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This paper is devoted to the study of equations solution describing the axisymmetric motion of a viscous
heat-conducting liquid. The motion is interpreted as a two-layer flow of viscous heat-conducting liquids in
a cylinder with a solid wall and a common movable non-deformable interface. From a mathematical point
of view, the arising initial-boundary value problem is nonlinear and inverse. Under certain assumptions
concerning to apply the problem is replaced by a linear one. As a result, the unimprovable uniform priori

estimates for solutions of the problems posed are obtained.
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Introduction

It is well known that a motion can arise in a non-uniformly heated liquid. In some applications
of liquid flows, a joint motion of two or more fluids with surfaces takes place. If the liquids are
not soluble in each other, they form a more or less visual interfaces. The petroleum-water system
is a typical example of this situation. At the present time modelling of multiphase flows taking
into account different physical and chemical factors is needed for designing of cooling systems
and power plants, in biomedicine, for studying the growth of crystals and films, in aerospace
industry [1-4].

The stationary solution of the Navier-Stokes equations describing the 2D motion of a pure
viscid incompressible heat-conducting fluids in the absence of mass forces was found for the first
time by [5]. It describes the liquid impingement from infinity on the plane under the no slip
condition on it. In the paper [6], this solution for the flow between two plates or for the flow in
a cylindrical tube was applied.

The monograph [7] presents the results of specific non-stationary motions studies of a binary
mixture with allowance for the effect of thermal diffusion arising in sufficiently long plane and
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cylindrical layers. The properties of invariant solutions of thermal diffusion equations are consid-
ered, when the surface tension on the interface of two mixtures depends linearly on temperature
and concentration. A generalization of the Ostroumov—Birich solutions to the motion of mixtures
in a cylindrical tube is given.

1. The problem statement

We will consider at the following linear conjugate inverse initial-boundary problem

1
V1t = V1 (Ulrr + - U1T> + fl(t), 0<r< Ry, (1.1)
1
Vop = Uy (’UQTT + ; 'UQT) + fg(t), Ri1 <7 < Ry, (1.2)
Rl R2
v1(R1,t) = vo(Ry,t), / ruy(r, t)dr + / rvg(r, t)dr =0, (1.3)
0 Ry
p1v1(R1,t) — pova, (R, t) = —2eea1 (R1, 1), (1.4)
1 (0,8)] < 00, w2(Re,t) =0, (1.5)
v1(r,0) =0, wvo(r,0) =0, (1.6)
2e&¢ay (k1,1
p1f1(t) = p2fa(t) — 71}({1 1) (1.7)

and the closed conjugate problem for functions a;(r,t) is described the following equations:

1
ajt = Xj <ajrr + ; ajr) s (18)
a;j(r,0) = al(r), lai(0,t)] < oo, (1.9)
az(Ra, t) = aft), (1.10)
aq (R1,t) = ag(Rl,t), k‘la1r(R1,t) = kgagr(RQ,t). (1.11)

Here p; is dynamic viscosity coefficient (index j = 1,2 is number of the liquid), p; is the density,
e = —do/df = const, o(f) is the surface tension coefficient, x; u k; are the coefficients of
thermal diffusivity and conductivity, respectively. The functions vy (r,t), ai(r,t) are limited at
r = 0 for all values of time. The system (1.1)—(1.11) describes the two-layer motion of viscous
heat-conducting fluids in a cylinder with a solid side surface r = Ry = const and the common
interface r = h(t), 0 < h(t) < Rs.

The problem (1.1)—(1.11) is obtained from general equations describing the axisymmetric
motion of a viscous heat-conducting fluid in the absence of mass forces, if the Marangoni number

M = @a'R}/pix1 — 0. Here a! = n?a)%] |a(t)|. The function a(t) is bounded in physical sense
telo,

for all ¢ from the interval [0,7], where T is constant. The constant a'R3 is the characteristic
temperature along a solid wall. In this case, the velocity, pressure, and temperature fields are
described by the formulas

uj =uj(r,t), w;=wv;(rt)z, p;=pirzt), 60;=20;(rz1), (1.12)

where u;(r, z,t) and w;(r, z,t) are the projection of the velocity vector on the axis r and z of the
cylindrical coordinate system, p;(r, z,t) is the pressure that satisfies the relation

1 1) 1 U,
;j pj = dj(T’, t) — jTZQ, djr = I/j ujrr + ; Ujr — ng — th — ujujr. (113)
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The temperature field is sought in the form
0i(r,z,t) = a;(r, t)2? + b;(r,t). (1.14)

The temperature has extreme at the point z = 0. It has a maximum at a(r,¢) < 0 and minimum
at a(r,t) > 0.

We note that the problem posed is inverse, since together with v;(r,t), a;(r,t), b;(r,t), h(t)
the functions f;(¢) should be found. The functions w;(r,t) are determined by the equalities

I I
up(r,t) = —— / rup(r, t)dr, us(r,t) = - / rvg(r, t)dr. (1.15)
T Jo T Jr
With known u;(r,t), a;(r,t), the problem for functions b, (r, t) is separated. The functions d,(r, t)
are reconstructed by quadratures from (1.13). The interface is described by the formula
1 t

h(t) = Ri[14+Mhi(t)], hi(t) = R ; rv1(Ry,t)dt. (1.16)

Remark 1. The second equation in (1.3) and the final formula (1.7) allow us to find the pressure
gradients along the azis z, i. e., the functions f;(t).

2. Estimates of the function a;(r,?)

Since the function a1 (Ry,t) is included in the statement of the problem for v;(r, ), it is neces-
sary to begin with an estimate a,;(r,t) satisfying the initial boundary-value problem (1.8)—(1.11).
For smooth solutions, the following matching conditions should be satisfied:

ay(Ro) = a(0), a}(Ry) = a3(Ra), (2.1)
kiaf, (Ri) = keay, (R1),  [af(0)] < oo. (2.2)
Perform a replacement

a(t)(r — R1)?

as(ryt) = as(r,t) + (Ro— )2

(2.3)
Then the boundary condition (1.10) for the function as(r,t) becomes homogeneous. It satisfies
the inhomogeneous equation

where the prime denotes differentiation with respect to ¢. Conditions (1.11) for the functions
as(r,t), ai(r,t) remain unchanged.

We multiply equation (1.8) (j = 1) by picp,rai(r,t) and multiply equation (2.4) by
p2cp,raz(r,t), where c,, are the specific heat of liquids at constant pressure. Then, integra-

= go(r,t), (2.4)

tion the equation obtained over the intervals of definition and adding up, leads to the integral
equality (k; = pjcp, x;)

d Ry Ry Ry
—A+k / rai, dr + ko / raz, dr = / rasgs(r,t) dr (2.5)
dt 0 Ry Ry
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with function

p1c m p2c fiz
At) = =2 / ra?(r,t)dr + =22 / raz(r,t) dr. (2.6)
2 Jo 2 Jr

The solutions of equations (1.8) are sought in the intervals: 0 < r < R; at j = 1 and
Ry <r < Ry at j =2 at M — 0. We have the inequality [§]

Ry Rz Rl R2
/ rat dr + / ras dr < My <k1 / ra?, dr + ko / ras, dr) (2.7)
0 R1 0 Rl

with positive constant M.
We obtain that using inequality (2.7), the left-hand side of equation (2.5) is greater than or

equal to
d 1 f 2 fia 2
o A+ - </0 raj dr + /R1 ras dr). (2.8)

For the right-hand side we have estimate from above

Ra Ra 1/2 Ro 1/2
/ rasgs dr < (/ g5 dr> (/ 7"612 dr) <
R1 Rl

9 1/2 1/2 (2'9)
gmax< ) < rgs dr VA =Gt)VA.
J PjCp;
Further we obtain the inequality from inequalities (2.8) and (2.9)
A+217A G(t)VA n—1m1n< )zlmin(Xj> (2.10)
dt ’ My PiCp; My 5 k‘j ’ '

Then from (2.10) it follows that

t 2
A(t) < (x/AO+; /0 G(T)é’”dT) e 2t (2.11)

here Ay is value of function A(t) at t = 0:

R1 R2
A(0) = P / r(@®)2(r) dr + 22522 / r(@3)2(r) dr, (2.12)
2 0 2 R:
— Ry)
ad ald(r) — 2o (r ! ag = «a(0). 2.13
8() = a8) - T = an=a(0 (2.13)
Therefore, from (2.6) we have
Ry 2 Ro 2
/ ra%(r) dr < A(t), / rdg(r) dr < A(t), (2.14)
0 P1Cp,y Ry P2Cp,

where A(t) satisfies the estimate (2.11). Let us prove the limitations of the integrals

Rl R2
/ ra3, dr, / ras, dr. (2.15)
0 Ry

To do this, we raise equations (1.8) (j = 1), (2.4) to the second degree then multiply them by
P1Cp, T, P2Cp, T Tespectively, integrate over their domains r and ¢, we sum the results. We obtain
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another integral identity

t Rq
P1Cp, / / r
0 0
t Ro
ol ]
0 JRy

R1 Rz Rl R2
+k / ra?, dr + ky / ras, dr = ki / r(a,)? dr + ko / (a9, ) dr+

Ry

1 2
a%t + X% <a1rr + ; a1r> ] drdt +

dr dt +

1 2
_9 o f = _
az + Xa (a’Q’!'T' + - Cl2r>

+ p1cp, / / rg1(r,t) dr dt + pacp, / / rgo(r,t)drdt = A (t). (2.16)

From (2.16) the limitation of the integrals (2.15) follows V¢ € [0, T7.
Further, taking into account (2.14), (2.16), we have the inequality

Ry
(1) = ‘/ (@), dr

R

1

<2 - VT lag|Vr |ag|dr <
Ry

9 R2 1/2 ; +Re , vz oy 1 1/2 (2.17)
< i (/Rl ras dr) (/Rl ras, dr) < R (kzpchz A(t)Al(t)> )
Hence we obtain the estimate
1 1/4

|Ga(r, t)] < 2 <R%k2m%A(t)A1(t)> (2.18)

uniformly for all r € [Ry, Ro], t € [0,T].

From the replacement (2.3) we find the estimate
1 1/4

lag(r, )| < |a(t)| + 2 (Rfk:gpgc,,QA(t)Al(t)) . (2.19)

Remark 2. If we differentiate with respect to time equations (1.8) (j = 1), (2.4) and the bound-
ary conditions, then in the same way we obtain the estimate

1

1/4
Ayt As(t , 2.20
42041 (2.20)

o) < o)+ 2
where the function As(t) differs from A(t) in that the function ai(r,t), as(r,t) should be replaced
by a1¢(r,t), ase(r,t) in formula (2.6). Similar the function As(t) differences from Ay (t).

Also,
1

1/4
lags (r, )| < o (t)| + 2 <R%k2p20p2A4(t)A5(t)> . (2.21)

Here the function A4(t) differs from A(t) in that, in (2.6) their second derivatives with respect
to time from functions ay(r,t), as(r,t) are instead of this functions. The function As(t) is quite
similar to A1 (t), however, ga(r,t) from (2.4) contains second derivative o/’ (t) instead of function
a(t), and third derivative o'"(t) instead of function o' (t). The estimates for (2.20) and (2.21)
are used later in step 4, where also the expressions for Ag(t), k = 2,3,4,5 are given. Here we
note that these functions are continuous for t € [0,T), if the function o™ (t), n = 0,1,2,3 are
also continuous in the same interval. Moreover, As(t), A4(t) satisfy inequalities like (2.11) with
their functions G(t).
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However, such arguments are not suitable for estimate |ay(r,t)|. From inequality (2.19) and
first equality (1.11) we have the estimate

1 1/4
lar (B t)] = las(Ra. )] < Ja(t)] +2 (WAu)Al(t)) | (2.22)

For aq(r,t) we obtain the problem at 0 < r < R

1
aie = X1 <a17"r + - alr) ) (2.23)
al(R1, t) = &Q(Rl,t), |a1(0,t)| < o0, (224)
ai(r,0) = af(r). (2.25)

The initial boundary value problem for equation (2.23)—(2.25) at given a;(R;,t) with esti-
mate(2.22) has the solution [9]

ay(r,t) = ?/ a1 (Ry, T Z Snto fnr/Rl exp [— )(152(75—7')] dr+

Jl gn R%
2 &\ Jo(Enr/R) Jo(€nC/R1) 2t (2:20)
R nT/111)J0(Sn 1 < _ X1Sn
7, Cad O 56 ° p( R )dg’

where §,, are the roots of equation Jy(§) = 0. From estimate (2.22) and from formula (2.26)
there is the limitation |a;(r,t)| for all » € [0, R1] and ¢ € [0,T]. Indeed, the first term in (2.26)
is less than or equal to

1
2 ——— A(H) A ()4 2.27
s 0]+ s e (A (1) 227)

Under derivation of expression (2.27) we use inequality (2.22) and the relation [10]

JO gn’/‘/R1 1
= - 0< R;. 2.28
Z Gh(E) 20 USTEM (2.28)

Second summand in (2.26) does not exceed

2.29
max [af(r)]. (229)

We have proved
Lemma 2.1. The solution of the initial-boundary value problem (1.8)—(1.11) is limited for all
rel0,Ry] (j=1) andr € [R1,Rs] (j =2), and t € [0, T]. The estimates are the following

1
t) <2 —— A(t)Aq ()4
1,01 < 2 | mae o0 + 7 e (A 0]+ mae (a8, .

1 1/4
< 2 ANA
oa(r:0)] < (0] +2 ( g ADA0))

with function A(t), A1(t) from (2.6) and (2.16) respectively.
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3. Estimates of the function v;(r,t)

We turn to obtaining a priori estimates of the functions v;(r,t) that satisfy the equa-
tions (1.1), (1.2), boundary conditions (1.3)—(1.5) and initial data (1.6). In order to make
boundary condition (1.4) homogeneous, we make the change of the function vy(r,t)

2 Ryt
valrt) = o, 1) — 22 B p (3.1)
M2
The polynomial of the fourth order P,(r) satisfies the following conditions: 1) Py(R;) = 0,
Ra
Py(Ry) =0; 2) dPy/dr =1 at r = Ry; 3) [ rPy(r)dr = 0. We take
Ry
1
Pyr)=—————~(*—(R1+R RiRy)(r* 4+ Cir + C 3.2
(1) R%(Rl—RQ)(T (R1+ Ro)r + R Ro)(r” + Cir + C2) (3.2)
with constants ) )
Ry + R2)(2R{ +2R5 + R1 R
0= P R)QR F2R F i) o (3.3)

(RQ — R1)(3R2 + 2R1) ’

We explain the construction of the polynomial Py(r) briefly. The polynomial Py, = g(Ry, R2) %
X (r—a)(r—>b)(r?4+Cir+Cy) follows from the condition 1). Selecting g(R1, R2) = [R?(R1—Ry)] !
from condition 2) we obtain the equality R1Cy + Cy = 0. The another equation for C; and Cy
follows from equality 3):

(3R? +-3R3 + 4R Ry)Cy + 5(Ry + Ry)Cy = —(Ry + Ry) (2R} + 2R% + RoRy),

whence the formulas (3.3) can be obtained.

When change (3.1) is used, boundary conditions (1.3), (1.5) remain the same (of course, we
should use the function ¥ instead of function vy). The equation for the ¥2(r,t) is inhomogeneous
and has the form

1 2vo8e 1 2z
1_)225 =V <772r7’r + - 7727"1") - 2 al(Rh t) (P4rr + - P4r> + 7a1t(Rla t)P4(T’) + fQ(t) =
r H2 r H2

=V <627"T7" + 711527"1“) + fQ(t) + QQ(Ta t)
(3.4)

Taking into account the second condition in (1.6) we find the initial data for the function vs:
22
v(r,0) = M—a?(Rl)P4(r) = v3(r). (3.5)
2

We multiply equation (1.1) by rpjv;, equation (3.4) by 7pavs, integrate them through domain
and sum the results. We obtain

dE R Re Re 2:ay (Ry,t) [T
— + / rv%rdr + /.Lg/ rl_}%,,dr = pg/ rogQodr — M / roydr,
dt 0 R Ry Ry 0

E(t) = —1/ roddr + 2 rosdr. (3.6)
2 Jo 2 Jr,
The first condition in (1.3)—(1.5), and equality (1.7) are used to derive identity (3.6).
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The left-hand side of (3.6) is greater than or equal to

dE 1 Ry ) R =
’r + M </0 rvldr—i—/Rl r05,.dr (3.7

with the constant M = R3(u123) "1, where z is the smallest positive root of the described above

transcendental equation (2.5) with yo = /1 /e =
The right-hand side of (3.6) does not exceed

Ra 12 2&
V202 (/R rQ%dr> + \/ﬁlal(Rl,t)I E(t). (3-8)

From (3.7) and (3.8) we obtain the inequality

dE P Ra 12 ®

with the constant § = M~ min(p; ', p;'). From (3.9) we find the estimate of function E(t):

t 2
E(t) < {s/E(O)—k / Hl(T)eéTdT:| e 20, (3.10)
0
where, according to the first equality in (1.6) and (3.5),
Ro 2502 Ro
E(0) = @/ ral(r)dr = 2212 (ag)(Rl)f/ rP2(r)dr. (3.11)
2 Jr, H2 Ry

Thus, the estimates of the quantities v; and o3 in Lg-norms V¢ € [0, T follow from (3.10) where
a(t) and o' (t) are given.

To evaluate the derivatives of vy, ¥2, in Lo-norm we multiply (1.1) by rpjvi; and equa-
tion (3.4) by rpa¥a:, integrate by their domains and sum up the results. We obtain identity

R1 R2 1 a Rl R?
p1 / v3,dr + po / v2,dr + = / rv2 dr + o / rol.dr| =
0 Ry 2 8t Ry

R 2 Ry
= pg/ 109:Qadr — —al(Rl,t)/ rudr, (3.12)
R Ry 0

where Q2(r,t) is defined in (3.4). We estimate the right-hand side of (3.12)

,072

R> %2 Ry
5 rvztdr + = 5 / rQ%dr + 2 a%(Rl, t)+ p1 / r@%tdr.
Ry Ry P1 0

Therefore, from (3.12) we obtain the required inequality

Ry Ro Ro
N’l/ T’U%rdr + IU‘Q/ T'l_}grd{r < IU‘Q/ (UZT) dr+
0 Ry R1

P2 t prRa %2 t
+£2 / / rQ3(r, t)drdt + — / ai(Ry,t)dt = Ha(t),  (3.13)
2 0 Ry P1 Jo
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whence the limitation of the derivatives vy, ¥a, follows in Lg-norms V¢ € [0, 7.
Also, as in 2., we have

Ro> ) Ro 1/2 R> 1/2
v3(r,t) = —2/ U032, dr < & /R rogdr /R o2, dr <
T 1 1

1/2 1/2
<2 <H2(t)> (2E(t)) .
Ri \ 2 P2

Thus, Vt € [0,T], r € [R1, Ro] the estimate is valid

|D2(r, t)| < \/RT1 <p22'u2 Hg(t)E(t)) 1/4, (3.14)

where Hj(t) is the right-hand side of inequality (3.13) and the function E(t) is estimated by
expression (3.10). Taking into account the replacement of (3.1), we obtain the estimate

P22

220 2 [ 2 A
a0 < 2 ar(m 0] s, [P+ o (Zomopn) . G)

Similarly, differentiating problem for wvy(r,t), ve(r,t) by ¢, we get a priori estimate of
form (3.15):

2ee 2 (2 14
vor (1, t)| < —lai(R1,t)| ma Py(r)| + ( Hs(t)E t) , 3.16
(01 < hane(Rut)|_mase [P0+ o (BB (1) (3.16)

where Fy(t) is different from E(t) that vy, ve should be replaced by vit, vor; Hs(t) is different
from Hy(t) that ai(Ri1,t), a1:(Ry,t) should be replaced by aq:(R1,t), a1(R1,t), respectively.
These estimates, in view of the first equality in (1.6) and the inequalities (2.20), (2.21), are
already known.

To estimate |vy (r,t)|, we proceed as follows. We consider the problem

1
Vit = 1 <U1rr + ; Ulr) + fl(t), 0<r< Rl, (317)

’Ul(Rl,t) = ’Ug(Rl,t), |’U1(0,t)| < 00, ’01(7", 0) =0, (318)

assuming vs (R, t) to be known, satisfying estimate (3.15). The solution of this problem is given
by formula [11]

_2 ndo(&nr/R 2(t —
”1;_:5 o/ 1)/0 T e =

2 J W/ R1) 2(t -
+— > szlr/énl /f1 exp( “1én 1(%2 T))dT, (3.19)

&, are the roots of the Bessel function Jy(&,)=0
Note that f;(t) is unknown; we find its relationship with v1. Multiplying the equation (3.16)
by r and integrating from 0 to Ry, we find

2 0 [ 2[R
f1(t) = —2v1v1,.(Ry, t) + / rurdr = —2v101,(Ry,t) — ?/ rvodr, (3.20)
1JRy

R ot Jy
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where the second equality (1.3) is used. In equality (3.20) we do not have an estimate for the first
summand, the second can be estimated using inequality (3.16). We differentiate equation (3.17)
with respect to r and introduce a new function V(r,t) = v1,(r,t). We obtain the equation for it
following:

1 1
Vi=u (VTT + oV - 2V) , (3.21)
T T

where |V(0,t)| < co. The second boundary condition for V' is found from the consideration of
the integral

Ry Ry Ry
/ r2Vdr = / r?vy,.dr = Rivi (R, t) — 2/ ruidr =
0 0 0

Ro

= R2vy(Ry,t) + 2/ rvadr = g(t)
Ry

(3.22)

with known a priori estimate function g(t), g(0) = 0 (we use the second equation applied (1.3).
We change the function V:

V(r,t)=V(rt) + (7“4 - E;er?') g(t). (3.23)

The problem for V (r,t) takes the form (it is nonclassical)

_ _ 1 1_— 48 6
Vi=1n (VTT + - V, — 712V) + 1 (157“2 — 7R1r> g(t) + (7R1r3 — T4> g:(t), (3.24)
V(r,0) =0, / r?Vdr =0, [V(0,t)| < ooc. (3.25)
0

Lemma 3.1. Solution (3.24), (3.25) has form

V(r,t) = i V() (;) | (3.26)

where (, are the positive roots of equation Jo(¢) =0 and we obtain

t
Vo(t) = g(H)h2 + (M; _ ”]1%;‘ h,%) /0 g(7) exp {— ”]1%%5 (t — 7)} dr, (3.27)

where hl and h? are defined by formulas

2 R 48 ¢
1_ 4 15/ — 22 2 Sn
v= e ) (57" 7R”)J1 (R) a

2 /6 ¢
h: = Ryt =5 ) [ 2 ) dr.
" R%le(cn) /0 (7 " ' ) ! (R1T> '

Proof. Since the formula is valid [9]

(3.28)

/ Tka,l(T)dT = szk(z),
0

here k > 1 is integer. Then the solution of problem (3.24), (3.25) should be searched for as
a Fourier series (we have k = 2) (3.26), since [12] ¢J1(¢) — J1(¢) = —¢J2(¢), the roots of the
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equation J5(¢) = 0 are the roots of function ¢J{(¢) — J1(¢). The presentation of (3.26) takes
place [12].
Substitution of (3.26) in (3.24), (3.25) leads to the Cauchy problem

Y, = wg(t)hl + g (t)hE, V,,(0) =0, (3.29)

where hl, h? are coefficients of Fourier series of functions 15r%— 48Ryr/7, 6R17r3/7 — r* respec-
tively, defined by formulas (3.28). From (3.29) we find that the solution of problem (3.24), (3.25)
has form (3.27). O

Taking into account replacement (3.23), we obtain an expression for the function vy, (R, t):

vir(Ri,t) = V(R t) + % Ryg(t) = (; Ri+ ) hih(@)) g(t)+
n=1

+ Z (Vlhl _ i h2> J1(Cn) /0 tg(T) exp {— ”]1;; (t— T)} dr.  (3.30)

The series in (3.30) and series (3.26) converge uniformly. Really we have

2 R 4 d ¢
1 _ _ = n _
M= et (15’” 7R1> ar ( JQ(BA ))d’“‘

30 R "
_Rlcnmcn)/o v (1217"> dr. - (331)

2 _ 4 4 3 n
hi = NS /0 (7’ - Ryr ) Jo ( X 7’) dr. (3.32)

Since the equality Ji_1(2) +Jrr1(2) = 2kz71Jk(2) is valid [9], so we obtain J3((,) = —J1(¢n)
(we recall, that J5({,) = 0) and so the expression for the function k! and h2 have following the
form

hl _ /871’11 h2 _ @
" (n ’ " CTL ’
where 8L, 32 are coefficients of Fourier series of functions —15R1r and 3Ry (r® —4R1r?/7) when

they are decomposed by function Jo(R;*¢,7). The series Z (B2)?% converge, and then, by virtue
n=1

of inequality |hJ| < 271 [(8])? + 1/¢2], the series Y |hi] also converge. The series . (>
n=1

n=1

converge, since (, ~ nm at n > 1. Moreover we obtain [11] Z 1/n?r? =1/12.
=1

As for the second term in (3.30) its is less or equal then to

S ]
t
R ( ; Jmax [g(0)

n=1

with obviously convergent series.

Remark 3. In the preceding arguments we used the well-known inequality | Ji ()| < 1, where the
constant k > 0 is integer [9].
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Remark 4. Following the monographs [10,12], we can show that the function V (r,t) is the sum
of series (3.26) and it has derivatives of all orders on v and t att > € > 0. In particular, the
solution of problem (3.24), (3.25) is classical.

From (3.16), (3.20) and (3.30) we find estimate f1(¢) at ¢t € [0,T):

B <2 ~ R} h? 2R? ol ) m t
A®] <21 (7 e n|>+ (G R | el
R% — R? 2=
———— | — m Ry, t m P
Rf 2 te[(?,}:%] o (R, )|TE[R?,>§%2]| a(r)l+

5 1/4
— max Hs(t)Eq(t . 3.33
Ry tefo,1] (pzuz 3B )> ] (3.53)

The estimate f5(t) follows from (1.7)

20 < plfi ()] + 2 max |ai(paRi, b)) (3.34)

p2 Ry tefo, 1]
where p = p1/p2 and f1(t) satisfies inequality (3.33).
Thus, the functions f;(t) are bounded and continuous at ¢ € [0, 7.
The limitation of the function vy (r,t) at r € [0, Ry], t € [0, 7] follows from it representation
in the form (3.19) (the equality (2.28) is used)

2R, 1
o s 2R LS 3.35
1< B g el O+ 5 me 1601 ) e, w

V1 tel0,T) )
where the functions modules |vy(R1,t)], | f1(t)| satisfies estimates (3.15) and (3.33). The series
in (3.35) converge, since &, ~ nm, [J1(&,)] ~ 1/y/n at n> 1.
Thus, we have

Theorem 3.1. The solutions of the initial-boundary value problem (1.1)—(1.7), (1.15) v;(r,t)
and the function f;(t) are limitation for all v € [0,R1] (j = 1) and r € [R1,Rs] (j = 2), and
t € [0,T]. Estimates (3.15), (3.35) are valid for function vj(r,t) and estimates (3.33), (3.34)
take place for function f;(t).

Conclusion

One partially invariant solution of the equation describing the axisymmetric motion of a
viscous heat-conducting liquid is studied. As a result, the unimprovable uniform priori estimates
for the solutions of the conjugate problem posed are obtained for small Marangoni number.
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ArnipropHBIE OLIEHKN CONPS>KEHHON 3aaYl, OMUChIBAIOMIEi
OCeCUMMETPUYHOE TEPMOKANUJIJIIPHOE JIBUXKEHUE IPU MaJIbIX

qucjiax MapaHroHn

BukTop K. Anapeen

EBrennii I1. Maraenko

WMucturyT BhIYMC/IUTEILHOrO MOjempoBanuss CO PAH
Axanmemroponok, 50/44, Kpacrospck, 660036

MucturyT matemMaTukn u QyHIaAMEHTAIBHON HHMOPMATHKHI
Cubupckuii dejiepajbHbIil yHUBEPCUTET

Cgoboanbriit, 79, Kpacuosipck, 660041

Poccusa

Jannasa paboma nocesuwena uccAedo8aHUI0 PEUWEHUS YPAGHEHUA, ONUCHIEAIOULL20 0CECUMMEMPUNHOE 06U~
ofcenue 6a3K0U Menaonposodnol scudkocmu. Ono unmepnpemupyemcsa Kax 08yrcaotinoe dsusicerue
BAZKUL MENAONPOBOOHVBIT HCUOKOCTET 8 UuAUHOPE ¢ MBEPAOT cmenkoti u obwieti nodsurcHoll Hede-
Ppopmupyemoti noseprrocmuvro pasdeaa. C Mamemamuueckot MoKy 3PEHUA, B03HUKAIOULAA HAUANOHO-
Kpaeean 3a0aua ABAAEMCA HeAunelnot u 0bpammnot. [Ipu Hexomopur (Hacmo GunOAHAOUUTCA 6 NPaK-
MUYECKUT NPUNOACEHUAL) NPEONONONHCEHUAT 30004 3AMEHACNCA Aunelinot. JTas neé noayuenv. anpu-
OpHbBLE OUEHKU.

Karoueswie caosa: anpuopnvie OUEHKU, CONPANCEHHAA 06pamHaA 3a0a4a, MOBEPTHOCTNG PA30EAG, “UCAO
Mapareoru.
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