Structural and spectroscopic properties of self-activated monoclinic molybdate

\[\text{BaSm}_2(\text{MoO}_4)_4 \]

V.V. Atuchin\(^{1,2,3,4}\), A.S. Aleksandrovsky\(^{5,6}\), M.S. Molokeev\(^{7,8,9}\), A.S. Krylov\(^{10}\), A.S. Oreshonkov\(^{10,11}\), Di Zhou\(^{12,13}\)

\(^1\)Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia

\(^2\)Functional Electronics Laboratory, Tomsk State University, Tomsk 634050, Russia

\(^3\)Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090, Russia

\(^4\)Laboratory of Single Crystal Growth, South Ural State University, Chelyabinsk 454080, Russia

\(^5\)Laboratory of Coherent Optics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

\(^6\)Laboratory for Nonlinear Optics and Spectroscopy, Siberian Federal University, Krasnoyarsk 660041, Russia

\(^7\)Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

\(^8\)Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia

\(^9\)Siberian Federal University, Krasnoyarsk 660079, Russia
Abstract

The crystal structure of new monoclinic molybdate BaSm\(_2\)(MoO\(_4\))\(_4\) is refined in monoclinic unit cell \(C2/m\) with cell parameters \(a=5.29448\ \text{Å}, b=12.7232\ \text{Å}, c=19.3907\ \text{Å}, \beta=91.2812\ \text{°}, V= 1305.89\ \text{Å}^3\). The crystal structure consists of the SmO\(_8\) square antiprism joined with each other by the edges forming a 2D layer perpendicular to the \(c\)-axis. MoO\(_4\) tetrahedra join SmO\(_8\) by nodes and also participate in layer formation, and Ba ions are located between these layers. The lattice dynamics is theoretically calculated on the base of the crystal structure data. The Raman spectra are recorded and analyzed in comparison with theoretical calculations. The discrepancy between the experimental and calculated Raman frequencies does not exceed 2 cm\(^{-1}\) for the most of Raman lines. The luminescence spectra of Sm\(^{3+}\) ions, which are positioned in the lowest local symmetry site \(C_1\), strongly differ from those detected for another molybdate crystal, \(\beta\)-RbSm(MoO\(_4\))\(_2\), with the \(C_2\) local symmetry. The \(^4\text{G}_{5/2} \rightarrow ^6\text{H}_{9/2}\) band is dominating in the BaSm\(_2\)(MoO\(_4\))\(_4\) luminescence.

Keywords: synthesis; crystal structure; coordination; SEM; Raman; luminescence

1. Introduction
Presently, materials based on the crystalline structure of various rare-earth-containing molybdates are under extensive study in connection with a number of applications including solid-state lighting [1-7], upconverting phosphors ([9,10] and references therein), energy storage [11], microwave electronics [12-14], catalysis [15,16], laser and stimulated Raman scattering media [17,18], etc. The crystal structure of multicationic molybdates can exhibit a number of structural features, such as polymorphism, incommensurate modulation, structure-inferred vacancies, ionic occupation disorder, as well as the possibility of controlling the local environment of rare-earth ions by varying the nomenclature and content of additional ions [19-22]. The latter is of importance for the optical properties of rare-earth ions, such as distribution of absorption cross-sections and luminescence intensities between different bands, as well as the shapes of these bands proper, due to a strong influence of crystal field on the probabilities of f-f transitions and the energy structure of crystal-field-split sublevels. Another important factor that affects the optical properties of rare-earth ions in crystalline matrices is the interaction between electronic excitations and vibrational modes; this interaction influences the radiativeless relaxation processes that decrease the luminescence intensities and change the distribution of excited states populations. Finally, different matrices may favor the dipole-dipole energy transfer between ions to a larger or smaller extent that, in particular, influences the luminescence concentration quenching. For instance, the monoclinic α-Eu$_2$(MoO$_4$)$_3$ crystal was found to exhibit rather strong Eu$^{3+}$ ion luminescence indicating a weaker concentration quenching than in other highly concentrated crystals [23,24].

In the present paper, the crystal structure, luminescence and Raman spectra of new monoclinic molybdate crystal BaSm$_2$(MoO$_4$)$_4$ are investigated. Earlier, a similar crystal structure was reported for BaNd$_2$(MoO$_4$)$_4$ [25], and, recently, the microwave properties of BaSm$_2$(MoO$_4$)$_4$ ceramics were elucidated [12]. However, the structural and spectroscopic properties of this crystal remain unknown.

2. Experimental
The BaSm$_2$(MoO$_4$)$_4$ ceramic samples were prepared via the solid state reaction method using BaCO$_3$, Sm$_2$O$_3$ and MoO$_3$ (>99%) as initial materials. The calcination temperature was 700 °C and the sintering temperature - 960 °C. More details can be found in our previous work [12]. Ceramic microstructures were observed on the as-fired surface with scanning electron microscopy (SEM) (JSM-6460, JEOL, Tokyo, Japan).

The powder diffraction data of BaSm$_2$(MoO$_4$)$_4$ for Rietveld analysis were collected at room temperature with a Bruker D8 ADVANCE powder diffractometer (Cu Kα radiation) and linear VANTEC detector. The step size of 20 was 0.016° and the counting time was 2 s per step. The 20 range of 5-70° was measured with the 0.6mm divergence slit, but the 20 range of 70-140° was measured with the 2mm divergence slit. Larger slits allow a noticeably increase in high-angle peaks intensity without a loss of resolution because the high-angle peaks are broad enough to be not affected by a bigger divergence beam. The esd’s $\sigma(I_i)$ of all points on the patterns were calculated using intensities I_i: $\sigma(I_i)=I_i^{1/2}$. The intensities and obtained esd’s were further normalized: I_i norm = $I_i \times 0.6/(\text{slit width})$, σ norm(I_i) = $\sigma(I_i) \times 0.6/(\text{slit width})$, taking into account the actual value of the divergence slit width which was used to measure each particular intensity I_i, and that saved in the xye-type file. So, the transformed powder pattern has a common view in the whole 20 range of 5-140°, but all high-angle points have small esd values.

The luminescence spectra were recorded under the excitation at 355 nm using a DPSS frequency-tripled Nd:YAG LaserCompact LCS-DTL-374QT laser and an LOMO DFS-24 spectrometer. The unpolarized Raman spectra were collected in a backscattering geometry using a triple monochromator Horiba Jobin Yvon T64000 Raman spectrometer operating in an subtractive mode. The spectral resolution for the recorded Stokes side Raman spectra was set to ~4 cm$^{-1}$ (this resolution was reached by using gratings with 1800 grooves/mm and 100 mm slits). The microscope system based on an Olympus BX41 microscope with an Olympus 50° objective lens f = 0.8 mm with NA=0.75 numerical aperture provides a focal spot diameter of about 2 μm on the sample [26,27]. Single-mode argon, 514 nm from a Spectra-Physics Stabilite 2017 Ar$^+$ laser of 3
mW on the sample, was used as an excitation light source. The laser light intensity was adjusted to avoid the sample heating. The spectral lines positions and widths were obtained by the least square fitting of the experimental data to the Lorentzian equation [28]:

\[I_L = \frac{A}{1 + \left(\frac{x - \omega}{\Gamma}\right)^2} \]

where \(A \) – amplitude, \(\omega \) – wavenumber, \(\Gamma \) – full width at a half height, and \(x \) – actual coordinate (wavenumber).

3. Results and discussions

The XRD pattern recorded from the BaSm\(_2\)(MoO\(_4\))\(_4\) sample is shown in Fig. 1. The Rietveld refinement of BaSm\(_2\)(MoO\(_4\))\(_4\) XRD data was performed by using TOPAS 4.2 [29] which accounts esd’s of each point by a special weight scheme. All peaks were indexed by the monoclinic cell (C\(_2/c\)) with the parameters close to those of BaNd\(_2\)(MoO\(_4\))\(_4\) [25] and, therefore, the crystal structure of BaNd\(_2\)(MoO\(_4\))\(_4\) was taken as a starting model for Rietveld refinement. However, the nonstandard space group \(B2/b \) used in Ref. 25 was transformed into standard setting \(C2/c \), and all cation coordinates were transformed accordingly. The Nd\(^{3+}\) ion site was occupied by Sm\(^{3+}\) ion. In order to reduce the number of refined parameters, only one thermal parameter was refined for all O atoms. The refinement was stable and gave low R-factors (Table 1, Fig.1). The atom coordinates and main bond lengths are summarized in Tables S1 and S2, respectively.

The crystal structure consists of SmO\(_8\) square antiprisms joined with each other by the edges forming 2D layers perpendicular to the \(c \)-axis, as shown in Fig. 2. The MoO\(_4\) tetrahedra join SmO\(_8\) by nodes and also participate in the formation of the layers and Ba\(^{2+}\) ions are located between these layers. Namely, such layered crystal structure leads to the interesting effect of changing cell parameters due to the Sm\(^{3+}\) → Nd\(^{3+}\) ion replacement. As far as ion radius IR(Nd\(^{3+}\), CN = 8) = 1.109 Å is bigger that IR(Sm\(^{3+}\), CN = 8) = 1.079 Å, the cell volume of BaNd\(_2\)(MoO\(_4\))\(_4\) \((V = 1323.22 \text{ Å}^3) \) [25] is predictably bigger than the cell volume of BaSm\(_2\)(MoO\(_4\))\(_4\) \((V = 1305.89 (2) \text{ Å}^3) \). But only a
and b cell parameters are responsible for the change of this cell volume: $\delta a = 0.64 \%$, $\delta b = 0.63 \%$, $\delta c = 0.03 \%$. Cell parameter c stays almost invariable, but the relative changes of a, b parameters are noticeable and similar in magnitude. This is because substitution $\text{Sm}^{3+} \rightarrow \text{Nd}^{3+}$ leads to the enlargement of the 2D layer only. However, the distance between the layers is governed by the Ba^{2+} ion size (Fig. 2). Further comparison of cell parameters $\text{BaSm}_2(\text{MoO}_4)_4$ and $\text{BaYb}_2(\text{MoO}_4)_4$ [30] also show the similar behavior: $\delta a = 2.13 \%$, $\delta b = 2.01 \%$, $\delta c = 0.21 \%$. Therefore, the cell parameter deformations can be predictable and controlled by different ions A, Re in the formula of $A\text{Re}_2(\text{MoO}_4)_4$.

Further details of the crystal structure may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49) 7247-808-666; E-mail: crystdata@fiz-karlsruhe.de; http://www.fiz-karlsruhe.de/request_for_deposited_data.html) on quoting the deposition number CSD-432954.

The SEM pattern is shown in Fig. 3 [12]. As it is evident, the sample bulk is formed by closely packed well faceted plate-like microcrystals with a length of 2-5 μm and ~ 1 μm in thickness. The temperature of 960 °C is in the range of molybdenum oxide active sublimation in the air environment, and this process stimulates the material exchange during the molybdates synthesis that results in the formation of microcrystals with equilibrial shapes and atomically flat facets [23,31,32].

The Raman spectrum recorded from the $\text{BaSm}_2(\text{MoO}_4)_4$ powder is shown in Fig. 4. About 40 narrow Raman lines were revealed by the experimental spectrum fitting, and the complete set of Raman lines found in $\text{BaSm}_2(\text{MoO}_4)_4$ is shown in Table 4. The Raman spectrum of $\text{BaSm}_2(\text{MoO}_4)_4$ can be divided into two parts with a wide empty gap of 500-700 cm$^{-1}$ that is commonly observed in the molybdates with MoO$_4$ tetrahedra [33-41]. The extended spectra with component decomposition in the low and high wavenumber ranges are shown in Figs. 1S and 2S. In the range of stretching vibrations of MoO$_n$ polyhedra ($n = 4$ or 6, 720-940 cm$^{-1}$), a lot of lines were observed. The most
intensive line is detected at 950.2 cm\(^{-1}\). The Raman spectra obtained under excitation at 514.5 and 488 nm are shown comparatively in Fig. 3S.

The vibrational representation for the monoclinic phase at the Brillouin zone center is:

\[
\Gamma_{\text{vib}} = 34A_g + 34A_u + 34B_g + 35B_u;
\]

acoustic and optic modes: \(\Gamma_{\text{acoustic}} = A_u + 2B_u, \Gamma_{\text{optic}} = 34A_g + 33A_u + 34B_g + 33B_u; \)

infrared and Raman active modes: \(\Gamma_{\text{raman}} = 34A_g + 34B_g, \Gamma_{\text{infrared}} = 33A_u + 33B_u. \)

To calculate the BaSm\(_2\)(MoO\(_4\))\(_4\) vibrational spectrum, the program package LADY was used [42]. The atomic vibration values were obtained using the simplified version of the Born-Karman model [43]. Within this model, only the pair-wise interactions and bond-stretching force constants \(F \) are considered and the model implies that \(F \) depends on \(r_{ij} \) (interatomic distance) and the \(F(r_{ij}) \) functions are the same for all atom pairs: \(F(r_{ij}) = \lambda \exp(-r_{ij}/\rho) \), where \(\lambda \) and \(\rho \) are the parameters characterizing the selected pair interaction. To find the model parameters, the special optimization program was written and tested for several compounds [10, 23, 44-57]. The crystal lattice stability conditions were taken into account. The parameters finally obtained for BaSm\(_2\)(MoO\(_4\))\(_4\) are shown in Table 1S.

The calculations show that 52 Raman-active modes are possible in the range of \(<500\) cm\(^{-1}\). Besides, 1 mode around 500 cm\(^{-1}\) and 16 Raman-active modes should appear in the range of \(>700\) cm\(^{-1}\). This is in agreement with the selection rules, and the calculated parameters of 69 possible Raman active modes are summarized in Table 4 in comparison with experimental results.

The strong high-wavenumber band at 950.2 cm\(^{-1}\) is assigned to the Mo2 – O7 bond stretching vibration (Mo–O bond with the shortest length in BaSm\(_2\)(MoO\(_4\))\(_4\), as shown in Fig. 5(a). The next one strong peak at 925 cm\(^{-1}\) is the Mo1 – O2 bond stretching vibration. The band at 890 cm\(^{-1}\) corresponds to the O1 – Mo1 – O3 antisymmetric stretching vibration depicted in Fig. 5(b). The strong band at 854 cm\(^{-1}\) is a symmetric stretching vibration of O1, O2 and O3 atoms towards Mo1,
as shown in Fig. 5(c). The relatively weak bands at 802 and 753 cm\(^{-1}\) are \(v_3\) vibrations [58] of Mo2 and Mo1 tetrahedra, correspondingly. Because the Mo1 – O5 bond length is longer than other bonds in Mo1 tetrahedra by more than 0.13\(\text{Å}\), the wavenumber of the corresponding vibration descended in the region of 713 cm\(^{-1}\) (Fig. 5(d)). According to the lattice dynamics simulation, the vibration of the oxygen bridge between Mo1 tetrahedra (Fig. 5(e)) should appear in Raman spectra in the region of about 500 cm\(^{-1}\), and this vibration, probably, can be observed in Raman spectra at low temperature [59]. The Raman lines over the 270-420 cm\(^{-1}\) range are related to MoO\(_4\) bending modes. Generally, the frequency of \(v_4\) vibration should be above that of the \(v_2\) vibration [58], and our calculation results are in agreement with this relation. The region of 200-260 cm\(^{-1}\) is a region of rotational vibrations of the tetrahedral group. As to the low wavenumber range of 40-200 cm\(^{-1}\), this region contains the external vibrations of MoO\(_4\) units, translational and mixed with the MoO\(_4\) vibrations of Ba and Sm ions.

The luminescence spectra of BaSm\(_2\)(MoO\(_4\))\(_4\) were recorded under the excitation at wavelengths 355, 488 and 514.5 nm. The radiation at 355 nm (28200 cm\(^{-1}\)) falls into the absorption bands at the transitions from the Sm\(^{3+}\) ground state \(6\)H\(_{5/2}\) to a number of closely spaced high-lying states, most probably, to \(4\)H\(_{7/2}\). The radiation at 488 nm (20500 cm\(^{-1}\)) excites another group of closely lying excited states, most probably, \(4\)I\(_{9/2}\). The radiation at 514.5 nm (19430 cm\(^{-1}\)) is not in good resonance with samarium absorption bands. The 355 nm excited luminescence of BaSm\(_2\)(MoO\(_4\))\(_4\) ceramic sample (thick red line), in comparison with another molybdate, \(\beta\)-RbSm(MoO\(_4\))\(_2\) (blue thin line), used as the reference sample [60], is shown in Fig. 6.

As evident from Fig. 6, the luminescence of BaSm\(_2\)(MoO\(_4\))\(_4\) ceramic is found to be weaker than that of \(\beta\)-RbSm(MoO\(_4\))\(_2\) powder, and recording its spectrum required a larger slit width. There is a strong difference between the distributions of luminescence bands' intensities in BaSm\(_2\)(MoO\(_4\))\(_4\) and \(\beta\)-RbSm(MoO\(_4\))\(_2\). Three main luminescent bands are observed for BaSm\(_2\)(MoO\(_4\))\(_4\), all of them starting from the \(4\)G\(_{5/2}\) state. The maximum luminescence band of BaSm\(_2\)(MoO\(_4\))\(_4\) corresponds to the \(4\)G\(_{5/2}\) → \(6\)H\(_{9/2}\) transition, while, in the reference sample, we observed the absolute domination of
the \(^4G_{5/2} \rightarrow ^6H_{5/2} \) transition terminating at the ground state of samarium ion. Evidently, the
difference noted above is connected with the different local symmetry of samarium in the crystal
structure under study and in the reference RbSm(MoO\(_4\))\(_2\) structure. In both crystals, the samarium
ion is surrounded by 8 neighboring oxygen ions. However, its local symmetry in BaSm\(_2\)(MoO\(_4\))\(_4\) is
\(C_1 \), while, in the reference crystal, the local symmetry is \(C_2 \) and it can be associated with a strongly
distorted cubic antiprism. That strong distortion is the origin of specific spectral distribution of the
luminescence in the RbSm(MoO\(_4\))\(_2\) reference crystal [60]. The local environment of samarium in
BaSm\(_2\)(MoO\(_4\))\(_4\) can hardly be associated with any kind of distortion of a regular polyhedron (Fig.
7).

On the other hand, the spectral distribution of the luminescence in BaSm\(_2\)(MoO\(_4\))\(_4\) is somehow
closer to a traditional one, for instance in most of Sm\(^{3+}\)-bearing glasses. The local environment of
samarium in glasses is formed mainly by the chemical properties of samarium proper; this local
environment is the result of the minimum of interaction potential energy that is attained during the
time of glassy structure formation. The Judd-Ofelt parameters of samarium in different glassy
matrices are rather close to each other [61]. Typically, in glasses, the \(^4G_{5/2} \rightarrow ^6H_{7/2} \) transition
dominates in the luminescence while \(^4G_{5/2} \rightarrow ^6H_{5/2} \) and \(^4G_{5/2} \rightarrow ^6H_{9/2} \) bands are smaller. In
BaSm\(_2\)(MoO\(_4\))\(_4\), the \(^4G_{5/2} \rightarrow ^6H_{5/2} \) transition, in difference with glasses, is the smallest, while \(^4G_{5/2} \rightarrow ^6H_{9/2} \) is the strongest one, and \(^4G_{5/2} \rightarrow ^6H_{9/2} \) is slightly weaker, but of a comparable amplitude.
\(^4G_{5/2} \rightarrow ^6H_{11/2} \) transition, being typically the smallest of all in glasses, is also observed in
BaSm\(_2\)(MoO\(_4\))\(_4\) (not shown in Fig. 6), but its magnitude is close to the noise level, while, in the
reference crystal, it was not detected at all. The potential energy minimum attained under the crystal
structure formation is deeper than in case of glassy state, and it is governed by the interactions
within the crystal unit cell, i.e. at larger distances than in glass. The peculiarities described above
indicate that the role of crystal structure in the formation of Sm\(^{3+}\) local environment is very high in
the reference crystal structure; however, in the BaSm\(_2\)(MoO\(_4\))\(_4\) crystal, the matrix influence is also
noticeable in comparison with glassy ones. Another noteworthy feature is the absence of
luminescent bands from the states higher than $^4G_{5/2}$ in BaSm$_2$(MoO$_4$)$_4$. These bands are well seen in the reference crystal, and that indicates the stronger radiativeless relaxation from the higher-lying states to $^4G_{5/2}$ in BaSm$_2$(MoO$_4$)$_4$ than that in β-RbSm(MoO$_4$)$_2$. One of these states is $^4I_{9/2}$, that produces the well detectable luminescence in the blue range in β-RbSm(MoO$_4$)$_2$ when excited at 355 nm. This level, however, can be directly excited by the 488 nm radiation. We have tested this excitation channel and have found that the luminescence spectrum under the 488 nm excitation is in a close agreement with that excited at 355 nm. The main difference is the weak band intensity increase above 700 nm due to the $^4G_{5/2} \rightarrow ^6H_{11/2}$ transition and the minor redistribution of crystal-field-split components intensities within $^4G_{5/2} \rightarrow ^6H_{9/2}$ band, while $^4G_{5/2} \rightarrow ^6H_{5/2}$ and $^4G_{5/2} \rightarrow ^6H_{7/2}$ bands are almost untouched by the excitation wavelength change. The observed differences indicate a fine variation of population distribution between $^4G_{5/2}$ components at the 488 nm excitation with respect to the 355 nm excitation.

4. Conclusions

In the present work, binary molybdate BaSm$_2$(MoO$_4$)$_4$ was successfully synthesized by the ceramic method. The crystal structure and spectroscopic characteristics were exhibited for the first time. The structure is layered and the interlayer distance is controlled by the size of Ba$^{2+}$ ion. This specific geometry provides the highly anisotropic behavior of the cell parameters on the substitution of Sm$^{3+}$ by other rare earth ions. As an example, the comparison of the presently-known cell parameters in monoclinic BaSm$_2$(MoO$_4$)$_4$, BaNd$_2$(MoO$_4$)$_4$ and BaYb$_2$(MoO$_4$)$_4$ possesses noticeable variation of a and b parameters and a very small variation of the c parameter. This specific structural feature may be an indicator of high anisotropy of physical properties, including thermal, optical and dielectric parameters. Testing the effects is the challenge for the nearest future, when the single crystals of the molybdates from this family will be available. The luminescence spectra of Sm$^{3+}$ ions, which are positioned in the lowest local symmetry site C$_1$, strongly differ from those detected for another molybdate crystal, β-RbSm(MoO$_4$)$_2$, with the C$_2$ local symmetry. The $^4G_{5/2} \rightarrow$
$^6H_{9/2}$ band is dominating in the BaSm$_2$(MoO$_4$)$_4$ luminescence. These features demonstrate the possibilities of controlling the luminescent spectra by the crystal design in new molybdate families.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1632146). The reported study was funded by RFBR according to the research projects 16-52-48010, 16-32-00351 and 17-52-53031. Also, the work was supported by (Act 211) the Government of the Russian Federation, contract 02.A03.21.0011, by Project № 0356-2015-0412 of SB RAS Program№II.2P, and by the Ministry of Education and Science of the Russian Federation (4.1346.2017/PP).
References

1. Pinglu Shi, Zhiguo Xia, M.S. Molokeev, V.V. Atuchin, Crystal chemistry and luminescence properties of red-emitting CsGd$_{1-x}$Eu$_x$(MoO$_4$)$_2$ solid-solution phosphors, Dalton Trans. 43 (2014) 9669-9676.

5. Yun Liu, Jinyang Li Haoqiang Zuo, Xiaolei Shi, Suiyan Ma, Minzhu Zhao, Synthesis and luminescent properties of KLa$_{1-x-y}$(MoO$_4$)$_2$$_x$(WO$_4$)$_y$:xEu$^{3+}$,yDy$^{3+}$ phosphors for WLEDs, J. Mater. Sci.: Mater. Electron. 27 (2016) 9470–9475.

12. Di Zhou, Li-Xia Pang, Jing Guo, Ying Wu, Gao-Qun Zhang, Wei Dai, Hong Wang, Xi Yao, New microwave dielectric ceramics BaLn$_2$(MoO$_4$)$_4$ (Ln = Nd and Sm) with low loss, J. Am. Ceram. Soc. 94 (2011) 2800-2803.

14. Li-Xia Pang, Wei-Guo Liu, Di Zhou, Zhen-Xing Yue, Phase evolution and microwave dielectric properties of (Bi$_{1-x}$Ln$_x$)$_2$MoO$_6$ (Ln = Nd and La, x ≤ 0.3) ceramics, Ceram. Int. 42 (2016) 17243-17247.

α-Eu₂(MoO₄)₃; DFT-based study and X-ray photoelectron spectroscopy, J. Phys. Chem. C 120 (2016) 10559-10568.

structure of β-RbSm(MoO$_4$)$_2$ and chemical bonding in molybdates, Dalton Trans. 44 (2016) 1805-1815.

Table 1. Main parameters of processing and refinement of the BaSm$_2$(MoO$_4$)$_4$ sample

<table>
<thead>
<tr>
<th>Compound</th>
<th>BaSm$_2$(MoO$_4$)$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp.Gr.</td>
<td>$C2/c$</td>
</tr>
<tr>
<td>a, Å</td>
<td>5.29448 (5)</td>
</tr>
<tr>
<td>b, Å</td>
<td>12.7232 (1)</td>
</tr>
<tr>
<td>c, Å</td>
<td>19.3907 (2)</td>
</tr>
<tr>
<td>β, °</td>
<td>91.2812 (6)</td>
</tr>
<tr>
<td>V, Å3</td>
<td>1305.89 (2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>2θ-interval, °</td>
<td>5-140</td>
</tr>
<tr>
<td>R_{wp}, %</td>
<td>2.26</td>
</tr>
<tr>
<td>R_p, %</td>
<td>1.95</td>
</tr>
<tr>
<td>R_{exp}, %</td>
<td>1.36</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.66</td>
</tr>
<tr>
<td>R_B, %</td>
<td>1.01</td>
</tr>
</tbody>
</table>
Table 2. Calculated wavenumber versus experimental relative magnitude \((I)\), wavenumber and full width at half maximum \((\Gamma)\) of the Raman lines

<table>
<thead>
<tr>
<th>(\omega), cm(^{-1}) (calc.)</th>
<th>(I), (exp.)</th>
<th>(\omega), cm(^{-1}) (exp.)</th>
<th>(\Gamma) (FWHM), cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_g)</td>
<td>(B_g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>950.1</td>
<td>946.4</td>
<td>100</td>
<td>950.2</td>
</tr>
<tr>
<td>925.1</td>
<td>924.3</td>
<td>2.4</td>
<td>929.1</td>
</tr>
<tr>
<td>925.1</td>
<td>924.3</td>
<td>29.7</td>
<td>925.3</td>
</tr>
<tr>
<td>886.0</td>
<td>889.8</td>
<td>12.8</td>
<td>890.4</td>
</tr>
<tr>
<td>886.0</td>
<td>889.8</td>
<td>3.4</td>
<td>883.0</td>
</tr>
<tr>
<td>847.6</td>
<td>847.0</td>
<td>71.4</td>
<td>854.6</td>
</tr>
<tr>
<td>820.4</td>
<td>820.4</td>
<td>1.5</td>
<td>840.8</td>
</tr>
<tr>
<td>802.7</td>
<td>802.6</td>
<td>3.8</td>
<td>799.8</td>
</tr>
<tr>
<td>750.5</td>
<td>750.7</td>
<td>9.2</td>
<td>753.0</td>
</tr>
<tr>
<td>704.8</td>
<td>705.7</td>
<td>4.1</td>
<td>713.3</td>
</tr>
<tr>
<td>704.8</td>
<td>705.7</td>
<td>0.3</td>
<td>702.5</td>
</tr>
<tr>
<td>499.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418.4</td>
<td></td>
<td>1.2</td>
<td>417.7</td>
</tr>
<tr>
<td>407.3</td>
<td></td>
<td>2.8</td>
<td>406.1</td>
</tr>
<tr>
<td>381.6</td>
<td>380.4</td>
<td>5.5</td>
<td>394.9</td>
</tr>
<tr>
<td>381.6</td>
<td>380.4</td>
<td>1.7</td>
<td>383.4</td>
</tr>
<tr>
<td>365.3</td>
<td>364.2</td>
<td>5.3</td>
<td>361.4</td>
</tr>
<tr>
<td>354.5</td>
<td>355.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>339.4</td>
<td>343.2</td>
<td>10.8</td>
<td>345.0</td>
</tr>
<tr>
<td>320.0</td>
<td>319.5</td>
<td>28.0</td>
<td>322.1</td>
</tr>
<tr>
<td>320.0</td>
<td>319.5</td>
<td>2.9</td>
<td>313.0</td>
</tr>
<tr>
<td>299.0</td>
<td>306.6</td>
<td>1.3</td>
<td>297.7</td>
</tr>
<tr>
<td>297.4</td>
<td>294.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.3</td>
<td>285.9</td>
<td>1.0</td>
<td>280.7</td>
</tr>
<tr>
<td>271.2</td>
<td>274.6</td>
<td>1.1</td>
<td>269.0</td>
</tr>
<tr>
<td>253.8</td>
<td></td>
<td>0.03</td>
<td>252.6</td>
</tr>
<tr>
<td>253.4</td>
<td></td>
<td>0.3</td>
<td>244.5</td>
</tr>
<tr>
<td>227.9</td>
<td></td>
<td>2.5</td>
<td>225.6</td>
</tr>
<tr>
<td>206.8</td>
<td>213.9</td>
<td>0.01</td>
<td>211.6</td>
</tr>
<tr>
<td>195.1</td>
<td>199.6</td>
<td>3.2</td>
<td>181.9</td>
</tr>
<tr>
<td>172.2</td>
<td>166.3</td>
<td>5.1</td>
<td>161.1</td>
</tr>
<tr>
<td>153.9</td>
<td>155.6</td>
<td>1.5</td>
<td>155.9</td>
</tr>
<tr>
<td>142.0</td>
<td>141.8</td>
<td>18.9</td>
<td>145.9</td>
</tr>
<tr>
<td>139.1</td>
<td></td>
<td>8.5</td>
<td>139.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>134.2</td>
<td>132.8</td>
</tr>
<tr>
<td>123.2</td>
<td>122.8</td>
<td>4.1</td>
<td>127.3</td>
</tr>
<tr>
<td>120.4</td>
<td>114.1</td>
<td>3.4</td>
<td>118.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113.3</td>
<td>113.7</td>
</tr>
<tr>
<td>103.4</td>
<td></td>
<td>16.5</td>
<td>108.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103.2</td>
<td>101.5</td>
</tr>
<tr>
<td>93.9</td>
<td>89.6</td>
<td>0.6</td>
<td>94.8</td>
</tr>
<tr>
<td>85.7</td>
<td>81.5</td>
<td>9.9</td>
<td>83.8</td>
</tr>
<tr>
<td>73.6</td>
<td>78.1</td>
<td>3.8</td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td>67.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.7</td>
<td>48.2</td>
<td>10.6</td>
<td>49.0</td>
</tr>
</tbody>
</table>
Captions

Fig 1. Difference Rietveld plot of BaSm$_2$(MoO$_4$)$_4$.

Fig. 2. Crystal structure of BaSm$_2$(MoO$_4$)$_4$. The unit cell is outlined. The lone atoms of Sm, Mo and O are omitted for clarity.

Fig. 3. SEM pattern of the BaSm$_2$(MoO$_4$)$_4$ microcrystals.

Fig. 4. Raman spectrum of BaSm$_2$(MoO$_4$)$_4$.

Fig. 5. Calculated vibration modes of the MoO$_4$ tetrahedrons in BaSm$_2$(MoO$_4$)$_4$. a) A_g 950.1 cm$^{-1}$, b) A_g 886.0 cm$^{-1}$, c) A_g 847.6 cm$^{-1}$, d) A_g 704.8 cm$^{-1}$, e) A_g 499.6 cm$^{-1}$.

Fig. 6. Luminescence spectra of BaSm$_2$(MoO$_4$)$_4$ (thick red) and β-RbSm(MoO$_4$)$_2$ (thin blue) excited at 355 nm.

Fig. 7. Local environment of Sm$^{3+}$ ion in BaSm$_2$(MoO$_4$)$_4$ (left) and β-RbSm(MoO$_4$)$_2$ (right) crystal structures.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.