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This paper is devoted to the study of equations solution describing the axisymmetric motion of a viscous
heat-conducting liquid. The motion is interpreted as a two-layer flow of viscous heat-conducting liquids in
a cylinder with a solid wall and a common movable non-deformable interface. From a mathematical point
of view, the arising initial-boundary value problem is nonlinear and inverse. Under certain assumptions
concerning to apply the problem is replaced by a linear one. As a result, the unimprovable uniform priori
estimates for solutions of the problems posed are obtained.
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Introduction

It is well known that a motion can arise in a non-uniformly heated liquid. In some applications
of liquid flows, a joint motion of two or more fluids with surfaces takes place. If the liquids are
not soluble in each other, they form a more or less visual interfaces. The petroleum-water system
is a typical example of this situation. At the present time modelling of multiphase flows taking
into account different physical and chemical factors is needed for designing of cooling systems
and power plants, in biomedicine, for studying the growth of crystals and films, in aerospace
industry [1–4].

The stationary solution of the Navier-Stokes equations describing the 2D motion of a pure
viscid incompressible heat-conducting fluids in the absence of mass forces was found for the first
time by [5]. It describes the liquid impingement from infinity on the plane under the no slip
condition on it. In the paper [6], this solution for the flow between two plates or for the flow in
a cylindrical tube was applied.

The monograph [7] presents the results of specific non-stationary motions studies of a binary
mixture with allowance for the effect of thermal diffusion arising in sufficiently long plane and
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cylindrical layers. The properties of invariant solutions of thermal diffusion equations are consid-
ered, when the surface tension on the interface of two mixtures depends linearly on temperature
and concentration. A generalization of the Ostroumov–Birich solutions to the motion of mixtures
in a cylindrical tube is given.

1. The problem statement

We will consider at the following linear conjugate inverse initial-boundary problem

v1t = ν1

(
v1rr +

1

r
v1r

)
+ f1(t), 0 < r < R1, (1.1)

v2t = ν2

(
v2rr +

1

r
v2r

)
+ f2(t), R1 < r < R2, (1.2)

v1(R1, t) = v2(R1, t),

∫ R1

0

rv1(r, t)dr +

∫ R2

R1

rv2(r, t)dr = 0, (1.3)

µ1v1r(R1, t)− µ2v2r(R1, t) = −2æa1(R1, t), (1.4)

|v1(0, t)| < ∞, v2(R2, t) = 0, (1.5)

v1(r, 0) = 0, v2(r, 0) = 0, (1.6)

ρ1f1(t) = ρ2f2(t)−
2æa1(R1, t)

R1
(1.7)

and the closed conjugate problem for functions aj(r, t) is described the following equations:

ajt = χj

(
ajrr +

1

r
ajr

)
, (1.8)

aj(r, 0) = a0j (r), |a1(0, t)| < ∞, (1.9)

a2(R2, t) = α(t), (1.10)

a1(R1, t) = a2(R1, t), k1a1r(R1, t) = k2a2r(R2, t). (1.11)

Here µj is dynamic viscosity coefficient (index j = 1, 2 is number of the liquid), ρj is the density,
æ = −dσ/dθ = const, σ(θ) is the surface tension coefficient, χj и kj are the coefficients of
thermal diffusivity and conductivity, respectively. The functions v1(r, t), a1(r, t) are limited at
r = 0 for all values of time. The system (1.1)–(1.11) describes the two-layer motion of viscous
heat-conducting fluids in a cylinder with a solid side surface r = R2 = const and the common
interface r = h(t), 0 < h(t) < R2.

The problem (1.1)–(1.11) is obtained from general equations describing the axisymmetric
motion of a viscous heat-conducting fluid in the absence of mass forces, if the Marangoni number
M = æa1R3

1/µ1χ1 → 0. Here a1 = max
t∈[0,T ]

|α(t)|. The function α(t) is bounded in physical sense

for all t from the interval [0, T ], where T is constant. The constant a1R2
2 is the characteristic

temperature along a solid wall. In this case, the velocity, pressure, and temperature fields are
described by the formulas

uj = uj(r, t), wj = vj(r, t)z, pj = pj(r, z, t), θj = θj(r, z, t), (1.12)

where uj(r, z, t) and wj(r, z, t) are the projection of the velocity vector on the axis r and z of the
cylindrical coordinate system, pj(r, z, t) is the pressure that satisfies the relation

1

ρ j

pj = dj(r, t)−
fj(t)

2
z2, djr = νj

(
ujrr +

1

r
ujr −

uj

r2

)
− ujt − ujujr. (1.13)
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The temperature field is sought in the form

θj(r, z, t) = aj(r, t)z
2 + bj(r, t). (1.14)

The temperature has extreme at the point z = 0. It has a maximum at a(r, t) < 0 and minimum
at a(r, t) > 0.

We note that the problem posed is inverse, since together with vj(r, t), aj(r, t), bj(r, t), h(t)
the functions fj(t) should be found. The functions uj(r, t) are determined by the equalities

u1(r, t) = −1

r

∫ r

0

rv1(r, t)dr, u2(r, t) =
1

r

∫ R2

r

rv2(r, t)dr. (1.15)

With known uj(r, t), aj(r, t), the problem for functions bj(r, t) is separated. The functions dj(r, t)
are reconstructed by quadratures from (1.13). The interface is described by the formula

h(t) = R1[1 +Mh1(t)], h1(t) = − 1

R1

∫ t

0

rv1(R1, t)dt. (1.16)

Remark 1. The second equation in (1.3) and the final formula (1.7) allow us to find the pressure
gradients along the axis z, i. e., the functions fj(t).

2. Estimates of the function aj(r, t)

Since the function a1(R1, t) is included in the statement of the problem for vj(r, t), it is neces-
sary to begin with an estimate aj(r, t) satisfying the initial boundary-value problem (1.8)–(1.11).
For smooth solutions, the following matching conditions should be satisfied:

a02(R2) = α(0), a01(R1) = a02(R1), (2.1)

k1a
0
1r(R1) = k2a

0
2r(R1), |a01(0)| < ∞. (2.2)

Perform a replacement

a2(r, t) = ā2(r, t) +
α(t)(r −R1)

2

(R2 −R1)2
. (2.3)

Then the boundary condition (1.10) for the function ā2(r, t) becomes homogeneous. It satisfies
the inhomogeneous equation

ā2t − χ2

(
ā2rr +

1

r
ā2r

)
=

2χ2α(t)

(R2 −R1)2

(
2− R1

r

)
− α′(t)(r −R1)

2

(R2 −R1)2
≡ g2(r, t), (2.4)

where the prime denotes differentiation with respect to t. Conditions (1.11) for the functions
ā2(r, t), a1(r, t) remain unchanged.

We multiply equation (1.8) (j = 1) by ρ1cp1ra1(r, t) and multiply equation (2.4) by
ρ2cp2ra2(r, t), where cpj are the specific heat of liquids at constant pressure. Then, integra-
tion the equation obtained over the intervals of definition and adding up, leads to the integral
equality (kj = ρjcpjχj)

d

dt
A+ k1

∫ R1

0

ra21r dr + k2

∫ R2

R1

rā22r dr =

∫ R2

R1

rā2g2(r, t) dr (2.5)
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with function

A(t) =
ρ1cp1

2

∫ R1

0

ra21(r, t) dr +
ρ2cp2

2

∫ R2

R1

rā22(r, t) dr. (2.6)

The solutions of equations (1.8) are sought in the intervals: 0 < r < R1 at j = 1 and
R1 < r < R2 at j = 2 at M → 0. We have the inequality [8]∫ R1

0

ra21 dr +

∫ R2

R1

rā22 dr 6 M0

(
k1

∫ R1

0

ra21r dr + k2

∫ R2

R1

rā22r dr

)
(2.7)

with positive constant M0.
We obtain that using inequality (2.7), the left-hand side of equation (2.5) is greater than or

equal to
d

dt
A+

1

M0

(∫ R1

0

ra21 dr +

∫ R2

R1

rā22 dr

)
. (2.8)

For the right-hand side we have estimate from above∫ R2

R1

rā2g2 dr 6
(∫ R2

R1

rg22 dr

)1/2(∫ R2

R1

rā22 dr

)1/2

6

6 max
j

(
2

ρjcpj

)1/2(∫ R2

R1

rg22 dr

)1/2√
A ≡ G(t)

√
A.

(2.9)

Further we obtain the inequality from inequalities (2.8) and (2.9)

d

dt
A+ 2ηA 6 G(t)

√
A, η =

1

M0
min
j

(
1

ρjcpj

)
=

1

M0
min
j

(
χj

kj

)
. (2.10)

Then from (2.10) it follows that

A(t) 6
(√

A0 +
1

2

∫ t

0

G(τ)eητdτ

)2

e−2ηt, (2.11)

here A0 is value of function A(t) at t = 0:

A(0) =
ρ1cp1

2

∫ R1

0

r(a01)
2(r) dr +

ρ2cp2

2

∫ R2

R1

r(ā02)
2(r) dr, (2.12)

ā02(r) = a02(r)−
α0(r −R1)

2

(R2 −R1)2
, α0 = α(0). (2.13)

Therefore, from (2.6) we have∫ R1

0

ra21(r) dr 6 2

ρ1cp1

A(t),

∫ R2

R1

rā22(r) dr 6 2

ρ2cp2

A(t), (2.14)

where A(t) satisfies the estimate (2.11). Let us prove the limitations of the integrals∫ R1

0

ra21r dr,

∫ R2

R1

rā22r dr. (2.15)

To do this, we raise equations (1.8) (j = 1), (2.4) to the second degree then multiply them by
ρ1cp1r, ρ2cp2r respectively, integrate over their domains r and t, we sum the results. We obtain
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another integral identity

ρ1cp1

∫ t

0

∫ R1

0

r

[
a21t + χ2

1

(
a1rr +

1

r
a1r

)2
]
dr dt+

+ρ2cp2

∫ t

0

∫ R2

R1

[
ā22t + χ2

2

(
ā2rr +

1

r
ā2r

)2
]
dr dt+

+ k1

∫ R1

0

ra21r dr + k2

∫ R2

R1

rā22r dr = k1

∫ R1

0

r(a01r)
2 dr + k2

∫ R2

R1

r(ā02r)
2 dr+

+ ρ1cp1

∫ t

0

∫ R2

R1

rg1(r, t) dr dt+ ρ2cp2

∫ t

0

∫ R2

R1

rg2(r, t) dr dt ≡ A1(t). (2.16)

From (2.16) the limitation of the integrals (2.15) follows ∀t ∈ [0, T ].
Further, taking into account (2.14), (2.16), we have the inequality

ā22(r, t) =

∣∣∣∣ ∫ R2

r

(ā22)r dr

∣∣∣∣ 6 2

∫ R2

R1

1

r

√
r |ā2|

√
r |ā2r| dr 6

6 2

R1

(∫ R2

R1

rā22 dr

)1/2(∫ R2

R1

ra22r dr

)1/2

6 4

R1

(
1

k2ρ2cρ2

A(t)A1(t)

)1/2

.

(2.17)

Hence we obtain the estimate

|ā2(r, t)| 6 2

(
1

R2
1k2ρ2cρ2

A(t)A1(t)

)1/4

(2.18)

uniformly for all r ∈ [R1, R2], t ∈ [0, T ].
From the replacement (2.3) we find the estimate

|a2(r, t)| 6 |α(t)|+ 2

(
1

R2
1k2ρ2cρ2

A(t)A1(t)

)1/4

. (2.19)

Remark 2. If we differentiate with respect to time equations (1.8) (j = 1), (2.4) and the bound-
ary conditions, then in the same way we obtain the estimate

|a2t(r, t)| 6 |α′(t)|+ 2

(
1

R2
1k2ρ2cρ2

A2(t)A3(t)

)1/4

, (2.20)

where the function A2(t) differs from A(t) in that the function a1(r, t), ā2(r, t) should be replaced
by a1t(r, t), ā2t(r, t) in formula (2.6). Similar the function A3(t) differences from A1(t).

Also,

|a2tt(r, t)| 6 |α′′(t)|+ 2

(
1

R2
1k2ρ2cρ2

A4(t)A5(t)

)1/4

. (2.21)

Here the function A4(t) differs from A(t) in that, in (2.6) their second derivatives with respect
to time from functions a1(r, t), ā2(r, t) are instead of this functions. The function A5(t) is quite
similar to A1(t), however, g2(r, t) from (2.4) contains second derivative α′′(t) instead of function
α(t), and third derivative α′′′(t) instead of function α′(t). The estimates for (2.20) and (2.21)
are used later in step 4, where also the expressions for Ak(t), k = 2, 3, 4, 5 are given. Here we
note that these functions are continuous for t ∈ [0, T ], if the function α(n)(t), n = 0, 1, 2, 3 are
also continuous in the same interval. Moreover, A2(t), A4(t) satisfy inequalities like (2.11) with
their functions G(t).
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However, such arguments are not suitable for estimate |a1(r, t)|. From inequality (2.19) and
first equality (1.11) we have the estimate

|a1(R1, t)| = |a2(R1, t)| 6 |α(t)|+ 2

(
1

R2
1k2ρ2cρ2

A(t)A1(t)

)1/4

. (2.22)

For a1(r, t) we obtain the problem at 0 < r < R1

a1t = χ1

(
a1rr +

1

r
a1r

)
, (2.23)

a1(R1, t) = a2(R1, t), |a1(0, t)| < ∞, (2.24)

a1(r, 0) = a01(r). (2.25)

The initial boundary value problem for equation (2.23)–(2.25) at given a1(R1, t) with esti-
mate(2.22) has the solution [9]

a1(r, t) =
2χ1

R2
1

∫ t

0

a1(R1, τ)
∞∑

n=1

ξnJ0(ξnr/R1)

J1(ξn)
exp

[
− χ1ξ

2
n(t− τ)

R2
1

]
dτ+

+
2

R2
1

∫ R1

0

ζa01(ζ)
∞∑

n=1

J0(ξnr/R1)J0(ξnζ/R1)

J2
1 (ξn)

exp

(
− χ1ξ

2
nt

R2
1

)
dζ,

(2.26)

where ξn are the roots of equation J0(ξ) = 0. From estimate (2.22) and from formula (2.26)
there is the limitation |a1(r, t)| for all r ∈ [0, R1] and t ∈ [0, T ]. Indeed, the first term in (2.26)
is less than or equal to

2

[
max
t∈[0,T ]

|α(t)|+ 1

(R2
1k2ρ2cρ2)

1/4
max
t∈[0,T ]

(A(t)A1(t))
1/4

]
. (2.27)

Under derivation of expression (2.27) we use inequality (2.22) and the relation [10]

∞∑
n=1

J0(ξnr/R1)

ξnJ1(ξn)
=

1

2
, 0 6 r < R1. (2.28)

Second summand in (2.26) does not exceed

max
r∈[0,R1]

|a01(r)|. (2.29)

We have proved

Lemma 2.1. The solution of the initial-boundary value problem (1.8)–(1.11) is limited for all
r ∈ [0, R1] (j = 1) and r ∈ [R1, R2] (j = 2), and t ∈ [0, T ]. The estimates are the following

|a1(r, t)| 6 2

[
max
t∈[0,T ]

|α(t)|+ 1

(R2
1k2ρ2cρ2)

1/4
max
t∈[0,T ]

(A(t)A1(t))
1/4

]
+ max

r∈[0,R1]
|a01(r)|,

|a2(r, t)| 6 |α(t)|+ 2

(
1

R2
1k2ρ2cρ2

A(t)A1(t)

)1/4 (2.30)

with function A(t), A1(t) from (2.6) and (2.16) respectively.
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3. Estimates of the function vj(r, t)

We turn to obtaining a priori estimates of the functions vj(r, t) that satisfy the equa-
tions (1.1), (1.2), boundary conditions (1.3)–(1.5) and initial data (1.6). In order to make
boundary condition (1.4) homogeneous, we make the change of the function v2(r, t)

v2(r, t) = v̄2(r, t)−
2æa1(R1, t)

µ2
P4(r). (3.1)

The polynomial of the fourth order P4(r) satisfies the following conditions: 1) P4(R1) = 0,

P4(R2) = 0; 2) dP4/dr = 1 at r = R1; 3)
R2∫
R1

rP4(r)dr = 0. We take

P4(r) =
1

R2
1(R1 −R2)

(r2 − (R1 +R2)r +R1R2)(r
2 + C1r + C2) (3.2)

with constants

C1 = − (R1 +R2)(2R
2
1 + 2R2

2 +R1R2)

(R2 −R1)(3R2 + 2R1)
, C2 = −R1C1. (3.3)

We explain the construction of the polynomial P4(r) briefly. The polynomial P4 = g(R1, R2)×
×(r−a)(r−b)(r2+C1r+C2) follows from the condition 1). Selecting g(R1, R2) = [R2

1(R1−R2)]
−1

from condition 2) we obtain the equality R1C1 + C2 = 0. The another equation for C1 and C2

follows from equality 3):

(3R2
1 + 3R2

2 + 4R1R2)C1 + 5(R1 +R2)C2 = −(R1 +R2)(2R
2
1 + 2R2

1 +R2R1),

whence the formulas (3.3) can be obtained.
When change (3.1) is used, boundary conditions (1.3), (1.5) remain the same (of course, we

should use the function v̄2 instead of function v2). The equation for the v̄2(r, t) is inhomogeneous
and has the form

v̄2t = ν2

(
v̄2rrr +

1

r
v̄2rr

)
− 2ν2æ

µ2
a1(R1, t)

(
P4rr +

1

r
P4r

)
+

2æ

µ2
a1t(R1, t)P4(r) + f2(t) ≡

≡ ν2

(
v̄2rrr +

1

r
v̄2rr

)
+ f2(t) +Q2(r, t).

(3.4)

Taking into account the second condition in (1.6) we find the initial data for the function v̄2:

v̄2(r, 0) =
2æ

µ2
a01(R1)P4(r) ≡ v̄02(r). (3.5)

We multiply equation (1.1) by rρ1v1, equation (3.4) by rρ2v2, integrate them through domain
and sum the results. We obtain

dE

dt
+ µ1

∫ R1

0

rv21rdr + µ2

∫ R2

R1

rv̄22rdr = ρ2

∫ R2

R1

rv̄2Q2dr −
2æa1(R1, t)

R1

∫ R1

0

rv1dr,

E(t) =
ρ1
2

∫ R1

0

rv21dr +
ρ2
2

∫ R2

R1

rv̄22dr. (3.6)

The first condition in (1.3)–(1.5), and equality (1.7) are used to derive identity (3.6).
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The left-hand side of (3.6) is greater than or equal to

dE

dt
+

1

M

(∫ R1

0

rv21dr +

∫ R2

R1

rv̄22rdr

)
(3.7)

with the constant M = R2
1(µ1x

2
0)

−1, where x0 is the smallest positive root of the described above
transcendental equation (2.5) with γ2 =

√
µ1/µ2 =

√
µ.

The right-hand side of (3.6) does not exceed√2ρ2

(∫ R2

R1

rQ2
2dr

)1/2

+
2æ
√
ρ1

|a1(R1, t)|

√E(t). (3.8)

From (3.7) and (3.8) we obtain the inequality

dE

dt
+ 2δE 6 2

√
E

√ρ2
2

(∫ R2

R1

rQ2
2dr

)1/2

+
æ

√
ρ1

|a1(R1, t)|

 ≡ 2
√
EH1(t) (3.9)

with the constant δ = M−1 min(ρ−1
1 , ρ−1

2 ). From (3.9) we find the estimate of function E(t):

E(t) 6
[√

E(0) +

∫ t

0

H1(τ)e
δτdτ

]2
e−2δt, (3.10)

where, according to the first equality in (1.6) and (3.5),

E(0) =
ρ2
2

∫ R2

R1

rv̄02(r)dr =
2æ2ρ2
µ2
2

(a01(R1))
2

∫ R2

R1

rP 2
4 (r)dr. (3.11)

Thus, the estimates of the quantities v1 and v̄2 in L2-norms ∀t ∈ [0, T ] follow from (3.10) where
α(t) and α

′
(t) are given.

To evaluate the derivatives of v1r, v̄2r in L2-norm we multiply (1.1) by rρ1v1t and equa-
tion (3.4) by rρ2v̄2t, integrate by their domains and sum up the results. We obtain identity

ρ1

∫ R1

0

v21tdr + ρ2

∫ R2

R1

v̄22tdr +
1

2

∂

∂t

[
µ1

∫ R1

0

rv22rdr + µ2

∫ R2

R1

rv̄21rdr

]
=

= ρ2

∫ R2

R1

rv̄2tQ2dr −
2æ

R1
a1(R1, t)

∫ R1

0

rv1tdr, (3.12)

where Q2(r, t) is defined in (3.4). We estimate the right-hand side of (3.12)

ρ2
2

∫ R2

R1

rv̄22tdr +
ρ2
2

∫ R2

R1

rQ2
2dr +

æ2

2ρ1
a21(R1, t) + ρ1

∫ R1

0

rv̄21tdr.

Therefore, from (3.12) we obtain the required inequality

µ1

∫ R1

0

rv21rdr + µ2

∫ R2

R1

rv̄22rdr 6 µ2

∫ R2

R1

r(v̄02r)
2dr+

+
ρ2
2

∫ t

0

∫ R2

R1

rQ2
2(r, t)drdt+

æ2

ρ1

∫ t

0

a21(R1, t)dt ≡ H2(t), (3.13)
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whence the limitation of the derivatives v1r, v̄2r follows in L2-norms ∀t ∈ [0, T ].
Also, as in 2., we have

v̄22(r, t) = −2

∫ R2

r

v̄2v̄
2
2rdr 6 2

R1

(∫ R2

R1

rv̄22dr

)1/2(∫ R2

R1

rv̄22rdr

)1/2

6

6 2

R1

(
H2(t)

µ2

)1/2(
2

ρ2
E(t)

)1/2

.

Thus, ∀t ∈ [0, T ], r ∈ [R1, R2] the estimate is valid

|v̄2(r, t)| 6
√

2

R1

(
2

ρ2µ2
H2(t)E(t)

)1/4

, (3.14)

where H2(t) is the right-hand side of inequality (3.13) and the function E(t) is estimated by
expression (3.10). Taking into account the replacement of (3.1), we obtain the estimate

|v2(r, t)| 6
2æ

µ2
|a1(R1, t)| max

r∈[R1,R2]
|P4(r)|+

√
2

R1

(
2

ρ2µ2
H2(t)E(t)

)1/4

. (3.15)

Similarly, differentiating problem for v1(r, t), v2(r, t) by t, we get a priori estimate of
form (3.15):

|v2t(r, t)| 6
2æ

µ2
|a1t(R1, t)| max

r∈[R1,R2]
|P4(r)|+

√
2

R1

(
2

ρ2µ2
H3(t)E1(t)

)1/4

, (3.16)

where E1(t) is different from E(t) that v1, v2 should be replaced by v1t, v2t; H3(t) is different
from H2(t) that a1(R1, t), a1t(R1, t) should be replaced by a1t(R1, t), a1tt(R1, t), respectively.
These estimates, in view of the first equality in (1.6) and the inequalities (2.20), (2.21), are
already known.

To estimate |v1(r, t)|, we proceed as follows. We consider the problem

v1t = ν1

(
v1rr +

1

r
v1r

)
+ f1(t), 0 < r < R1, (3.17)

v1(R1, t) = v2(R1, t), |v1(0, t)| < ∞, v1(r, 0) = 0, (3.18)

assuming v2(R1, t) to be known, satisfying estimate (3.15). The solution of this problem is given
by formula [11]

v1(r, t) =
2ν1
R1

∞∑
n=1

ξnJ0(ξnr/R1)

J1(ξn)

∫ t

0

v2(R1, τ) exp

(
−ν1ξ

2
n(t− τ)

R2
1

)
dτ+

+
2

R1

∞∑
n=1

J0(ξnr/R1)

ξnJ1(ξn)

∫ t

0

f1(τ) exp

(
−ν1ξ

2
n(t− τ)

R2
1

)
dτ, (3.19)

ξn are the roots of the Bessel function J0(ξn)=0.
Note that f1(t) is unknown; we find its relationship with v1. Multiplying the equation (3.16)

by r and integrating from 0 to R1, we find

f1(t) = −2ν1v1r(R1, t) +
2

R2
1

∂

∂t

∫ R1

0

rv1dr = −2ν1v1r(R1, t)−
2

R2
1

∫ R2

R1

rv2tdr, (3.20)
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where the second equality (1.3) is used. In equality (3.20) we do not have an estimate for the first
summand, the second can be estimated using inequality (3.16). We differentiate equation (3.17)
with respect to r and introduce a new function V (r, t) = v1r(r, t). We obtain the equation for it
following:

Vt = ν1

(
Vrr +

1

r
Vr −

1

r2
V

)
, (3.21)

where |V (0, t)| < ∞. The second boundary condition for V is found from the consideration of
the integral ∫ R1

0

r2V dr =

∫ R1

0

r2v1rdr = R2
1v1(R1, t)− 2

∫ R1

0

rv1dr =

= R2
1v2(R1, t) + 2

∫ R2

R1

rv2dr ≡ g(t)

(3.22)

with known a priori estimate function g(t), g(0) = 0 (we use the second equation applied (1.3).
We change the function V :

V (r, t) = V (r, t) +

(
r4 − 6

7
R1r

3

)
g(t). (3.23)

The problem for V (r, t) takes the form (it is nonclassical)

V t = ν1

(
V rr +

1

r
V r −

1

r2
V

)
+ ν1

(
15r2 − 48

7
R1r

)
g(t) +

(
6

7
R1r

3 − r4
)
gt(t), (3.24)

V (r, 0) = 0,

∫ R1

0

r2V dr = 0, |V (0, t)| < ∞. (3.25)

Lemma 3.1. Solution (3.24), (3.25) has form

V (r, t) =

∞∑
n=1

V n(t)J1

(
ζnr

R1

)
, (3.26)

where ζn are the positive roots of equation J2(ζ) = 0 and we obtain

V n(t) = g(t)h2
n +

(
ν1h

1
n − ν1ζ

2
n

R2
1

h2
n

)∫ t

0

g(τ) exp

[
−ν1ζ

2
n

R2
1

(t− τ)

]
dτ, (3.27)

where h1
n and h2

n are defined by formulas

h1
n =

2

R2
1J

2
1 (ζn)

∫ R1

0

(
15r3 − 48

7
R1r

2

)
J1

(
ζn
R1

r

)
dr,

h2
n =

2

R2
1J

2
1 (ζn)

∫ R1

0

(
6

7
R1r

4 − r5
)
J1

(
ζn
R1

r

)
dr.

(3.28)

Proof. Since the formula is valid [9]∫ z

0

τkJk−1(τ)dτ = zkJk(z),

here k > 1 is integer. Then the solution of problem (3.24), (3.25) should be searched for as
a Fourier series (we have k = 2) (3.26), since [12] ζJ ′

1(ζ) − J1(ζ) = −ζJ2(ζ), the roots of the

– 492 –



Victor K.Andreev, Evgeniy P.Magdenko A Priori Estimates of the Conjugate Problem Describing . . .

equation J2(ζ) = 0 are the roots of function ζJ ′
1(ζ) − J1(ζ). The presentation of (3.26) takes

place [12].
Substitution of (3.26) in (3.24), (3.25) leads to the Cauchy problem

V nt +
ν1ζ

2
n

R2
1

V n = ν1g(t)h
1
n + gt(t)h

2
n, V n(0) = 0, (3.29)

where h1
n, h2

n are coefficients of Fourier series of functions 15r2− 48R1r/7, 6R1r
3/7− r4 respec-

tively, defined by formulas (3.28). From (3.29) we find that the solution of problem (3.24), (3.25)
has form (3.27). 2

Taking into account replacement (3.23), we obtain an expression for the function v1r(R1, t):

v1r(R1, t) = V (R1, t) +
1

7
R4

1g(t) =

(
1

7
R4

1 +
∞∑

n=1

h2
nJ1(ζn)

)
g(t)+

+

∞∑
n=1

(
ν1h

1
n − ν1ζ

2
n

R2
1

h2
n

)
J1(ζn)

∫ t

0

g(τ) exp

[
−ν1ζ

2
n

R2
1

(t− τ)

]
dτ. (3.30)

The series in (3.30) and series (3.26) converge uniformly. Really we have

h1
n =

2

R1ζnJ2
1 (ζn)

∫ R1

0

(
15r − 4

7
R1

)
d

dr

(
r2J2

(
ζn
R1

r

))
dr =

= − 30

R1ζnJ2
1 (ζn)

∫ R1

0

r2J2

(
ζn
R1

r

)
dr, (3.31)

h2
n =

6

R1ζnJ2
1 (ζn)

∫ R1

0

(
r4 − 4

7
R1r

3

)
J2

(
ζn
R1

r

)
dr. (3.32)

Since the equality Jk−1(z)+Jk+1(z) = 2kz−1Jk(z) is valid [9], so we obtain J3(ζn) = −J1(ζn)

(we recall, that J2(ζn) = 0) and so the expression for the function h1
n and h2

n have following the
form

h1
n =

β1
n

ζn
, h2

n =
β2
n

ζn
,

where β1
n, β2

n are coefficients of Fourier series of functions −15R1r and 3R1(r
3 − 4R1r

2/7) when

they are decomposed by function J2(R
−1
1 ζnr). The series

∞∑
n=1

(βj
n)

2 converge, and then, by virtue

of inequality |hj
n| 6 2−1

[
(βj

n)
2 + 1/ζ2n

]
, the series

∞∑
n=1

|hj
n| also converge. The series

∞∑
n=1

ζ−2
n

converge, since ζn ∼ nπ at n ≫ 1. Moreover we obtain [11]
∞∑

n=1
1/n2π2 = 1/12.

As for the second term in (3.30) its is less or equal then to

R2
1

∞∑
n=1

(
|h1

n|
ζ2n

+
|h2

n|
R2

1

)
max
t∈[0,T ]

|g(t)|

with obviously convergent series.

Remark 3. In the preceding arguments we used the well-known inequality |Jk(z)| 6 1, where the
constant k > 0 is integer [9].
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Remark 4. Following the monographs [10,12], we can show that the function V (r, t) is the sum
of series (3.26) and it has derivatives of all orders on r and t at t > ε > 0. In particular, the
solution of problem (3.24), (3.25) is classical.

From (3.16), (3.20) and (3.30) we find estimate f1(t) at t ∈ [0, T ]:

|f1(t)| 6 2ν1

[(
1

7
R4

1 +
∞∑

n=1

|h2
n|

)
+ 2R2

1

∞∑
n=1

(
|h1

n|
ζ2n

+
|h2

n|
R2

1

)]
max
t∈[0,T ]

|g(t)|+

+
R2

2 −R2
1

R2
1

[
2æ

µ2
max
t∈[0,T ]

|a1t(R1, t)| max
r∈[R1,R2]

|P4(r)|+

+

√
2

R1
max
t∈[0,T ]

(
2

ρ2µ2
H3(t)E1(t)

)1/4
]
. (3.33)

The estimate f2(t) follows from (1.7)

|f2(t)| 6 ρ|f1(t)|+
2æ

ρ2R1
max
t∈[0,T ]

|a1(ρ2R1, t)|, (3.34)

where ρ = ρ1/ρ2 and f1(t) satisfies inequality (3.33).
Thus, the functions fj(t) are bounded and continuous at t ∈ [0, T ].
The limitation of the function v1(r, t) at r ∈ [0, R1], t ∈ [0, T ] follows from it representation

in the form (3.19) (the equality (2.28) is used)

|v1(r, t)| 6 R1 max
t∈[0,T ]

|v2(R1, t)|+
2R1

ν1
max
t∈[0,T ]

|f1(t)|
∞∑

n=1

1

ξ3n|J1(ξn)|
, (3.35)

where the functions modules |v2(R1, t)|, |f1(t)| satisfies estimates (3.15) and (3.33). The series
in (3.35) converge, since ξn ∼ nπ, |J1(ξn)| ∼ 1/

√
n at n ≫ 1.

Thus, we have

Theorem 3.1. The solutions of the initial-boundary value problem (1.1)–(1.7), (1.15) vj(r, t)
and the function fj(t) are limitation for all r ∈ [0, R1] (j = 1) and r ∈ [R1, R2] (j = 2), and
t ∈ [0, T ]. Estimates (3.15), (3.35) are valid for function vj(r, t) and estimates (3.33), (3.34)
take place for function fj(t).

Conclusion

One partially invariant solution of the equation describing the axisymmetric motion of a
viscous heat-conducting liquid is studied. As a result, the unimprovable uniform priori estimates
for the solutions of the conjugate problem posed are obtained for small Marangoni number.
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Априорные оценки сопряжённой задачи, описывающей
осесимметричное термокапиллярное движение при малых
числах Марангони

Виктор К.Андреев
Евгений П. Магденко

Институт вычислительного моделирования СО РАН
Академгородок, 50/44, Красноярск, 660036

Институт математики и фундаментальной информатики
Сибирский федеральный университет

Свободный, 79, Красноярск, 660041
Россия

Данная работа посвящена исследованию решения уравнения, описывающего осесимметричное дви-
жение вязкой теплопроводной жидкости. Оно интерпретируется как двухслойное движение
вязких теплопроводных жидкостей в цилиндре с твёрдой стенкой и общей подвижной неде-
формируемой поверхностью раздела. С математической точки зрения, возникающая начально-
краевая задача является нелинейной и обратной. При некоторых (часто выполняющихся в прак-
тических приложениях) предположениях задача заменяется линейной. Для неё получены апри-
орные оценки.

Ключевые слова: априорные оценки, сопряжённая обратная задача, поверхность раздела, число
Марангони.
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