series which is a hypergeometric series as defined by Horn ([2]) in m variables, where
m = rank(L). Recall that a Laurent series is hypergeometric in the sense of Horn if the quo-
tients of neighbor coeflicients are rational functions in the variables of summation. Usually such
coefficients are represented by ratio of I'-factors, i.e. of factors of gamma-function I' composed
with affine function in the variables of summation.

In the mentioned paper [1] a new fruitful approach to the general theory of hypergeometric
functions was developed. It has connections to toric geometry, combinatorics of polytopes and
a number of other fields. The basic idea of the GKZ-approach is to cleverly introduce extra
variables a;, one for each I'-factor in the hypergeometric series in the sence of Horn. Their main
observation was that the new function (of many variables) thus obtained will satisfy a very simple
(binomial) system of differential equations with constant coefficients.

The corresponding hypergeometric system of differential equations, see Definition 2 in the
Section 2, may be coded by an integer matrix A of size n x N, where n = N — m, whose kernel
sublattice is L (recall that m = rank L).

Note that a (N xm)-matrix B as an annihilator of A is called the Gale transform of the
configuration A, see Section 5.4 of [3]. We are interesting in the Gale transforms B of two types.
The first type consist of integer matrices whose columns generate the lattice L. The second one
contains rational matrices B which have a unit matrix F,, on some m rows of B.

We define the hypergeometric series associated to rational Gale transform B with a unit
matrix on the last m rows as follows:

qYH(Bk)

6(a) = pp(a) =

N—m 1’ (2)
keNm szl F(’Y] + <b], k> + 1) k.

where the b; denote the first n rows in B, k! = ki!--- k!, and

QVH(BE) _ a’v(abl)kl .. (ab"")km

with b%, ..., b™ being the columns of B. In fact series (2) is a sum of I'-series (1) with suitable
shifts (.

It is well known that the hypergeometric series in one variable can also be represented as
a so called Mellin-Barnes integral. Given the hypergeometric series (2), its formal integral rep-
resentation is the following Mellin-Barnes integral (about the multiple Mellin-Barnes integrals
see [4])

m

5 = a? L(s1) - T(sm) V5 s
) = Gy e [T, (b0 1) LU
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where ds = dsy A --- Adsy,, and § € R is chosen in appropriate way. This means that granted
that the integral ¢ converges, it will coincide with series (2), where the convergence domains of
the integral and the series overlap.

In this paper we also introduce another type of integrals called I'-integrals, as the continuous
analogue of the I'-series (1):

30) = by = [ TlE= 0TSl 3)
hCLc

and call it a ['-integral. Here h is a cycle of dimension m = N — n with a closed support, du is

an m-dimensional measure on L¢, and

N
(& —7)a" = [[ 1 —v)a) ™.

Jj=1

Notice that we have put all I'-factors in the numerator. This will turn out to be very beneficial
since it will make the domain of convergence larger.

The aims of this paper is to specify the convergence domains for the series (8) which is in fact
the dehomogenization of the series (2). We will use the theory of amoebas (see Definition 5),
and the so called principal A-determinant, see Definition 3, which defines the singularities of the
hypergeometric functions. Parallely, we will be studying the representation of the hypergeometric
function in terms of Mellin-Barnes type integrals. We will describe the convergence domains of
these integrals and their connection with the coamoeba of the principal A-determinant.

These results were largely obtained already in 2009 and included in the thesis by L. Nilsson [5],
advised by M. Passare and A.Tsikh, but have not been published until now. The years since
then have shown an increasing interest to them from specialists in hypergeometric and al-
gebraic functions. Recall that already H. Mellin noticed [6] a general algebraic function
y(z) = y(x1,...,2,-1) is a hypergeometric function. The convergence domains for the series
and integrals representing this function were described in the papers [7] and [8], correspondingly.
Using this results, in [9] the monodromy of y(x) was described. We hope that Theorems 2, 3,4
of this paper can be applied to give a similar description of monodromy for an arbitrary hyper-
geometric function.

2. Basic definitions and algebraic preparations

2.1. A-hypergeometric systems

Gelfand, Kapranov and Zelevinsky constructed a holonomic system of linear differential equa-
tions satisfied by the Horn series as well as their integral representations of Euler type generalizing
the integral representation for oF} in [1, 10]. This is done through associating a system of hy-
pergeometric functions to a finite subset A of the integer lattice Z". These functions are called
A-hypergeometric functions.

The set A has to satisfy the following conditions: the Z-span of A is Z™ and there exists a
linear form h with the property h(a) =1 for all & € A. As mentioned in Section 1 we choose h
as a coordinate function and therefore we are able to represent A as a matrix

11 .1
A:<a<1> a® a(N))v (4)
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and sometimes we will identify A with a set of vectors
A={aW, ... oM} czrt

Denote by L = L(A) C Z# the lattice of affine relations among elements of A, that is, the
set of integer vectors | = (I,)aca, such that

Zlaa:O.

acA

Let C# be the space of vectors @ = (an)aca. Corresponding to the order of the set A we
also denote the elements a € CA by a = (ay,...,ay). For any [ = (I1,...,Ix) € L we define the
differential operator [J; on C4 by

Oi= [T (0/0ay) — ] (9/9a;)~".

j:1;>0 j:1;<0

We also define the differential operators

N
Si :Zagj)aj(a/aaj), 1= 1,...,’17,7
j=1

(@)

on C#4, where ;”’ is the i:th coordinate of the j:th column of A.

Definition 2 ([1]). Let 8 = (51, ..,Bn) be a complex vector. The A-hypergeometric system with
parameters B is the following system of linear differential equations on a function ®(a), a € CA:

0,®(a) =0, L € L

Hence the A-hypergeometric system consists of firstly a binomial equation in partial differ-
entials given by [J; and secondly of a number of a equations given by &; that should really be
considered as a number of homogeneity conditions, originating from the relations among the
elements of A.

Remark 1. Formally ;® = 0 with [ € L in (5) represents an infinite number of equations, but
in fact it is enough to consider a finite number of equations with [ corresponding to a basis of
the lattice L.

Remark 2. One can check immediately (see [1]) that any T-series (1) with v € A=%(8) formally
satisfies the A-hypergeometric system (5).

Definition 3 ([1]). Holomorphic solutions of (5) will be called A-hypergeometric functions.

It turns out that the solution space to the system in Definition 2 is finite dimensional, more
precisely, we have the following theorem.

Theorem 1 ([1, 10]). The number of linearly independent holomorphic solutions of the A-
hypergeometric system (5) at a generic point of C* is equal to the normalized volume of the
convex hull Q(A) of the points in A.

- 512 —



Lisa Nilsson, Mikael Passare, Avgust K. Tsikh ~ Domains of convergence for A-hypergeometric series. ..

The volume is normalized so that the minimal (n — 1)-simplex in R"~! with vertices on Z"~!
has volume 1.

In [1] it is also proved that choosing corresponding vectors 4 one can construct a basis of
solutions to (5) by means of nonformal (convergent) I'- series (in more details see subsection 3.1).

2.2. The principal A-determinant, and the notions of amoeba and
coamoeba

The solutions to the A-hypergeometric system define regular functions everywhere in C4
except on the algebraic hypersurface, {E4(an) = 0}. The description of the defining polynomial
is the following.

Definition 4 ([11]). Let A C Z"~! be a finite subset which affinely generates Z"~1. For any
f = f(x1,...2n_1) € CA, where CA is interpreted as the space of Laurent polynomials with
monomials from A, the principal A-determinant is defined as a resultant
EA(f) = RA <m1ﬁ7 PN ,:L‘nflai, f)
1 Tn—1

Note that F4 is clearly a polynomial function in coefficients of f. One major aim of this
paper is to describe the exact convergence domains of the solutions to the A-hypergeometric
system. However the solutions can be represented in various different ways, such as power
series and different types of integrals. The different representations will be solutions to the
same hypergeometric system, but have different convergence domains. They are in fact analytic
extensions of each other. Naturally the convergence domains of the hypergeometric power series
only depend on the absolute value of the variables, which leads us to the key tool for describing
the situation further, that is, amoebas: For a Laurent polynomial P in m variables, we denote by
Zp the hypersurface determined by the equation P = 0, and introduce the logarithmic mapping
(C*)™ — R™ given by

Log: (C1y--+yCm) — (log|Cal, - .. 1og|Cml)-
Definition 5. The amoeba of the polynomial P is denoted by Ap and
Ap :=Log(Zp).

The amoebas properties are discribed in the papers [12, 13] and [14]. We also consider
solutions represented as so called Mellin-Barnes integrals or I'-integrals. The convergence of the
integrals depend only on the argument of the variables, and hence it is natural to use coamoebas
in the study of the convergence domains of these integrals.

Similarity to the definition of an a amoeba above, we use the argument map for defining
coamoebas. Arg: (C*)™ — R™ /[0, 2x]™ given by

Arg: (C1,.. ., Cm) — (arg(Ch), - - -, arg(Gm))-

Definition 6. The coamoeba is denoted by A’p, where

Ap == Arg(Zp).
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It is convenient to incorporate the maps Log and Arg into the following diagram where p is
a projection on the m-dimension real torus:

@
Log TEXP Arg )
RN
R™ <—— C" — > R™ — (R/27Z)™.

2.3. Algebraic preparations

Proposition 1. Let A be a matriz of size n x N, n < N with integer entries. Then the following
claims are equivalent:

(i) the column span of A is the entire lattice Z";

(#4) the mazimal minors of A are relatively prime;

(#i1) there is a unimodular matrix M of size N x N such that AM = (FE,|0) (the unity matriz
of size n X n enlarged by adding zeros to a n x N-matriz);

(iv) there is a completion A which is unimodular, i.e. we can enlarge A to a N X N integer
square matriz A with det A = 1.

Proof. (i) = (ii) Given the condition (i), there exists an integer Nxn-matrix C' with the property
that AC is equal to the unit matrix E,, of size n X n. From this it follows that all the maximal
minors of the matrix A are relatively prime, since by the well known Binet-Cauchy formula
([15]) the determinant of AC' equals the sum of the maximal minors of A multiplied with the
corresponding minors of C.

(#4) = (4¢1) By the invariant factor theorem ([16]) it follows that there exist unimodular integer
matrices D and F of size n and N respectively, such that DAF = (§|0) where ¢ is a diagonal
n X n-matrix with integers €y, ..., €, on the diagonal, and 0 is the zero-matrix of size n x (N —n).
From the representation A = D~1(5]0)F~ it is now easy to see that in fact § = E,,, because some
€; being different from 1 would contradict the fact that the maximal minors of A are relatively
prime.

(#i1) = (iv) By (iii) we have

A=DYE,0)F~' = (D7 o)F !,

and the desired enlargement of A may be taken to be

. -1
A= D 0 FL
0 Ean

(iv) = (¢) This is obvious. O

We now introduce some notation. Given an integer (nx N)-matrix A, denote by B the integer
dual matrix of A, i.e. a (INX m)-matrix such that the columns form a Z-basis for the kernel of A.
For any increasingly ordered subset I = (i1,...,4,) of {1,2,...,N), we let J = (j1,...,Jm) be
its complement, also increasingly ordered. We let A; denote the (n x n)-minor of A with columns
indexed by I, and similarly, we write B for the (m x m)-minor of B with rows having indices
from the complementary subset J.
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Proposition 2. Assume that columns of A generate the entire lattice Z™. Then |det Af| =
= ‘ det BJ|

Proof. We can assume that I = {1,...,n} and J =n+1,...,N. So we can write A in the block
form (A; | Ay). By analogy with respect to rows we write the matrix B in block form

o ()

Since the columns of A generate Z™ it follows from Proposition 1 that there is a unimodular

completion A of A, which we write in the block form

EZ<AI AJ).
* *

Let us consider the corresponding block composition of the inverse matrix :

~ * | B
(e

According to Jacobi’s formula ([15], formula (11)) one has det B/, - detA = det A; and hence
|det B’;| = | det Aj|. It is clear that the block column

Bi
B

in A=! constitute a basis of L, so B’ differs from B only by an unimodular factor. Finally we
get |det By| = |det B;| = | det A;|. O

3. Domains of convergence for A-hypergeometric series

3.1. A-hypergeometric series

Let us firstly explain the GKZ-approach of the constructing basis A-hypergeometric series for
the A-hypergeometric system (5). Given the data for the system(5), that is, an integer (n x N)-
matrix A of type (4), and a generic complex column n-vector 8, we fix a choice of a basis of
the sublattice L = KerA. This means that we choose an integer (N X m)-matrix B, where
m = N — n, such that AB = 0 and the columns of B form a Z-basis for L.

Using the row vectors b; of the matrix B and a complex column vector y € A71(8), we can
rewrite the I'-series (1) on the form

a,’yj+<b‘]7k>

N
Oy(a)= > ]] (1 +ij + (s, k) "

kezm j=1

Due to Remark 2 the series (6) gives a formal solution to the A-hypergeometric system provided
that the vector < is chosen so that Ay = 8.

In order to obtain convergent I'-series, in [1] was suggested to choose the vector 4 so that
m of its entries are integers. The point is that when 7; € Z the factor I'(1 + 7; + (b;, k)) will
be infinite for all integer k& in the halfplane 1 + v; + (bj, k) < 0, so the coefficients in (6) are
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zero for such k. With m different entries (v;,,...,7;,.) =: 7 of 7 being integers, the support of
summation in the series (6) will be contained in a simplicial cone, if the matrix B; with rows
(bjy, .-, bj,,) is nondegenerate, and one gets a series with a non-empty domain of convergence.

According to Proposition 2 we have |det Aj| = |det By|, and we denote this number by d;.
Now, the choice of I, that is, the choice of n columns of the matrix A, is of course equivalent to
the choice of a subsimplex ¢ = o of the point configuration 2 C Z"~! ¢ R”~!. One clearly has
0r = (n—1)!Vol (o7).

The objective is now, for each subset I, to first construct é; linearly independent convergent
I-series, and then to determine their common domain of convergence. Of course we only have
to consider those I for which d; # 0, so that the minors A; and B are invertible. In the linear
compatibility equation Ay = B for v = (y7,7.s), we can then solve v in terms of 8 and ;. This
leads to the identity

y=CB+BB;'y; (7)

where C is the (N x m)-matrix obtained from A; ' by inserting zero rows corresponding to the
indices from the complement J. We have here made use of the relation Al_lA J = fBIle,
which follows from the equation 0 = AB = A;B; + A;Bj.

From equation (7) we see how the vector 7 that defines the series (6) is computed from the
shorter vector ;. The algorithm used by GKZ in [1] is to take all choices of integer vectors
~vy such that each entry of the vector B;l'y 7 belongs to the half-open interval [0,1). There
are precisely 07 distinct such choices of v;, each giving a different vector 4 by (7), and hence
producing a different series (6).

Recall that due the Definition 7 a general hypergeometric series we defined for every rational
Gale transformation R of the form (R, E,,)!" and for 4/ € C", to be the following power series

a T(BE)

#(a) = dpy(a) = D

N—m | ’ (8)
penm LLj=1 (v + (rj, k) + 1) k!

where the r; denote the rows in the matrix R’, and k! = k;!--- k!

Remark that up to the factor a?’ one can consider (8) as a power series with the exponents
from the lattice RZ™. Clearly, R = BB;1 for each basis B of L, so L is a sublattice of RZ™,
and hence (8) is a finite sum of I'-series gpgf) where () runs over the RZ"/L. In example
0 1
1 -1
RZ? = (RX)Z? = L|](3b',b%). So we get v) = 0 and +® = 1b! like above in the GKZ-
approach. In general we have the following statement.

above one has RX = (%bl,bQ) with unimodular matrix X = ( ), and it means that

Proposition 3. For a given integer n X N-matriz A of the type (4), whose columns generate
7™, and a chosen simpler o C Q of normalized volume A, there will be precisely A distinct
A-hypergeometric series of type (8) which are linearly independent.

Proof. Let B be a basis of L = A71(0). Consider the lattice M := RZ™ = BB;'Z™. By the
invariant factor theorem there are unimodular m x m-matrices X and Y, such that the new bases
for the lattices L and M given by
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have the property that the basis B is expressed in the basis R by means of a diagonal integer
matrix:

o1
B=R- R 5jEZ.
Om

In other words, if l~)1, ...b™ denote the column vectors of E, then the lattice M is @-generated
by the basis B of L as

b! b
M= — oo+ — .
{51 " + + 5m8m}
sezZ™

From this it is easily seen that the series (8) can be re-written in the powers

(aél/él)‘“ o (aém/émf” ,

Clearly, the index M : L is equal to A = [det R”| = [, - -+ d,| and by choosing various radicals
(a”")1/% we obtain A linearly independent series. O

We now introduce a dehomogenization of the series (8), where all other variables than the
ones chosen by the position of the unit matrix equals 1, that isa; = ... = a, = 1 and a1 = 2,
k=1...m.

Definition 7. For every Gale transformation R = (R', E,,)", we define the dehomogenized
hypergeometric series in m variables

Sk

#(z) = dp(2) = Y

— . )
penm L= L(vj + (rj, k) + 1) k!

where the r; denote the rows in the matriz R, 2* = Rk and kB =kl

Notice that the series in the Definition 7 are represented as Taylor series, due to the fact
that we have chosen the matrix R to be on the form (B’, E,,)!", with the unit matrix positioned
in the last m rows. However by performing monomial changes of variables (9) represents more
general series, so called Laurent-Puisieux series.

In fact, there is a natural correspondence between the following actions:

e Choosing a (n — 1)-simplex ¢ C conv(A), i.e. in the Newton polytope of A, which we

denote Q = Q(A).
e Choosing a set of n linearly independent column vectors in the matrix A.

e Choosing a set of n rows r; in the dual matrix R, such that the remaining m rows in R
give the unit matrix.

The fact that the chosen position of the unit matrix in R also corresponds to a certain choice
of simplex in @ will play an important role when considering the convergence of the above series
further into this paper.
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3.2. Domains of convergence for the hypergeometric series

We want to find the convergence domain of the series defined in Definition 7. We prove the
following result, where A, is the amoeba of the reduced principal determinant E4(1,a”).

Theorem 2. The domain of convergence D, of the series ¢(1,a") in (8) is a complete Rein-
hardt domain with the property that the corresponding convex domain Log(D,) contains all the
connected components of the amoeba complement R™ \ A,, that are associated with the trian-
gulations of (Q,2) containing the simplex o (i.e. are associated with a certain vertex in the
secondary polytope X(A)), while it is disjoint from all the other components.

In order to prove this result we want to construct a triangulation of (@, 2l), i.e. a triangulation
on ) with the set of vertices on A. We do this in the following way. Take any function ¢ : % — R
and consider in the space R™*! = R™ x R the union of the vertical half-lines

{(w,y) eAXxR:y < Y(w)}.

Let Gy be the convex hull of all these half-lines. This is an unbounded polyhedron projecting
onto Q. The faces of Gy which do not contain vertical half-lines (i.e. are bounded) form the
bounded part of the boundary of G, which we call the upper boundary of G,. Clearly the upper
boundary projects bijectively onto ). If the function 1 is chosen to be generic enough, then all
the bounded faces of G, are simplices and therefore their projections to ) form a triangulation
of (Q,2).

Let T be an arbitrary triangulation of (@,2l), and let ¢ : A — R be any function. Then
there is a unique T-piecewise-linear function gy 1 : @ — R such that gy r(w) = ¢¥(w) when w is
a vertex of the triangulation 7". The function gy r is obtained by affine interpolation of v inside
each simplex. Note that the values of ¥ at points that are not vertices of any simplex of T' does
not affect the function gy 7.

Definition 8. Let T be a triangulation of (Q,21). For each simplex o of this triangulation
we shall denote by C(ca) the cone in R consisting of functions 1 : A — R with the following
properties:

(a) the function gy v : Q — R is concave.

(b) for any w € A which is not a vertex of the simplex o in the triangulation T, we have
G (@) > V().

Now, let A C Z"~! be a finite subset, and @ the convex hull of 2 as before. We assume that
dim(Q) = n— 1. Fix a translation invariant volume form Vol on R". Let T be a triangulation of
(Q,21). By the characteristic function of T' we shall mean the function 7 (w) : 2 — R defined
as follows:

prw)= > Vol(s),

s:weVert(d)

where the summation is over all (maximal) simplices § of T for which w is a vertex. In particular,
or(w) = 0 if w is not a vertex of any simplex of T. Let R® denote the space of all functions
A — R.

Definition 9. The secondary polytope ¥(2) is the convex hull in the space R® of the vectors or
for all the triangulations T of (Q,2).
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The normal cone to X(2) at every ¢ will be called N, X(2() and consists of all linear forms
) on R* such that

Y(or) = Jmax P(p).

The point o7 is a vertex of 3 (2l) if and only if the interior of this cone is non-empty. The
union of the normal cones Ny, B(2), ..., Ny, 3(2A) where T4, ..., Tj are all the triangulations
of (Q,2) that contains the simplex o will be called the normal cone N, ().

Proof of the theorem 2. We know from the implicit function theorem that D, is not empty, and
Abel’s lemma [17] tells us that whenever a point a belongs to D,, then so does the full polydisc
centered at a. Therefore D, is indeed a complete Reinhardt domain , and the corresponding
domain Log(D,) will contain the negative orthant —R’}~" in its recession cone C(o).

In fact, we will show that C(o) is the negative orthant. This we can see by letting the function
1 = 0 on all the points @) in the simplex o. This corresponds to chosing exactly this simplex
o. (We could choose 1) equal to anything at the points in ¢.) Now C(o) consists of functions
1 : A — R such that gy r is concave and gy r(w) < 9(w) for all w which are not vertices in o.
Hence ¥(w) < 0 for all w and all functons v, and thus C(0) is equal to the negative orthant
R}

Let E be a connected component of R"~!\ A, that intersects the domain Log(D,). Then
we claim that we actually have an inclusion E C Log(D,).

It follows, from what we have prooved so far, that the domain Log(D,) cannot intersect any
component of the amoeba complement R" !\ A, whose cone C(c) is not in the negative orthant.
On the other hand every connected component of R*~!\ A, with the corresponding cone C(o)
contained in R’}™" will necessarily intersect, and hence be contained in the domain Log(D).
The following proposition therefore suffices to make the proof of Theorem 2 complete. O

Proposition 4. The normal cone N, X(21) at a vertex of the secondary polytope 3(A) is con-
tained in the negative orthant fR:‘__l if and only if the corresponding triangulation of Q contains
the simplex o. In fact the union of such normal cones N, X(A) is equal to —Riﬁl.

Proof. We will prove this proposition by proving that the normal cone N, 3(A) coincides with
the cone C(0). See ([11]). We get at once from the definitions of @1 and g, r, and the fact that
the integral of an affine-linear function g over a simplex ¢ is equal to the arithmetic mean of
values of ¢ at the vertices of o times the volume of o, the following ([11], Ch. 7):

(1) = n /Q gor(@)de. (10)

We now fix 1) € R4. The upper boundary of Gy can be regarded as the graph of a piecewise-linear
function gy : @ — R.

gy(z) = max{y : (z,y) € Gy}
We can furthermore state about the function g, the following:
(a) gy is concave.

(b) For any triangulation T of (Q), A) we have gy(x) > gy r(x),Vx € Q.
(c) We have

max (i) = n /Q gu(@)da. (11)

pEX(A)
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(a) follows by construction. To varify (b), it suffices to consider x varying in some fixed simplex
o of T. By definition, gy r is affine-linear over ¢ and gy (w) > 9(w) = gy, for any vertex w € o.
Hence the inequality is valid over 0. The maximum in (11) can be taken over the set of the pr
for all triangulations T' of (@, A), since X(A) is defined as the convex hull of these 7. Hence
part (b) together with (10) imply that the left hand side of (11) is greater than or equal to the
right hand side. To show the equality, it suffices to exhibit a triangulation 7" for which gy = gy 7.
To do this, we consider the projections of the bounded faces of the polyhedron G into Q). These
are polytopes with vertices in A. Take a generic v’ close to . Then the bounded faces of the
polyhedron G, give a triangulation 7" of (@, A) which induces a triangulation of each of the above
polytopes. Hence gy, is T-piecewise-linear and coincides with gy . This proves (11). Hence the
cones coincide. O

Remark 3. Theorem 2 was proven for the special case n = 2 in [7].

4. Mellin-Barnes integrals

4.1. General Mellin-Barnes integrals and their domains of convergence
By the multiple Mellin-Barnes integral we mean the integral
p
[T T'({a;, 2) +¢5)
1 j=1

(I)(Z): - Zl_sl"'Z
2 m q
@) S T1 D((bk2) + )
k=1

Simds, (12)

m

where all vector parameters a;,b, € R™ are real, the scalar parameters c;,d, € C, and ds =
=dsy . ..ds;,. The vector § € R™ is chosen so that the integration subspace ¢ + i{R™ is disjoint
from the poles of the gamma-functions in the numerator.

For brevity we rewrite (12) as

o(z) = 1_ / F(s)z%ds, (13)

(2mi)™
S+iR™

denoting by F(s) the ratio of the products of gamma-functions, and z~* denotes the product

21 °t -z 9m . We suppose that the variable z varies on the Riemann domain over the complex

torus T™ = (C\ 0)™, so we assume that

z{sj = e %%8%  argz; € R.
We introduce the following notations:
z; = Res;, y;=Ims;, j=1,...,m.

Let x and y be the vectors in R™ with coordinates z; and y;, correspondingly. Denote by
0 = Argz = (arg z1,...,arg z,,), and

q

9(v) =Y Hagzm) = > 10k )-

j=1 k=1
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Theorem 3. For any § + iR™ outside polar sets, the convergence domain of the Mellin-Barnes
integral (12) is equal to Arg='(U°) where U® is the interior of the set

U= () {0 €R™:[(4,0)] < 59()}-

[lyll=1

In the case when U° # 0 it coincides with the interior P° of the polytope
P={0eR™:|(v,,0) < gg(vy), v=1,...,d}

where tvy,...,xvy is the set of all unit vectors which generate the fan K corresponding to the
decomposition of R™ by hyperplanes

(aj,y) =0, j=1,...,p and (by,y) =0, k=1,...,q.
Proof. Let u,v € R. Since the asymptotic equality
[o[“72 ~ (Jo] + 1) as|v] = oo

is valid for every fixed u € R, Stirling’s formula implies that there are constants C; and C5 such
that

Ci(|o| + 1)~ 2em 2N <D (u + iv)| < Co(|v] + 1)~ 221, (14)
where u € K € R\ {0,—1,-2,...} (K is a compact set), v € R, and the constants C; and

C depend only on the choice of K. Using (14), and our notation v; = Ims;, we can make the
following estimate for the integrand in (13):

H?:l Tj

& ® {(1,0) = Zg(y)} (15)

|F(s)z~°] < const )

where
= (Hag, g+ D712, = (((by, )|+ 1+,

and g(y) was defined above. Moreover, (15) holds for all y € R™ and all z in compact subsets of
R™ disjoint from the polar hyperplanes

Haj, ) +¢cj = —v}, {{bn,z) +dp=—v}, v=0,1,2,...;

in particular, (15) is valid for = §. It follows from (15) that, for each 6 = Argz, provided the
inequality

m p

(0.6) < g(z )~ Y |<bk,y>|> forany y € B\ {0} (16)

j=1 k=1
the integrand in (13) decreases exponentially as ||y|| — co. Therefore for such 6 the integral (13)
converges absolutely. By homogeneity, (16) is valid for all y € R™ \ {0} whenever it holds for
y on the sphere {y : ||y|| = 1}. It means that this integral converges for all § = Argz from the
intersection of halfspaces:

M {6: (4.0) < S9(v)}-
lyll=1
The unit sphere ||y|| = 1 is symmetric relative to the origin. Since g(—y) = g¢(y) this implies
that the mentioned intersection of halfspaces coincides with the intersection

U= () {6: 0.0 < S9(u)}

llgll=1
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of strips.
It is clear that the integral (13) does not converge for § = arg z outside of the closure U, since
the estimate in (14) implies not only (15), but for some other constant the reversed inequality:

s
S

J

exp {(y,0) — Zg(y)}. (17)

|F(2)2~°%| = const 5

_Q

Iy
e

b
Il
_

Thus if § € R™ \ U we have an inequality (6,y) > gg(y) for some y on the sphere |ly|| = 1. By

(17) it means that the integrand in (13) and (12) increases exponentially in some open cone of
R™, and therefore is not integrable. Hence Arg_l(U) coincides with the doamin of convergence
of the integral (12).

Of course, U C P°. Let us explain why any point 8 € P° belongs to U. Indeed g(y) is a piece-
wise linear function whose graph has corners only over the hyperplanes (a;,y) = 0 and (bx, y) = 0.

(0,v)
9(y)

respect to the variable y. Consequently all extremal points of the function Uy (y) = Yo(y)

Correspondingly, the function Wy(y) :=

is a piece-wise fractional linear function with

llwll=1
lie on the vertices set of the spheric polyhedron K N {||y|| = 1}, i.e. on the set {twvy,...,tvq}.

Therefore using again the property g(—y) = g(y) we get that € P° implies 6 € U. O
Remark 4. Some partial results on the domains of convergence for integral (12) were obtained
in [8, 18, 19], and [4].

4.2. Reduction of hypergeometric series to Mellin-Barnes integrals

Given the hypergeometric series (2) with a7 t(B:F) = cﬂ(abl)kl - (a®")km  its formal integral
representation is the following Mellin-Barnes integral

n a” F(Sl) e F(Sm) by —s b\ —s
(]5((1) = \m —m (—CL ) Lo (—(l ) mds,
(271) 6+i4m NH1 F('Yj — <bj, S> + 1)

for some appropriately chosen § € R’'. This means that granted that the integral ¢ converges, it
will coincide with ¢ in (8), where the convergence domains of the integral and the series overlap.
Let Revy; = ¢; and choose ¢; such that the polyhedron

I:={2;>20,l=1,...,mj¢; — (bj,z) <0,j=1,...,N —m}

becomes a simplicial m-dimensional polytope. Choose § in the interior of II. Using the equation

LTI = ) =
we get ) i .
50 = i B e
where

rj(s) = (i)™ VT (4 (b, 2) (€7 im0y
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Since Z bj = (—1,...,—1) we have that for any division of { 1, ... , N — m } into two

groups [ and J, we get

b= bi=(=1,...,~1)=2> b

il jeJ jeJ
This implies that
H wr((bj,s _ e—i‘/r((bj,s>—'yj))(_ab1)—51 . (_abm)—sm _
1:[ wr( - efiw((bj,s>7'yj))ef2i7r(sl+‘..+sm)(abl)fsl . (abm)75m
is a linear combination of terms (e at’ )7L (2P g ) 5w where B = (B4, ..., Bm) € Z™;

the coefficients of this linear combination depend on  and . Hence ¢(a) is a finite linear
combination of shifted integrals as follows

$la) = cs( )#/ ﬂl“(— by, 8))(21) % o (2m) s
T LT Rmi Jppage AT T B A 7

where z; = e2mi8i g and for a uniform notation, we henceforth denote all rows of the matrix
B = (B',E,;,)" by b;.

Therefore the hypergeometric series (8) and (9) can be rewritten as a linear combination of
shifted integrals

Ig(z) = 1(e*™ Pz, ... ¥ Pmy, ),

where

1 al .
)= G [, LLTC0328) = )27 (18)

N
Recall that by the condition on the matrix B we have that > b; = 0 and that means that (18)

1
is a non-confluent Mellin-Barnes integral [17]. The integral (18) tells us how to define a continuous
analogue of the I'-series.

5. [I'-integrals

5.1. Definition of I'-integrals and their hypergeometricity

Notice that instead of (1) we could consider a series where all I'-factors are in the numerator,
making use of the fact that the formula I'(¢)I'(1 —¢) = 7/ sin 7t enables us to move terms between
numerator and denominator. Using the notations

N N
Dk =) =[]0k =), @ * =Tl ™™,
1 1
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we could consider a formal version of the I'-series on the form
Z F(k - 7)7f¥7k7
kel

which also satisfies the hypergeometric system (5).
Let Lc = L ® C be the subspace KerA C CV defined by the linear operator A : CV — C™.
Here A is the integer matrix as before.

Definition 10. We call the integral
Ba) = ,(a) = [ T(E- )0 Cdn (19)
hCLc

a T-integral, or an A-hypergeometric integral (of the Mellin-Barnes type). Here h is a cycle of
dimension m = N — n with a closed support and du is an m-dimensional measure on L.

Usually we take du as the differential form

1 1
ds = dsi A ... Adsm,
Criym T 2riym 8

where s € C™ is a parameter on L = {§ = Bs} and h as a vertical subspace o + iR C C™. So
we get the integral

— 1 5 8) — ~ g B ds
B(0) = o | e L5224 (20)

Bs

coinsiding up to a factor a” with the integral (18) after substitution z = a

Proposition 5. Under assumption that the integration set h is homologically equivalent in the
holomorphy domain of T'(§ — v)|p. to all shifts h + k, where k runs over the basis of L, the

N .
T-integral (19) satisfies the hypergeometric system (5) with B = Zvja(”.
1

Proof. According to the Remark 1 after Definition 2 we choose any basis vector k € L and write
it as the sum k = k4 — k_ for non-negative vectors k; and k_. Then

k| R .
Jaki o = ()T TG — v+ Dar =75,
j=11=1

Using the formula ¢I'(¢) = T'(t + 1) this equality for k_ yields the following

ok~ e
aﬁ‘I’WZ(—U"“"/F(f—%”f—)a'Y Shdp.
a h

The same is true for ky = k + k_, hence under the assumption h ~ h + k, one gets

ol [kt | —t—k—k
Faks v = (D)™ /hr(f—’y-i-k‘—kk_)a’y ~dp =

= (—1)"“+'/F(5—7+k_)a’*—f—k—du.
h

Now we recall that |ky| = |k_| for k € L. Hence O;®., = 0 for all basis vectors k € L.
The equations (£; — 5;)® = 0 in (5) are satisfied by integral (19), since the action & — ; on
N
the integrand gives a factor ) agj )fj that vanishes on h C Lc¢. O
=1

Jj=
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In the case when the I'-integral has the form (20), Beukers [20] has given a more effective
condition for hypergeometricity.

Proposition 6 ([20], Theorem 3.1). Assume that in integral (3), 6 =0 and v € R™, i.e. v; <0
for all coordinates ~v; of v. Then this integral satisfies the A-hypergeometric system (5) with

N .
8=yl
1

olk+1

For the proof it is enough to show that in the expressions above for WQ% one has
a

/ [(Bs —~y+k_)a" " P57 Fds = / [(Bs —~ + k_)a " Bs=k-ds,
SiR™

iRm

where § satisfies the equation BS = k. It follows from the fact that the family of subspaces
t§ 4+ iR™, t € [0, 1] gives a homotopy of cycles § + iR™ and iR™ in the holomorphy domain of
the integrand, since we we have the for v € R™

B(t§) —y+ k- =th—~y+k_ =thy + (1 -tk —y € RT.

5.2. Domain of convergence for the I'-integral
Recall also that a Minkowski sum of line segments is called a zonotope (see, for example [21]).

Theorem 4. The convergence domain of the integral (18) is equal to Argfl(Z%) with Z% being
the interior of the zonotope Zg = [0, 7b1] + ...+ [0, 7bn].

Proof. By Theorem 3 one has to prove that Zp = P where

P={0cR™: |(v,)] < gg(m, v=1,...,d}.

Since Zf’ b; = 0 any point § = 7(Ab1 + ... + Anbn) € Zp, where )\; € [0,1], can also be
represented as
0= —7T((1 — )\1)[)1 + ...+ (1 — )\N)bN)

This implies that

1
ZB = 5([—7‘(’()1,7‘[’()1] + ...+ [—ﬂ'bN,ﬂ'bN]).

Hence any point § € Zp can be represented as
1
0= 5'7‘(‘(/\1[)1+...—|-/\N1)N), with \; € [-1,1]. (21)
By the Triangle Inequality we then get for 0 € Zp
T
0,5 < 5 37 |(bj, )] forall y € R,

which means that Zg C Pg.

Now we prove that in fact Zg = P. The vector v, in the definition of Pp is orthogonal to
some subset B, C B of n — 1 linearly independent vectors b;. Consider the parallelepiped P,
generated by these vectors,

™
P,={0=7 | D> oAb A € [-1,1])
j:b;eEB,
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The zonotope Zp has two parallel facets being the two extremal translations of P,, namely

Ff=p, + g ST Afn,
itb;€ B\ B,

where /\ = sign(v,, b;). The normal vector to Ff is v, and by (21) for each § € Zp

W) =3 D AE(usbi).

itb; EB\B,,
We see that N
T
max (v, 0)] = 5 2:1 [(vy;, bj)]-
=

Since Zp = ﬁﬁzl S, where S, is the strip

o
S - {0 | Uy, 5 Ull) (UV)}
j=1
we get our statement Zp = Ppg. O
5.3. Independence of I'-integrals
Now, if we choose coordinates s = (s1,...,8m) € L¢ and represent each £ € L¢ as a linear

combination of column vectors b’ of the matrix B,
E=s1bt ... 4 5,0™,

then we reduce the T-integral (19) into an integral of type (18) with z = a*’. Hence the integral
(18) satisfies the hypergeometric system. Since the domain of convergence of the shifted integrals
I5(2) are shifted zonotopes Z? = —3 + Zp, any collection of shifted integrals with non-empty
common domain of convergence is linearly independent. More precisely we have the following
lemma:

Lemma 1. Let {ZP}scy be a family of pairwise different shifts of the zonotope Zp. If their

intersection
J._ ﬂ VA
peJ
has a non-empty interior, then the corresponding shifts I3(z) of the integral (3) is linearly inde-
pendent.

Proof. Let Z%, By € J, be an arbitrary zonotope from the chosen family. Suppose that it
contributes to the boundary of the intersection Z”, that is, there exists a point 6y € 2%, which
is an interior point of the intersection () BEI\Bo ZP. Then we claim that in any linear relation
between the integrals {Ig}ges the coefficient of Iz, must be zero. Indeed, otherwise from the

Isy(2) = > cplp(2)

BeJI\Bo

we would get from Theorem 4 that I, is holomorphic in the sectorial domain over

2%

BeJ\Bo

representation
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which contains points from R™ \ Z%. Then it would follow from Theorem 4 and Bochner’s
theorem that Iz, would be holomorphic in a sectorial domain over a bigger convex set than Zg, .
But this would contradict Theorem 4. From this argument we conclude that, if there exists a
linear relation between the Ig, not involving Ig,, then ZPo contains the intersection of all the
other Z# B € J\ By. Applying the same reasoning to this latter family, we arrive at a situation
where all the zonotopes in the family contribute to the boundary of the intersection, and for
which the corresponding family of integrals is linearly independent. O

Finally we will need two results from [22] that we for completeness list below. The following
theorem reveals a close connection between the discriminant coamoeba and the zonotope.

Theorem 5. The summed chain Ay + Zp is a cycle, and hence equal to mpT?, with some
integer multiplicity mp. In fact, provided that the vectors by are ordered clockwise projectively,
this multiplicity is given by the formula

1
mp = 5 Zdeﬁ(bj,bk).
i<k

Theorem 6. The multiplicity mp from Theorem 5 coincides with dg, where dg is the normalized
volume of the convex hull of the point configuration A C Z2.

Using these results of [22]|, we arrive at the following result in two dimensions. We use the
notation m for the normalized area of conv(A) which is equal to the maximal number of linearly
independent solutions to the hypergeometric system of differential equations (5).

Theorem 7. Assume n = 2. Let F; be a component of the torus (R/2nZ)? that is covered by
the coamoeba A’EA exactly i times. Then there will be exactly m — i integrals of the type (18)
converging in the sectorial domain over F;. In particular for the complement of the coamoeba,
that is for i = 0, these integrals provide a basis for the whole solution space to (5).

Proof. Follows from Lemma 1, Theorem 5 and Theorem 6. O

The third author was supported by the grant of Ministry of Education and Science of the Rus-
sian Federation (no. 1.2604.2017/PCh) and was supported by RFBR, grant 18-51-41011 Uzb.t.

References

[1] I.Gelfand, M.Kapranov, A.Zelevinsky, Hypergeometric functions and toric varieties, Funct.
Anal. Appl., 23(1989), no. 2, 94-106

[2] J.Horn, Uber die Convergenz der hypergeometrischen Reihen zweier und dreier
Verénderlichen, Math. Ann., 34(1889), 544-600.

[3] B.Grunbaum, Convez polytopes, Graduate Texts in Mathematics 221, Springer Verlag, 2nd
ed. 2003.

[4] A.Tsikh, O.Zhdanov, Investigation of multiple Mellin-Barnes integrals by means of multidi-
mensional residues, Siberian Math. J., 39(1998), no. 2, 245-260.

[5] L.Nilsson, Amoebas, Discriminants, and Hypergeometric Functions, Doctoral thesis in math-
ematics at Stocholm University, Sweden, 2009.

- 527 -



Lisa Nilsson, Mikael Passare, Avgust K. Tsikh ~ Domains of convergence for A-hypergeometric series. ..

[6] H.Mellin, Mellin Résolution de I’équation algébrique générale a I’aide de la fonction gamma,
C. R. Acad. Sci. Paris Sér. I Math., 172(1921), 658-661.

[7] M.Passare, A.Tsikh, Algebraic equations and hypergeometric series, The legacy of Niels
Henrik Abel, Springer, 2004, 653—672.

[8] I.Antipova, Inversions of multdimensional Mellin transforms and solutions of algebraic equa-
tions, Sb. Math, 198(2007), no. 4, 447-463.

[9] I.Antipova, E.Mikhalkin, Analytic continuation of a general algebraic function by means of
Puesieux series, Proc. of the Steklov Institute of Math. 279(2012), 3-13.

[10] I.Gelfand, M.Kapranov, A.Zelevinsky, Equations of hypergeometric type and Newton poly-
topes, Sov. Math. Dokl., (1988), 37(1988), no. 2, 678-683

[11] I.Gelfand, M.Kapranov, A.Zelevinsky, Discriminants, resultants and multidimensional de-
terminants, Birkh&user, Boston, 1994.

[12] M.Forsberg, M.Passare, A.Tsikh, Laurent determinants and arrangements of hyperplane
amoebas, Adv. in Math., 151(2000), 45-70.

[13] G.Mikhalkin, Real algebraic curves, the moment map and amoebas. Ann. of Math. (2) 151
(2000), no. 1, 309-326.

[14] M.Passare, A.Tsikh, Amoebas: their spines and their contours, Idempotent mathematics
and mathematical physics, 275-288, Contemp. Math., 377, Amer. Math. Soc., Providence,
RI, 2005.

[15] R.Brualdi, H.Schneider, Determinantal Identities, Gauss, Schur, Cauchy, Silvester, Kro-
necker, Jacobi, Binet, Laplace and Cayley, Linear Algebra and its Appl., 52/53(1983),
769-791.

[16] C.Curtis, I.Reiner, Representation theory of finite groups and associative algebras, Wiley,
1988.

[17] M.Passare, T.Sadykov, A.Tsikh, Singularities of hypergeometric functions in several vari-
ables, Compos. Math., 141(2005), no. 3, 787-810.

[18] I.Antipova, T.Zykova, Mellin transforms and algebraic functions, Integral transforms and
secial functions, 26, no. 10 (2015), 753-767.

[19] R.Buschman, H.Srivastava, Convergence regions for some multiple Mellin-Barnes contour
integrals representing generalized hypergeometric functions, Internat. J. Math. Ed. Sci.
Tech., 17(1986), no. 5, 605-609.

[20] F.Beukers, Monodromy of A-hypergeometric functions, J. fir die reine und angewandte
Mathematik, 718(2016), 183-206.

[21] G.Shephard, Combinatorial properties of associated zonotopes, Can. J. Math.,
XXVI(1974), no. 2, 302-321.

[22] L.Nilsson, M.Passare, Discriminant coamoebas in dimension two. J. Commut. Algebra
2(2010), no. 4, 447-471.

- 528 —



Lisa Nilsson, Mikael Passare, Avgust K. Tsikh ~ Domains of convergence for A-hypergeometric series. ..

Ob6sacTu cxomuMocTu A-rurepreoMeTpuiecKnx psioB
1 MHTEI'PAJIOB

JIuca Huascou

Mukasab Ilaccape
CTOKIoJIbMCKHII YHUBEPCUTET
CTOKrobM

IBenus
Asryct K. IInx

WMucturyT MmaremaTuku u GyHIaMEHTATIBHON WHMOPMATHKHI
Cubupckuii dhesiepabHbIil YHUBEPCUTET
Csobonmsrii, 79, Kpacuosipck, 660041

Poccust

Jloxaswearomes dee meopemv, 06 064aCMAT CTOOUMOCTIU OAA A-2unepzeomempuieckux pacdos U acco-
YUUPOBAHHBLL € HUMU unmezparos muna Mesruna—Baprca. Tounwvie obaacmu cxooumocmu onucarv, 6

MEPMUHAT ameD U KOAMED COOMBEMCMEYIOUUT 2AABHBLT A-demepmunarmos.

Karoueswie caosa: A-eunepeeomempuneckuti pad, unmeezpas Mearuna-Baprca, I'-unmeepan, enaenviii A-

QUCKDUMUHAHT.
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