Controlled Hydrothermal Crystallization of Anhydrous Ln$_2$(OH)$_4$SO$_4$ as A New Family of Layered Rare-Earth Hydroxide (Ln=Eu-Lu and Y)

Xuejiao Wang,a,b,c,d* Maxim S. Molokeev,e,f,g Qi Zhu,c,d and Ji-Guang Lib,c,d*

aCollege of New Energy, Bohai University, Jinzhou 121000, China

bResearch Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

cKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819, China

dInstitute of Ceramics and Powder Metallurgy, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

eLaboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

fDepartment of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia

gSiberian Federal University, Krasnoyarsk 660041, Russia

*Corresponding author

Dr. Xuejiao Wang
Bohai University, China
Tel: +86-416-3400708
E-mail: wangxuejiao@bhu.edu.cn

Dr. Ji-Guang Li
National Institute for Materials Science, Japan
Tel: +81-29-860-4394
E-mail: li.jiguang@nims.go.jp
ABSTRACT

The anhydrous hydroxyl sulfate of \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \) (\(\text{Ln}=\text{Eu}-\text{Lu} \) and \(\text{Y} \)) has been successfully synthesized in this work as a new family of layered rare-earth hydroxide (LRH) via controlled hydrothermal crystallization. Crystal structure decipherment revealed that the compounds crystallize in the monoclinic system (space group: \(C2/m \)), with the structure built up via alternative stacking of the interlayer \(\text{SO}_4^{2-} \) and the two-dimensional host layer, composed of three-capped \([\text{LnO}_9]\) trigonal prisms, along the \(a \)-axis. Distinctly different from the recently reported hydrated LRH of \(\text{Ln}_2(\text{OH})_4\text{SO}_4\cdot2\text{H}_2\text{O} \) (only existing for \(\text{Ln}=\text{La}-\text{Dy} \)), the host layers of the anhydrous phase are linked together via sharing edges instead of \(\text{O} \) node of the \(\text{SO}_4^{2-} \) tetrahedron. Rietveld refinement found that the lattice parameters and cell volume tend to decrease towards a smaller \(\text{Ln}^{3+} \) while the axis angle \((\beta=98.78-100.31^\circ) \) behaves oppositely. Comparative TG/DTA analysis of the \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \) in air revealed that the occurrence temperature range of \(\text{Ln}_2\text{O}_2\text{SO}_4 \) narrows towards a smaller \(\text{Ln}^{3+} \) owing to the gradually higher and lower temperatures of dehydroxylation (up to \(\sim500^\circ\text{C} \)) and desulfurization, respectively. The newly discovered \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \), together with the aforementioned hydrated LRH family, allows for the first time the green synthesis of \(\text{Ln}_2\text{O}_2\text{SO}_4 \) with water as the only exhaust for the full spectrum of lanthanides (\(\text{Ln}=\text{La}-\text{Lu} \) and \(\text{Y} \)). Calcining \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \) in \(\text{H}_2 \) yielded phase pure \(\text{Ln}_2\text{O}_2\text{S} \) for \(\text{Eu} \) and \(\text{Gd} \) while a mixture of \(\text{Ln}_2\text{O}_2\text{S} \) and \(\text{Ln}_2\text{O}_3 \) for the rest of \(\text{Ln} \). The effects of lanthanide contraction on the crystallization behavior, thermolysis, and phase evolution upon calcination of the anhydrous LRH compounds as well as the structural parameters of the products were clearly revealed. The photoluminescence was also detailed for the anhydrous LRH of \(\text{Eu} \) and \(\text{Tb} \).

Keywords: anhydrous hydroxyl sulfate; crystal structure; oxysulfate; oxysulfide; photoluminescence
Layered inorganic compounds have been finding wide applications in the fields of drug delivery, catalysis, high performance microelectronics, flame retardants, hydrogel, UV shielding, and luminescence. Layered rare-earth hydroxide (LRH) beneficially combines a layered crystal structure and the abundant and unique optical, magnetic and catalytic functionalities of the rare-earth elements, and is thus of great research interest. The group of layered compounds has the general formula of $\text{Ln}_2(\text{OH})_6m(\text{A}^\text{x})_{m/x}n\text{H}_2\text{O}$, where Ln is a trivalent rare-earth ion, A is a guest anion, $1.0 \leq m \leq 2.0$, and $n=0-2$. The study on LRH can be dated back to the late 1960s and is exemplified by the work on $\text{Ln}(\text{OH})_2\text{A}$ ($\text{A}=\text{Cl}^-$ or NO_3^-), which consists of alternating hydrogen-bonded $[\text{Ln}(\text{OH})_2]^+$ and A^- layers. LRH gained new attention since Gándara et al. reported in 2006 that the layered metal-organic framework (MOF) of $[\text{Ln}_4(\text{OH})_{10}(\text{H}_2\text{O})_4]_n\text{A}_m$ ($\text{Ln}=\text{Ho}, \text{Dy}, \text{Yb and Y}; \text{A}=\text{NDS}^{2-}$ and AQDS^{2-}) can be a superior heterogeneous catalyst because of its ability to facilely vary the coordination number in the catalysis process. The subsequent efforts on synthesis, interlayer exploration and structure characterization have identified that the $\text{Ln}_2(\text{OH})_5\text{A} \cdot 1.5\text{H}_2\text{O}$ family ($\text{A}=\text{halogen or NO}_3^-$ anion; $m=1$, $x=1$, and $n \sim 1.5$ in the general formula) is generally capable of facile anion exchange and intercalation, and since then exfoliation of $\text{Ln}_2(\text{OH})_5\text{A} \cdot 1.5\text{H}_2\text{O}$ crystals into nanosheets and further functionalization with either the pristine crystallites or exfoliated nanosheets have been achieved. It is generally observed that this group of LRH is more readily crystallized for the intermediately sized Ln^{3+} ($\text{Ln}=\text{Sm-Tm}$ and Y) by the well-established synthetic strategies of refluxing (homogeneous precipitation),
hydrothermal reaction, and controlled titration. The LRHs of the larger sized La\(^{3+}\) and Nd\(^{3+}\) were obtained by Byeon et al. via solvothermal reaction of the corresponding nitrate and AOH (A=K, Rb, or Cs) in ethanol, and their ability to undergo anion exchange and exfoliation was also demonstrated. For the second smallest lanthanide ion of Yb\(^{3+}\), Fogg et al. found that the product tends to be a mixture of the three layered phases of \(\text{Yb}_2(\text{OH})_3\text{NO}_3\cdot n\text{H}_2\text{O}\), where \(n=1.0, 1.5\) and 2.0, respectively, and the anion exchangeable \(\text{Yb}_2(\text{OH})_3\text{NO}_3\cdot 1.5\text{H}_2\text{O}\) was isolated by applying kinetic control. For the smallest Lu\(^{3+}\), phase pure LRH has not been reported to the best of our knowledge.

The sulfate-type LRH of \(\text{Ln}_2(\text{OH})_4\text{SO}_4\cdot 2\text{H}_2\text{O}\) (A=SO\(_4^2-\); \(m=2, x=2,\) and \(n\sim 2\) in the general formula) was synthesized by Sasaki’s group in 2010 via refluxing a mixed solution of \(\text{Ln}_2(\text{SO}_4)_3\cdot 8\text{H}_2\text{O}, \text{Na}_2\text{SO}_4\) and hexamethylenetetramine (homogenous precipitation), and its crystal structure was subsequently studied in detail. It was found that this new category of LRH distinguishes itself from the \(\text{Ln}_2(\text{OH})_5\text{A}\cdot 1.5\text{H}_2\text{O}\) family in that its hydroxide host layers exclusively consist of \(\text{LnO}_9\) polyhedra, with the interlayer \(\text{SO}_4^{2-}\) bidentatedly coordinated to the Ln center (un-exchangeable), while those of \(\text{Ln}_2(\text{OH})_5\text{A}\cdot 1.5\text{H}_2\text{O}\) are constructed via edge sharing of \(\text{LnO}_8\) (\([\text{Ln}(\text{OH})_7\text{H}_2\text{O}]\)) and \(\text{LnO}_9\) (\([\text{Ln}(\text{OH})_8\text{H}_2\text{O}]\)) polyhedra, with the interlayer anions existing as free ones for charge compensation. From the view point of chemical composition, one unique feature of \(\text{Ln}_2(\text{OH})_4\text{SO}_4\cdot 2\text{H}_2\text{O}\) is that it has exactly the same Ln/S molar ratio of the rare-earth oxysulfate (\(\text{Ln}_2\text{O}_3\text{SO}_4\)) and oxysulfide (\(\text{Ln}_2\text{O}_2\text{S}\)), two important groups of compounds that have diverse functionalities. \(\text{Ln}_2\text{O}_2\text{S}\), for example, is well-known as a host lattice for efficient luminescence and is being widely used in the fields of ultraviolet light emitting diodes (UV-LEDs),
persistent luminescence, cathode-ray tubes (CRTs), plasma display panels (PDPs), and X-ray computed tomography (X-CT).

$\text{Ln}_2\text{O}_2\text{SO}_4$ can act as the precursor to fabricate $\text{Ln}_2\text{O}_2\text{S}$ and itself also finds promising applications in oxygen storage, catalysis, and luminescence. The traditional synthesis of $\text{Ln}_2\text{O}_2\text{SO}_4$ and $\text{Ln}_2\text{O}_2\text{S}$ is generally independent of the harmful reactant/exhaust of elemental sulfur, $\text{Na}_2\text{S}_2\text{O}_3$, H_2S, CS_2, SO_x and so forth. In this regard, $\text{Ln}_2(\text{OH})_4\text{SO}_4\cdot2\text{H}_2\text{O}$ is an ideal precursor since its unique Ln/S molar ratio allows simple dehydration and dehydroxylation of this type of LRH under proper annealing to yield $\text{Ln}_2\text{O}_2\text{SO}_4$ and $\text{Ln}_2\text{O}_2\text{S}$ with water as the only by-product.

The sulfate-type LRH seems limited to the larger lanthanide ions of Pr-Tb by the aforementioned homogeneous precipitation technique. We recently performed $\text{Ln}_2(\text{OH})_4\text{SO}_4\cdot2\text{H}_2\text{O}$ synthesis via hydrothermal reaction of Ln nitrate and ammonium sulfate, and successfully extended the family to Ln=La-Dy (excluding Ce and Pm).

In our further efforts to expand the sulfate family of LRH compounds, we identified the anhydrous hydroxyl sulfate of $\text{Ln}_2(\text{OH})_4\text{SO}_4$ as a new type of LRH for the relatively smaller lanthanide ions of Eu-Lu (including Y). This newly discovered group of LRH, together with the hydrated $\text{Ln}_2(\text{OH})_4\text{SO}_4\cdot2\text{H}_2\text{O}$ reported recently, allows the green synthesis of $\text{Ln}_2\text{O}_2\text{SO}_4$ for the whole lanthanide series (including Y) and also provides an opportunity to explore the effects of lanthanide contraction on the structural feature and stability of $\text{Ln}_2\text{O}_2\text{SO}_4$ and $\text{Ln}_2\text{O}_2\text{S}$. In the following sections, we report the selective crystallization, crystal structure, and thermolysis of $\text{Ln}_2(\text{OH})_4\text{SO}_4$ as well as the phase transition upon calcination. The photoluminescence properties were also detailed for the anhydrous LRH of Eu and Tb.
■ MATERIALS AND METHODS

Reagents and Synthesis. Ln(NO$_3$)$_3$·6H$_2$O (Ln=La-Lu and Y, 99.99% pure), (NH$_4$)$_2$SO$_4$ (>99.5% pure), and NH$_3$·H$_2$O solution (ultrahigh purity) were purchased from Kanto Chemical Co. Inc. (Tokyo, Japan) and were used as received. Milli-Q filtered water (resistivity >18 MΩ·cm) was used throughout the experiments. Ln(NO$_3$)$_3$·6H$_2$O was dissolved in water to make Ln$^{3+}$ solution of 0.1 mol/L. In a typical synthesis, 6 mmol (NH$_4$)$_2$SO$_4$ particles (0.79284 g) were dissolved in 60 mL of the Ln$^{3+}$ solution (6 mmol of Ln$^{3+}$), followed by dropwise addition of NH$_3$·H$_2$O for pH adjustment. The resultant turbid solution was homogenized at room temperature under magnetic stirring for 10 min before being transferred to a Teflon lined stainless steel autoclave of 100 mL capacity for 24 h of hydrothermal crystallization in an air oven preheated to a predetermined temperature. The resultant solid was recovered via centrifugation after natural cooling to room temperature, washed with water three times and ethanol once, and was then dried in air at 70 °C for 24 h.

Chemical analysis. Elemental contents of the products were determined for Ln via inductively coupled plasma (ICP) spectroscopy (Model IRIS Advantage, Jarrell-Ash Japan, Kyoto, Japan), for N via spectrophotometry (Ubest-35, Japan Spectroscopic Co., Ltd, Tokyo), and for C and S via combustion-infrared absorptiometry (Model CS-444LS, LECO, St. Joseph, MI). The detection limit of the above analyses is 0.01 wt% in each case.

Powder X-ray diffraction. Phase characterization was performed via X-ray diffractometry (XRD, Model RIN T2200, Rigaku, Tokyo, Japan) under 40 kV/40 mA, using monochromatic Cu-$K\alpha$ radiation (λ=0.15406 nm). The XRD data for Rietveld analysis were measured via the step-scan mode, with a step size of 0.02° and an
accumulation time of 35 s. Profile fitting, crystal structure searching and Rietveld refinements were performed using the TOPAS 4.2 software.43

Electron microscopy and electron diffraction. Product morphology was observed \textit{via} field-emission scanning electron microscopy under an acceleration voltage of 10 kV (FE-SEM, Model S-5000, Hitachi, Tokyo). Selected area electron diffraction (SAED) and high-resolution lattice imaging were attained with a transmission electron microscope working at 200 kV (TEM, Model JEM-2100F, JOEL, Tokyo). The TEM sample was prepared by dispersing a small amount of sufficiently ground powder in ethanol via sonication, followed by depositing a few drops of the resultant suspension onto a carbon-coated grid and then air drying.

FTIR spectroscopy. Fourier transform infrared spectroscopy (FTIR, Model 4200, JASCO, Tokyo), performed by the standard KBr pellet method, was used to investigate the functional groups built in the compounds.

Thermolysis. Thermal decomposition of the layered compound was investigated \textit{via} thermogravimetry/differential thermal analysis (TG/DTA, Model STA449F3, Jupiter, NETZSCH, Germany) in flowing simulated air (50 mL/min), with a constant heating rate of 10 °C/min in the wide temperature range of RT-1560 °C.

Derivation of Ln$_2$O$_2$SO$_4$ and Ln$_2$O$_2$S. The anhydrous Ln$_2$(OH)$_4$SO$_4$ was calcined in ambient air at 800 °C and in flowing H$_2$ (200 mL/min) at 900-1200 °C to produce Ln$_2$O$_2$SO$_4$ and Ln$_2$O$_2$S, respectively, with a holding time of 1 h at the annealing temperature and a heating rate of 5 °C/min in the ramp stage.

Photoluminescence. The excitation, emission and fluorescence decay kinetics were measured on an FP-6500 fluorospectrophotometer (JASCO, Tokyo) equipped with a 150 W xenon lamp for excitation, using a scan speed of 100 nm/min and a slit width of 3 nm for both excitation and emission.
RESULTS AND DISCUSSION

Figure 1. The final Rietveld difference plot of the Gd$_2$(OH)$_4$SO$_4$ compound obtained via hydrothermal reaction at 150 °C and pH=10 (a), and indexation of the diffraction peaks in the 2θ range of 5-60° (b) and 60-90° (c). In panel (a), the observed pattern is shown by the black solid line, the calculated data are shown by the red dots, the positions of Bragg reflections are indicated with the green tick marks, and the difference between the results of experiment and calculation is given by the gray line.

Characterization and structure analysis of Gd$_2$(OH)$_4$SO$_4$. Hydrothermal reaction of the turbid solution containing Gd(NO$_3$)$_3$, (NH$_4$)$_2$SO$_4$, and NH$_3$·H$_2$O at 150 °C and pH=10 produced a white precipitate. XRD analysis yielded sharp and symmetric reflections, indicating a highly crystalline nature of the product (Figure 1a). Elemental analysis of the same product found ~66.6 wt% of Gd, 6.90 wt% of S, 0.01 wt% of N, and 0.06 wt% of C, from which the chemical formula of
Gd$_2$(OH)$_{3.91}$(SO$_4$)$_{1.01}$(NO$_3$)$_{0.003}$(CO$_3$)$_{0.02}$ was derived if one assumes that the trace amounts of N and C solely came from the contamination of NO$_3^-$ (from Gd nitrate) and CO$_3^{2-}$ (from the dissolved atmospheric CO$_2$). The product can accordingly be approximated as Gd$_2$(OH)$_4$SO$_4$. This composition is identical to that of the recently reported LRH of Gd$_2$(OH)$_4$SO$_4$·2H$_2$O,29,42 except that it does not contain any hydration water. The absence of crystal water was further confirmed by comparing the FTIR responses of this new compound and Ln$_2$(OH)$_4$SO$_4$·2H$_2$O (Figure S1), where it is clearly seen that they both contain hydroxyls and SO$_4^{2-}$, but the former lacks the O-H stretching (ν_1 and ν_3, ~3219 cm$^{-1}$) and H-O-H bending (ν_2, ~1676 cm$^{-1}$) vibrations of hydration water.

Crystal structure decipherment found that all the XRD peaks of Gd$_2$(OH)$_4$SO$_4$ can be indexed by the C-centered monoclinic cell, and further analysis of reflection extinction showed that the most probable space group is $C2/m$. In order to establish the crystal structure a simulated annealing procedure was applied to the randomized coordinates of one Gd, one S and four O ions.44 Eighteen varied parameters were yielded, indicating the rationality and high rate of success of the proposed crystal structure. The dynamical occupancy correction of the atoms was used to merge the ions falling in a special position.$^{45-47}$ After the calculations, a solution was found with well-acceptable R-factors (Table 1). The proposed crystal structure contains one SO$_4^{2-}$ tetrahedron disordered between two positions like in the hydrated LRH of Ln$_2$(OH)$_4$SO$_4$·2H$_2$O,29,30 and the LnO$_9$ polyhedron is in the form of three-capped trigonal prism with one O node disordered between two positions (Figure 2). Hydrogen
atoms were not localized in the difference electron map and their positions could not be derived from the analysis of probable hydrogen bonds, and therefore they are omitted in the crystal structure. Refinement of this model is stable and gives well-acceptable R-factors (Table 1). The fractional atomic coordinates, isotropic displacement parameter (\AA^2), and atomic occupancy are shown in Table 2, and the main bond lengths of the structure can be found in Table S1. The structural analysis of Gd$_2$(OH)$_4$SO$_4$ using the program PLATON did not reveal additional elements of symmetry, which further confirms the suggested $C2/m$ space group. The diffraction peaks were thus indexed in Fig. 1b,c according to the results of Rietveld refinement.

Table 1. Results of structure refinements for the anhydrous hydroxyl sulfate compound of Gd$_2$(OH)$_4$SO$_4$

<table>
<thead>
<tr>
<th>Sp.gr.</th>
<th>Cell parameters (Å), axis angle β (°), and cell volume V (Å3)</th>
<th>R_{wp}, R_p (%)</th>
<th>χ^2</th>
<th>R_B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C2/m$</td>
<td>$a = 13.8759$ (5) $b = 3.6577$ (1) $c = 6.2842$ (2) $\beta = 99.057$ (1) $V = 314.97$ (2)</td>
<td>9.31, 4.70, 1.98</td>
<td>2.95</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Fractional atomic coordinates, isotropic displacement parameters B_{iso} (Å2), and atomic occupancy (Occ.) of Gd$_2$(OH)$_4$SO$_4$

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B_{iso} (Å2)</th>
<th>Occ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd</td>
<td>0.19468 (7)</td>
<td>0.5</td>
<td>0.2303 (2)</td>
<td>0.95 (8)</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>0.5006 (7)</td>
<td>0.5</td>
<td>0.131 (1)</td>
<td>1.5 (2)</td>
<td>0.5</td>
</tr>
<tr>
<td>O$_{1h}$</td>
<td>0.1690 (6)</td>
<td>0</td>
<td>0.480 (2)</td>
<td>2.0 (3)</td>
<td>1</td>
</tr>
<tr>
<td>O$_{2h}$</td>
<td>0.2938 (6)</td>
<td>0</td>
<td>0.152 (1)</td>
<td>2.0 (3)</td>
<td>1</td>
</tr>
<tr>
<td>O$_3$</td>
<td>0.5869 (7)</td>
<td>0.5</td>
<td>0.049 (2)</td>
<td>3.3 (3)</td>
<td>1</td>
</tr>
<tr>
<td>O$_4$</td>
<td>0.5021 (7)</td>
<td>0.188 (3)</td>
<td>0.723 (1)</td>
<td>2.3 (3)</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Figure 2. Schematic illustration of the crystal structure of Gd$_2$(OH)$_4$SO$_4$.

Figure 2 shows the deciphered crystal structure of anhydrous Gd$_2$(OH)$_4$SO$_4$ (space group: C2/m), which can be viewed as an alternative stacking of the sulfate anion and hydroxide main layer, composed of [GdO$_6$] polyhedra, along the a-axis. Among the nine O atoms coordinated to each Gd center, six are stemming from hydroxyls and three from the SO$_4^{2-}$ tetrahedron, and the [GdO$_6$] polyhedron presents three-capped trigonal prism in the structure. Each unit cell contains four Gd atoms, and thus the structural composition can be expressed as Gd$_4$(OH)$_8$(SO$_4$)$_2$. The circle shows that one O ion is disordered by two sites (one O ion distributed over these two sites). The reason for such a behavior is due to the same potential energy and small potential barrier of these two sites, which allows the O ion easily jumps from one site to another as shown in Figure S2. Averaging over time and space leads to "two sites" occupied by one O ion with occupancy of 1/2 for each. This can be understood as (1) one O ion jumps from one site to another site (disordering over time), and (2) one O ion is located in a first site in one unit cell, but another O ion is located in a second site in another unit cell (disordering over space). Though it cannot be credibly decided which type of disordering happens in the structure, such disordering usually occurs in a structure with large voids in which the ion can easily migrate.
Figure 3. A Comparison of the crystal structures of Gd$_2$(OH)$_4$SO$_4$·2H$_2$O (a) and Gd$_2$(OH)$_4$SO$_4$ (b).

Figure 3 compares the stacking and coordination modes of the anhydrous Gd$_2$(OH)$_4$SO$_4$ (Figure 3b) and its hydrated Gd$_2$(OH)$_4$SO$_4$·2H$_2$O counterpart (Figure 3a). The two structures share similarities in that the Gd-containing main layer and inter-layer SO$_4^{2-}$ stack along the a-axis and that the host layer solely consists of [GdO$_9$] polyhedra. It should be noted that Figure 3b shows CN=10 because a static averaged structure was given for the disordered O atom (O$_4$) as discussed earlier. Despite the above structural similarities, the Gd$_2$(OH)$_4$SO$_4$ anhydrous LRH distinguishes itself from Gd$_2$(OH)$_4$SO$_4$·2H$_2$O in that: (1) the hydroxide main layers are linked with the inter-layer anion through sharing edges (Figure 3b) rather than “O” node (Figure 3a) of the sulfate tetrahedron; (2) in Gd$_2$(OH)$_4$SO$_4$·2H$_2$O, among the nine O atoms coordinated to each Gd center, six are stemming from hydroxyls, two from H$_2$O molecules and one from SO$_4^{2-}$ tetrahedron, while in Gd$_2$(OH)$_4$SO$_4$, six are from
hydroxyls and three from the \(\text{SO}_4^{2-} \) group, though the \([\text{GdO}_3] \) similarly presents as three-capped trigonal prism in both the structures; (3) \(\text{Gd}_2(\text{OH})_4\text{SO}_4 \) shows a smaller gallery height (~6.85 Å) and cell volume (~314.97 Å\(^3\)) than \(\text{Gd}_2(\text{OH})_4\text{SO}_4 \cdot 2\text{H}_2\text{O} \) (gallery height ~8.32 Å; cell volume ~388.14 Å\(^3\)) due to the absence of crystal water.

Figure 4. FE-SEM (a) and TEM (b) morphologies, SAED pattern (c), and HRTEM lattice fringes (d) for \(\text{Gd}_2(\text{OH})_4\text{SO}_4 \).

FE-SEM observation found that the \(\text{Gd}_2(\text{OH})_4\text{SO}_4 \) LRH crystallized as quasi-hexagons with the lateral sizes and thicknesses of up to ~10 and 1.5 μm, respectively (Figure 4a). SAED analysis (Figure 4c) of the crushed crystallites (Figure 4b) yielded well-arranged diffraction spots, indicating high crystallinity of the sample. The identified (-3-11), (-114), and (-405) diffractions have the \(d \)-spacings of ~2.78, 1.47, and 1.23 Å, respectively, which are in close vicinity to the values of \(d_{(-3-11)}=2.694 \), \(d_{(-114)}=1.442 \), and \(d_{(-405)}=1.231 \) Å derived from Rietveld refinement of the XRD pattern (Table S2). The (-3-11) and (-114) planes would have a dihedral angle of ~84.7°, as calculated from the lattice constants and axis angle (\(\beta \)) derived via Rietveld refinement (Table 1), and the value is indeed close to the ~80.3° observed
from the SAED pattern. HRTEM analysis (Figure 4d) well resolved the lattice fringes with interplanar distances of ~3.07 and 2.88 Å and a dihedral angle of ~87.3°, which can be well assigned to the (002) and (310) planes of monoclinic Gd$_2$(OH)$_4$SO$_4$, respectively, according to the results of Rietveld refinement ($d_{(002)}=3.103$ Å and $d_{(310)}=2.855$ Å in Table S2; calculated dihedral angle: ~84.1°). The well corresponding results of TEM analysis and Rietveld refinement further confirmed the crystal structure proposed in this work for the Gd$_2$(OH)$_4$SO$_4$ anhydrous LRH.

![XRD Patterns](image)

Figure 5. XRD patterns of the products obtained via hydrothermal reaction at 150 °C and pH=10 for the typical lanthanides (Ln) indicated in the figure.

Extended synthesis of Ln$_2$(OH)$_4$SO$_4$ anhydrous LRH. Under identical hydrothermal reaction at 150 °C and pH=10 for 24 h, the synthesis of Ln$_2$(OH)$_4$SO$_4$ anhydrous LRH was attempted for the full spectrum of lanthanides, and Figure 5 shows the XRD patterns of a series of representative products. It is seen that only Eu$_2$(OH)$_4$SO$_4$ can be obtained aside from the Gd$_2$(OH)$_4$SO$_4$ discussed above. The
La-Sm products conform well to the hydrated LRH of Ln$_2$(OH)$_4$SO$_4$·2H$_2$O.29,30,31 It is worth noting that Tb$^{3+}$ (0.1095 nm for CN=9) is only slightly smaller than Gd$^{3+}$ (0.1107 nm for CN=9), but its product crystallized as Tb$_2$(OH)$_5$A·nH$_2$O,15,32 instead of Tb$_2$(OH)$_4$SO$_4$, where the A group was inferred to be SO$_4^{2-}$ from the FTIR response of the product (Figure S1). The Er-product exhibits an amorphous diffraction and appears to be a transient state between those of Tb and Lu, as similarly observed before during hydrothermal crystallization of Ln$_2$(OH)$_4$SO$_4$·2H$_2$O hydrated LRH.42 The Lu-product cannot be indexed with any of the currently available JCPDS Card or reported reference. The results of elemental analysis (Table S3) and FTIR spectroscopy (Figure S1), however, indicated that it contains OH$^-$ and SO$_4^{2-}$ and has the nominal composition of Lu$_2$(OH)$_{4.95}$(SO$_4$)$_{0.38}$(NO$_3$)$_{0.14}$(CO$_3$)$_{0.08}$·1.04H$_2$O, which is quite close to the aforementioned Tb$_2$(OH)$_{5}$(SO$_4$)$_{0.5}$nH$_2$O. Structure decipherment is yet unsuccessful for this Lu product. The different crystallization behaviors across the lanthanide spectrum were believed to be mainly caused by lanthanide contraction. The Ln$^{3+}$ ion in an aqueous solution would present itself in the form of \([\text{Ln(OH)}_x$$\text{(H}_2\text{O)}_y$$\text{(SO}_4)_z$$]^ {3-x/2^-}\) complex,49 where the OH$^-$, SO$_4^{2-}$, and H$_2$O species are expected to compete with each other to coordinate with Ln$^{3+}$ and thus affect the final composition of the product. Under the same hydrothermal condition, the smaller ions of Tb-Lu would undergo a higher extent of hydrolysis (larger x while smaller z),50 and therefore higher OH$^-$/Ln$^{3+}$ (~2.5) molar ratios were observed for their products.

It can thus be inferred from the above that lowering the pH of the reaction system would favor the crystallization of Ln$_2$(OH)$_4$SO$_4$ anhydrous LRH, and indeed
phase-pure Tb$_2$(OH)$_4$SO$_4$ and Dy$_2$(OH)$_4$SO$_4$ were successfully produced at 150 °C under pH=9 and 8, respectively. The result is encouraging and directing, and further lowering the pH to 7 allowed the crystallization of Ln$_2$(OH)$_4$SO$_4$ at 150 °C for the smaller ions of Ho$^{3+}$ (0.1072 nm for CN=9), Y$^{3+}$ (0.1075 nm for CN=9) and Er$^{3+}$ (0.1062 nm for CN=9). It is also interesting to find out that at the lowest applicable pH of 7 (no precipitation under even lower pH), phase pure Ln$_2$(OH)$_4$SO$_4$ can be successfully synthesized at the slightly higher temperature of 180 °C for the even smaller Tm$^{3+}$ (0.1052 nm for CN=9) and Yb$^{3+}$ (0.1042 nm for CN=9) and at 200 °C for the smallest Lu$^{3+}$ (0.1032 nm for CN=9). The XRD patterns of these extended members of Ln$_2$(OH)$_4$SO$_4$ (Ln=Tb-Lu) are shown in Figure 6, and their chemical compositions were further confirmed by the results of FTIR spectroscopy (Figure S3) and elemental analysis (Table S4, for the typical Ln of Y and Lu). It is noteworthy that our extensive synthesis efforts indicated that the anhydrous LRH of Ln$_2$(OH)$_4$SO$_4$ is only obtainable for Ln=Eu-Lu (including Y). For the larger Ln ions of La$^{3+}$-Sm$^{3+}$, either raising the reaction temperature or lowering the solution pH would lead to the crystallization of anhydrous Ln(OH)SO$_4$ (SO$_4$/Ln=1:1 molar ratio). The above results thus clearly reveal that solution pH and reaction temperature decisively determine phase selection, and the optimal hydrothermal conditions vary with the type of Ln$^{3+}$ owing to the different hydrolysis behaviors of Ln$^{3+}$ by lanthanide contraction. It can also be inferred from the above results that either a lower pH or a higher reaction temperature facilitates SO$_4^{2-}$ coordination to Ln$^{3+}$ and meanwhile expels out the weakest coordinating H$_2$O molecules from the coordination sphere of Ln$^{3+}$ to yield
anhydrous Ln$_2$(OH)$_4$SO$_4$.

SEM observation (Figure S4) revealed that the morphology of Ln$_2$(OH)$_4$SO$_4$ is closely related to the type of Ln and the hydrothermal conditions. The Eu, Gd and Tb products, synthesized at the relatively high pH of 10 and 9, are quasi-hexagonal microplates (Figure S4), while the Dy-Lu products, obtained at the lower pH of 8 and 7, are aggregated microspheres or irregular shapes (Figure S4). The aggregation under lower pH was believed to be caused by attraction of the negatively charged SO$_4^{2-}$ groups by surface adsorbed protons. The different morphologies and dimensions of the particles/crystallites may largely account for the varying relative intensities of XRD peaks, for example (200) and (002), for different Ln (Figure 6).

![Figure 6. XRD patterns of the extended members of Ln$_2$(OH)$_4$SO$_4$ (Ln=Tb-Lu and Y), with the hydrothermal conditions summarized in Table S5 for each sample.](image)

With the structure model solved for Gd$_2$(OH)$_4$SO$_4$, the cell parameters of Ln$_2$(OH)$_4$SO$_4$ were derived via pattern fitting and the results are tabulated in Table S6.
and also exhibited in Figure 7 as a function of the ionic radius of Ln\(^{3+}\). It is seen that the lattice constants \(a, b,\) and \(c;\) Figure 7a-c) and cell volume \(V;\) Figure 7d) tend to successively decrease for a smaller Ln\(^{3+}\), conforming to lanthanide contraction, while the axis angle \(\beta\) behaves oppositely (Figure 7e). It was also noticed that the \(b\) and \(c\) parameters show slopes of \(~1.625\) and \(1.052\) with decreasing Ln\(^{3+}\) size from Eu\(^{3+}\) to Lu\(^{3+}\), respectively, while the \(a\) parameter declines to a much lesser extent and with a slope of only \(~0.395\). The \((0kl)\) and \((h00)\) diffractions reflect structural features of the host layers and the stacking of the host layer along the \(a\)-axis, respectively. Shrinkage of the \(a\) dimension is thus significantly constrained by the rigidly pillaring SO\(_4^{2-}\) because the interlayer SO\(_4^{2-}\) rarely shows substantial distortion from the regular tetrahedron in most crystal structures. The limited contraction of the \(a\) parameter corresponds well with the almost non-shifting \((h00)\) peaks (such as 200; Figure 6).

Figure 7. Correlation of lattice parameters \(a\) (part a), \(b\) (part b), and \(c\) (part c), cell volume \(V\) (part d), and axis angle \(\beta\) (part e) with the ionic radius of Ln\(^{3+}\) for Ln\(_2\)(OH)\(_4\)SO\(_4\) (Ln=Eu-Lu and Y). The ionic radius for 9-fold coordinated Ln\(^{3+}\) is cited from reference 51.
Thermolysis. The thermal decomposition of Ln$_2$(OH)$_4$SO$_4$ (Ln=Eu-Lu, and Y) has been investigated via DTA/TG in simulated air for the wide temperature range of RT-1560 °C. The results of Eu$_2$(OH)$_4$SO$_4$ are shown in Figure 8a for example, and the rest can be found in Figure S5. Compared with its hydrated Eu(OH)$_4$SO$_4$·2H$_2$O counterpart (Figure S6), a distinct feature of Eu$_2$(OH)$_4$SO$_4$ is that it lacks the stage of dehydration up to ~300 °C (~7.7% of weight loss accompanied by an endotherm at ~269 °C, Figure S6), which again confirms the anhydrous nature of Eu$_2$(OH)$_4$SO$_4$. The Ln$_2$(OH)$_4$SO$_4$ compounds synthesized in this work similarly show two steps of
weight losses that correspond to dehydroxylation (up to ~550 °C) and desulfurization (above ~1000 °C) to yield Ln$_2$O$_2$SO$_4$ and Ln$_2$O$_3$, respectively (Figure 8). The reactions of the two stages can accordingly be expressed as Ln$_2$(OH)$_4$SO$_4$ → Ln$_2$O$_2$SO$_4$ + 2H$_2$O (stage I) and Ln$_2$O$_2$SO$_4$ → Ln$_2$O$_3$ + SO$_3$ (stage II). The well corresponding observed (Table 4) and theoretical (Table S7) weight losses of each stage further confirm the proposed decomposition procedure. The occurrence temperature of each stage nonetheless shows clear dependence on the type of Ln. As shown in Figure 8b and Table 4, dehydroxylation occurs towards a higher temperature for a smaller Ln$^{3+}$ while desulfuration behaves oppositely. The temperature range of Ln$_2$O$_2$SO$_4$ existence thus narrows towards a smaller Ln$^{3+}$, which makes Lu$_2$O$_2$SO$_4$ the least stable amongst the Ln$_2$O$_2$SO$_4$ family.

![Figure 9](image)

Figure 9. Correlation of lattice parameters a (part a), b (part b) and c (part c), cell volume V (part d), and axis angle β (part e) with the ionic radius of Ln$^{3+}$ for Ln$_2$O$_2$SO$_4$. The ionic radius of Ln$^{3+}$ and the structural data for Ln=La-Sm (blue colored) are taken from references 51 and 42, respectively.
Green derivation of \(\text{Ln}_2\text{O}_2\text{SO}_4 \) and \(\text{Ln}_2\text{O}_2\text{S} \). According to the results of TG (Figure 8b), calcining \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \) in air at 800 °C for 1 h yielded \(\text{Ln}_2\text{O}_2\text{SO}_4 \) in a phase-pure form (Figure S7). The group of oxysulfate compounds crystallize in the monoclinic system (space group: \(\text{C}2/\text{c} \)), in which each Ln is bonded with seven oxygen atoms (three from \(\text{SO}_4^{2-} \)) to make one-capped trigonal prism.\(^{31}\) The diffraction peaks of \(\text{Ln}_2\text{O}_2\text{SO}_4 \) clearly shift to larger 2θ angles for a smaller \(\text{Ln}^{3+} \), in compliance with lanthanide contraction. The \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \) anhydrous LRH newly discovered in this work (\(\text{Ln} = \text{Eu}-\text{Lu} \) and \(\text{Y} \)), together with the \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \cdot 2\text{H}_2\text{O} \) hydrated LRH reported recently (\(\text{Ln} = \text{La}-\text{Dy} \)),\(^{42}\) allows for the first time the green synthesis of \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \) for the full spectrum of lanthanides (excluding \(\text{Ce}^{3+} \) and \(\text{Pm}^{3+} \)). Figure 9 exhibits structural parameters of the \(\text{Ln}_2\text{O}_2\text{SO}_4 \) derived from \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \) (\(\text{Ln} = \text{Eu}-\text{Lu} \) and \(\text{Y} \)) and \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \cdot 2\text{H}_2\text{O} \) (\(\text{Ln} = \text{La}-\text{Sm} \)),\(^{42}\) where it is seen that the lattice constants (Figure 9a-c) and cell volume (Figure 9d) linearly decrease toward a smaller \(\text{Ln}^{3+} \) while an opposite trend was observed for the axis angle \(\beta \) (Figure 9e).

![Figure 10](image.png)

Figure 10. Correlation of the lattice parameters \(a \) (part a) and \(c \) (part b) and cell volume \(V \) (part c) with the ionic radius of \(\text{Ln}^{3+} \) for \(\text{Ln}_2\text{O}_2\text{S} \). The ionic radius of \(\text{Ln}^{3+} \) and the structural data for \(\text{Ln} = \text{La}-\text{Sm} \) are taken from references \(^{51}\) and \(^{42}\), respectively.

Treating \(\text{Ln}_2(\text{OH})_4\text{SO}_4 \) in hydrogen may allow dehydroxylation and reduction of the \(\text{S}^{6+} \) in \(\text{SO}_4^{2-} \) to \(\text{S}^{2-} \) and thus the formation of \(\text{Ln}_2\text{O}_2\text{S} \). Considering that the reducing
power of H₂ is yet rather low at the dehydration temperature (up to ~550 °C, Figure 8b), Ln₂O₃S was thus expected to form via the sequential reactions of Ln₂(OH)₄SO₄ → Ln₂O₂SO₄ + 2H₂O (dehydroxylation) and Ln₂O₂SO₄ + 4H₂ → Ln₂O₂S + 4H₂O (reduction). The XRD patterns of the products calcined from Ln₂(OH)₄SO₄ in flowing H₂ at 1200 °C for 1 h are shown in Figure S8. It is seen that the Eu and Gd products can be well indexed to single-phased Ln₂O₂S of a hexagonal structure. The oxysulfide compounds belong to the P-3m1 space group, where Ln is bonded with three sulfur and four oxygen atoms to make mono-capped polyhedron of seven-fold coordination. Cubic-structured Ln₂O₃ impurity was unexpectedly found for the products of smaller Ln³⁺ (Ln=Tb-Eu and Y), as indicated with an asterisk for the (222) diffraction in each case. Rietveld refinement found that the portion of Ln₂O₃ gradually increases towards a smaller Ln³⁺, from ~3.3 wt% for Tb³⁺ to ~78.5 wt% for Lu³⁺. The phase constituents and cell parameters determined via Rietveld analysis for Ln₂O₂S and Ln₂O₃ can be found in Table S8. It should be noted that calcining Ln₂(OH)₄SO₄ at the lower temperature of 900 °C yielded similar XRD results, though at which the reducing powder of H₂ is known to be well acceptable and Ln₂O₂SO₄ would be stable in air (Figure 8b and Table 4). The above observations may thus reveal that the affinity of SO₄²⁻ towards Ln³⁺ is significantly lower in H₂ than in air. As a result, the S could have partially dissociated as SOₓ upon calcining the Ln₂(OH)₄SO₄ of Ln=Tb-Lu (including Y) in H₂. The gradually decreasing thermal stability of Ln₂O₂SO₄ (Figure 8b and Table 4) well explains the increasing content of Ln₂O₃ in the reduction product for a smaller Ln³⁺ (Table S8). Figure 10 depicts the influence of Ln³⁺ size on the
structural parameters of Ln$_2$O$_2$S for the full spectrum of lanthanides, where it is seen that the lattice constants (a and c, Figure 10a,b) and cell volume (Figure 10c) almost linearly decrease towards a smaller Ln$^{3+}$.

![Photoluminescent properties](image)

Figure 11. PLE (black lines) and PL (colored lines) spectra of Eu$_2$(OH)$_4$SO$_4$ (a) and Tb$_2$(OH)$_4$SO$_4$ (b), with the excitation and emission wavelengths used for the measurements included.

Photoluminescent properties. Photoluminescence investigation indicated that the Eu$_2$(OH)$_4$SO$_4$ and Tb$_2$(OH)$_4$SO$_4$ LRH compounds produce red and green emissions through their characteristic f-f transitions under UV excitation, and the excitation (PLE) and emission (PL) spectra are shown in Figure 11. It is noteworthy that the other optically active ions of Gd$^{3+}$, Dy$^{3+}$, Ho$^{3+}$, Er$^{3+}$, and Tm$^{3+}$ exhibit negligible luminescence in the Ln$_2$(OH)$_4$SO$_4$ lattice. The PLE spectrum of Eu$_2$(OH)$_4$SO$_4$ ($\lambda_{em}=617$ nm) shows sharp excitation peaks ascribable to the intra-$4f^6$ transitions of Eu$^{3+}$, with the $^7F_0\rightarrow^5L_6$ transition at 395 nm being the strongest (Figure 11a). Under the excitation of 395 nm, the $^5D_0\rightarrow^7F_1$ transitions of Eu$^{3+}$ were observed with the $^5D_0\rightarrow^7F_2$ (617 nm) red emission being the most prominent (Figure 11a). This conforms to the low site symmetry of Eu$^{3+}$ in the monoclinic lattice. The excitation spectrum of Tb$_2$(OH)$_4$SO$_4$ ($\lambda_{em}=545$ nm) is composed of the $4f^8\rightarrow4f^75d^1$ inter-configurational
transitions and the intra-$4f^6$ transitions in the ~200-300 and 300-400 nm spectral regions, respectively, with the former being dominant (Figure 11b). Under excitation with the spin-allowed $f-d$ transition at 243 nm, the typical $^5D_4 \rightarrow ^7F_1$ ($J=3$-6) transitions of Tb$^{3+}$ were produced, with the $^5D_4 \rightarrow ^7F_5$ green emission at 545 nm being predominant (Figure 11b). The fluorescence decay kinetics of the 617 nm red emission of Eu$_2$(OH)$_4$SO$_4$ ($\lambda_{ex}=395$ nm) and the 545 nm green emission of Tb$_2$(OH)$_4$SO$_4$ ($\lambda_{ex}=243$ nm) can both be fitted with a single exponential (Figure S9), from which the lifetime values of 0.67 and 0.78 ms were determined for the two compounds, respectively. The CIE chromaticity coordinates derived from the emission spectra are around (0.60, 0.39) and (0.36, 0.55) for Eu$_2$(OH)$_4$SO$_4$ and Tb$_2$(OH)$_4$SO$_4$, corresponding to orange red and yellowish green colors, respectively (Figure S10).

CONCLUSIONS

The anhydrous hydroxyl sulfate of Ln$_2$(OH)$_4$SO$_4$ (Ln=Eu-Lu and Y) has been hydrothermally synthesized in this work as a new family of layered rare-earth hydroxide via manipulating the coordination of Ln$^{3+}$ center ion. It was generally observed that a higher reaction temperature and/or a lower solution pH favors the crystallization of Ln$_2$(OH)$_4$SO$_4$ for a smaller Ln$^{3+}$. Detailed analyses of the compounds in terms of crystal structure, thermal behavior, phase transformation to Ln$_2$O$_2$SO$_4$ and Ln$_2$O$_2$S, and photoluminescence have led to the following main conclusions: (1) Ln$_2$(OH)$_4$SO$_4$ crystallizes in the monoclinic system (space group: $C2/m$), with the structure built up via alternative stacking of the interlayer SO$_4^{2-}$ and the two-dimensional host layers, composed of [LnO$_9$] polyhedra, along the a-axis. The
[LnO₃] polyhedron presents as three-capped trigonal prism and the host layers are linked together via edging sharing with SO₄²⁻ tetrahedron. Ln₂(OH)₄SO₄ shows a smaller gallery height and cell volume than its hydrated Ln₂(OH)₄SO₄·2H₂O counterpart due to the absence of crystal water; (2) The lattice parameters (a, b, c) and cell volume tend to decrease towards a smaller Ln³⁺ across the lanthanide series while an opposite trend was found for the axis angle β. The a parameter shows significantly smaller contraction than the b and c parameters with decreasing Ln³⁺ size due to the rigid pillaring of interlayer SO₄²⁻; (3) Ln₂(OH)₄SO₄ undergoes dehydroxylation and then desulfurization to yield Ln₂O₂SO₄ and finally Ln₂O₃ in air. Dehydroxylation happens at a higher temperature towards a smaller Ln³⁺ while desulfurization behaves oppositely. As a consequence, the temperature window of Ln₂O₂SO₄ existence narrows towards a smaller Ln³⁺; (4) Calcining Ln₂(OH)₄SO₄ in air at 800 °C yielded single-phased monoclinic Ln₂O₂SO₄ for Ln=Eu-Lu (including Y), whose lattice constants (a, b, c) and cell volume almost linearly decrease while the axis angle increases towards a smaller Ln³⁺. Calcining Ln₂(OH)₄SO₄ in H₂ at 900-1200 °C only produced hexagonal structured Eu₂O₂S and Gd₂O₂S as pure phases. The product of the smaller Ln³⁺ (Ln=Tb-Lu and Y) is a phase mixture of Ln₂O₂S and Ln₂O₃, whose Ln₂O₃ content increases with decreasing radius of Ln³⁺; (5) Eu₂(OH)₄SO₄ and Tb₂(OH)₄SO₄ exhibit orange red [chromaticity coordinates: (0.60, 0.39)] and yellowish green [chromaticity coordinates: (0.36, 0.55)] emissions under UV excitation at 395 and 243 nm, respectively. The 617 nm Eu³⁺ and 545 nm Tb³⁺ emissions were analyzed to have the fluorescence lifetimes of ~0.67 and 0.78 ms, respectively.
ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Supporting figures and tables (PDF)
Crystallographic information files (cif)
Checkcif file (PDF)

Further details of the crystal structures Gd₂(OH)₄SO₄, may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; E-mail: crystdata@fiz-karlsruhe.de; http://www.fiz-karlsruhe.de/request_for_deposited_data.html on quoting the deposition numbers: CSD-433211.

AUTHOR INFORMATION

Corresponding Authors

*(X.J.W.) E-mail: wangxuejiao@bhu.edu.cn

*(J.-G.L.) E-mail: li.jiguang@nims.go.jp

ORCID

Ji-Guang Li: 0000-0002-5625-7361

Author contributions

X.J.W., M.S.M. and J.-G.L. contributed equally to this work. All the authors were involved in the results discussion and have read and approved this final version.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is supported in part by the National Natural Science Foundation of China (Grants No. 51672039) and the Russian Foundation for Basic Research (17-52-53031). Xuejiao Wang acknowledges the financial support from the China Scholarship Council for her overseas Ph. D. study (Contract No. 201406080035).

■ REFERENCES

(18) Geng, F. X.; Matsushita, Y.; Ma, R. Z.; Xin, H.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T. General Synthesis and Structural Evolution of a Layered Family of
Ln₆(OH)₉Cl₄·nH₂O (Ln=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y). *J. Am. Chem. Soc.* 2008, 130, 16344-16350.

(29) Liang, J. B.; Ma, R. Z.; Geng, F. X.; Ebina, Y.; Sasaki, T. Ln$_2$(OH)$_3$SO$_4$·nH$_2$O (Ln=Pr to Tb; n~2): A New Family of Layered Rare-Earth Hydroxides Rigidly Pillared by Sulfate Ions. *Chem. Mater.* **2010**, 22, 6001-6007.

(31) Wang, X. J.; Li, J.-G.; Molokeev, M. S.; Zhu, Q.; Li, X. D.; Sun, X. D. Layered Hydroxyl Sulfate: Controlled Crystallization, Structure Analysis, and Green Derivation
of Multi-Color Luminescent (La,RE)$_2$O$_2$SO$_4$ and (La,RE)$_2$O$_2$S Phosphors (RE=Pr, Sm, Eu, Tb, and Dy). *Chem. Eng. J.* **2016**, *302*, 577-586.

(38) Tan, S.; Paglieri, S. N.; Li, D. M. Nano-scale Sulfur-tolerant Lanthanide

(44) Golovnev, N. N.; Molokeev, M. S.; Vereshchagin, S. N.; Atuchin, V. V. Synthesis and Thermal Transformation of a Neodymium(III) Complex [Nd(HTBA)_{2}(C_{2}H_{3}O_{2})(H_{2}O)_{2}·2H_{2}O to Noncentrosymmetric Oxosulfate Nd_{2}O_{2}SO_{4}. *J. Coord. Chem.* **2015**, *68*, 1865-1877.

(49) Thompson, L. C. Complexes, in Handbook on the Physics and Chemistry of Rare Earths, ed. K. A. Gschneidner, Jr. and L. Eyring, North-Holland Physics, Amsterdam, **1979**.

$\text{Ln}_2(\text{OH})_4\text{SO}_4$ (Ln=Eu-Lu and Y)