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Stability of the Fadeev-like current sheet with respect to transversally propagating15

kink-like perturbations (flapping mode) is considered in terms of two-dimensional lin-16

ear MHD numerical simulations. It is found that the current sheet is stable when the17

total pressure minimum is located in the sheet center, and unstable when the max-18

imum value is reached there. It is shown that an unstable spot of any size enforces19

the whole sheet to be unstable, though the increment of instability decreases with20

the reduction of the unstable domain. In unstable sheets the dispersion curve of in-21

stability shows a good match with the double-gradient (DG) model prediction. Here,22

the typical growth rate (short-wavelength limit) is close to the DG estimate averaged23

over the unstable region. In stable configurations the typical frequency matches the24

maximum DG estimate. The dispersion curve of oscillations demonstrates a local25

simplified analytical solution.27
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26 maximum at wavelength ∼ 0.7 sheet half-width, which is a new feature absent in



I. INTRODUCTION31

In the present paper we focus on the magnetohydrodynamic (MHD) stability of magnetotail-32

like current sheets to kink-like perturbations propagating in the dawn-dusk direction. Per-33

turbations of such kind are known as flapping oscillations, registered in numerous in-situ34

observations at the Earth1–8, Venus9, Jupiter and Saturn10,11. Particularly, in the Earth35

midtail (∼ 10− 30Re, where Re is the Earth radius) long-wavelength (λ ∼ several Re)36

large-amplitude (∼ Re) flaps propagate mainly in the direction orthogonal to the magnetic37

field curvature5,12 from the central part of the sheet toward the flanks, with a speed of38

∼ 0.1 Va, where Va is the Alfvén velocity, and quasiperiod of several minutes5,6,13.39

The most fundamental approach to the problem of stability of static hydromagnetic40

equilibria, based on the energetic principle, is developed in a classical paper of Bernstein,41

Frieman, Kruskal and Kulsrud14. In frame of this method the problem of stability of so-42

called 2.5-dimensional configurations (i.e., configurations, where plasma and magnetic field43

parameters do not depend on one of three spacial coordinates) is studied in Ref.15, and44

the stability criterion for two-dimensional (2D) magnetotail equilibria with zero dawn-dusk45

magnetic component is derived by Schindler and Birn in Ref.16 Particularly, for the antisym-46

stability criterion for the ballooning mode, proved to be the most unstable one, is given in48

their Eq. 54,49
{

BxBz 6= 0, BxBz

∂2Bz

∂Ψ∂z
≤ 0

}

, z > 0, (1)50

where x and z are the cartesian coordinates, with x-axis pointing tailward, z-axis pointing51

northward, and y-axis directed dawnward, Bx and Bz are the magnetic field components52

and Ψ is the magnetic potential. We use this frame and notations throughout the current53

paper. Criteria (1) assumes that field lines cross the x axis, and the perturbation of the54

magnetic potential vanishes at the left (ionospheric) boundary.55

In application to the subject of our study, we can note that criterion (1) does not supply56

the practical necessities exactly. First, as the sufficient condition for the ballooning mode57

stability it may considerably overestimate the necessary and sufficient stability criterion for58

the flapping mode. Second, the simple form of criterion (1) is appropriate only in the simplest59

case when the quantity BxBz∂
2

changes sign along any field line or it has different signs at different field lines, in such cases61

3

47 metric modes, i.e. for the kink-like perturbations of the current sheet (CS), the sufficient

60 ΨzBz is of fixed sign within the whole CS. If this quantity



the much more complicated integral quantity is to be calculated (see Eq. (B4) in Ref.16).62

This makes the Schindler-Birn criterion substantially non-local and hardly applicable for63

same time, morphology of the flapping mode allows suggesting that the conditions in the65

sheet center are dominant for the mode development.66

paper17, where the so-called double-gradient (DG) model of the flapping oscillations was68

netic component Bz(x) respective to transversally propagating kink-like perturbations ∼70

exp[i(ωt− kyy)] yielded the simple dispersion relation18,71

ω = ωf

√

ky∆

ky∆+ 1
, (2)72

ω2
f =

(

1

µ0ρ

∂Bx

∂z

∂Bz

∂x

)

z=0

. (3)73

Here, µ0 is the permeability of free space, ρ is the plasma mass density, 2∆ is the typical74

magnetic gradients. Simple analysis shows19 that the quantity ω2
f is positive (sheet is stable)77

when the total pressure (plasma + magnetic) has a minimum in the sheet center, and ω2
f is78

negative (sheet is unstable) in the opposite case.79

It is clear, that this stability criterion, being less general, than criterion (1), is more handy80

for practical use. At the same time, the numerous simplifying assumptions (incompressibil-81

ity, sheet scaling) involved in the DG analysis, do not allow accepting the DG model results a82

priori. Although in some cases the model-based estimates of the typical flapping parameters83

show a good agreement with those derived from satellite data analysis17,18,20,21, the practical84

scope of this model is still in question. Particularly, the DG model implements the stability85

analysis for the non-equilibrium background magnetic configuration, where the net force is86

nonzero, while the linear MHD approach implies it to vanish. Besides, the DG model is87

quasi-one-dimensional, i.e. it does not provide direct predictions for two-dimensional con-88

figurations. In paper22 we performed 2D linear MHD numerical simulations of the flapping89

mode in the aforementioned magnetic configuration. In the present paper we proceed to90

4

64 satellite data analysis. At last, criterion (1) is undefined at the CS center z = 0. At the

67 A more appropriate result is derived in the thin CS approximation, developed in the

69 introduced. Stability analysis of the Harris-like CS with additional linear normal mag-

75 cross-size of the CS, ky is the wave number and ω is the angular frequency. It is seen that

76 according to the DG model, stability of the CS depends on the sign of the product of two

91 the numerical stability analyzes for generalized Fadeev-Manankova23,24 equilibrium CS and



compare the results with analytical predictions of the DG model.92

lations setup. Results of the numerical simulations are compared with analytical predictions94

in Section III. Section IV embraces summary and discussion.95

II. SETUP96

98

The generalized Harris-Fadeev-Kan-Manankova model of the background equilibria is99

given by the following expressions25,100

Ψ = ln

[

f cos(X∗) +
√

1 + f 2 cosh(Z∗)√
W

]

, (4)101

X∗ = x− b cos(kθ)

Rk
, (5)102

Z∗ = z +
b sin(kθ)

Rk
, (6)103

W =

(

1 +
kb

Rk+1

)2

− 4kb

Rk+1
sin2

(

(k + 1)θ

2

)

, (7)104

R =
√

(x− a)2 + z2, (8)105

θ = arctan

(

z

x− a

)

. (9)106

Here, {a, b, f, k} are the model parameters and Ψ is the magnetic potential. The physical107

quantities are expressed via Ψ and its derivatives,108

Bx = −∂Ψ

∂z
, Bz = +

∂Ψ

∂x
, (10)109

ρ = exp (−2Ψ) + ρb, (11)110

p = 0.5 exp (−2Ψ), (12)111

as well as the plasma velocity V.115

The set of compressional ideal MHD equations26 is solved numerically using the perturba-116

tion technique. All variables are represented as a sum of two terms: the equilibrium state U0,117

5

93 The paper is organized as follows. Section II describes the CS model and numerical simu-

97 In this section we specify the background magnetoplasma configuration and outline our

methodology in brief, the more detailed description is provided in Ref.22

112 where p is the plasma pressure, and ρb is a small constant term representing the contribution

114 simulations). The third component of the background magnetic field, By, is identically zero,

113 en velocity in numericalof the additional cold plasma population (required to reduce the Alfv´



and a small perturbation U1, hence MHD equations are linearized. The solution U1 is found118

the perturbation amplitude is δU(x, z, t; ky). Therefore, the system of linearized equations120

for amplitudes takes the conservative form,121

∂(δU)

∂t
+

∂Fx

∂x
+

∂Fz

∂z
= S, (13)122

where123

δU = (δρ, {δMi}, {δBi}, δE)i=x,y,z . (14)124

The variable U denotes the vector of normalized plasma parameters, where Mi = ρVi is125

the momentum, E = p/(κ − 1) + 0.5ρV 2 + 0.5B2 is the total energy density, and κ is the126

polytropic index (the value of 5/3 is utilized). The set of normalization constants includes127

the sheet half-width ∆, the lobe magnetic field B0, p0 = B2
0/µ0 for pressure, the peaking128

value of the mass density in the sheet center, ρ0, the Alfvén velocity Va = B0/
√
µ0ρ0, and129

time t0 = ∆/Va. The expressions for the flux densities Fx and Fz and for the source function130

S are given in Appendix A of Ref.22 In this way, the initial system of equations is reduced131

to a time-dependent two-dimensional problem for complex quantities δU, while physically132

meaningful functions are ℜ[δU exp (ikyy)]. Simulations are seeded with initial perturbation133

δVz|t=0 = exp (−z2). Under these conditions the vector of unknowns consists of eight non-134

zero terms: ℜ(δρ), ℜ(δMx), ℑ(δMy), ℜ(δMz), ℜ(δBx), ℑ(δBy), ℜ(δBz), ℜ(δE). In the135

following, we omit the subscript < 0 > in the notations of background quantities.136

Equations (13) are solved numerically by means of the 3rd order central semi-discrete137

upwind scheme27 with open boundary conditions ∂ · /∂n = 0. We have used the optimal138

(in the sense of Courant-Friedrichs-Lewy (CFL) coefficient and the computational cost)139

strong stability preserving Runge-Kutta method of the 3rd order described in Ref.28 The140

integration time step (CFL number = 0.5) is adopted to ensure the convergence of the results141

with respect to values of the time step. The (∇ ·B) = 0 constraint is enforced on each time142

step by using the method of projection29.143

6

119 in the form of a wave, propagating across the CS in y direction: U1 = δU exp(ikyy), where

144 The results of 2D numerical simulations are compared to the quasi-1D DG model, rep-

145 resenting the solution of Eq. (13) under the following simplifying scaling assumptions17: a)

146 the CS is stretched, so that ν = ∆/Lx ≪ 1, where Lx is the typical sheet length; b) the

147 normal magnetic component is small, so that ǫ = max(Bz)/max(Bx) ≪ 1; and c) ǫ/ν ≪ 1.

148 Under these assumptions the terms of the order of ν2ǫ and ǫ2 are neglected (see underlined



1

ρ

d

dz

(

ρ
dvz
dz

)

+ k2
yvz

(

U0

ω2
− 1

)

= 0, (15)151

U0 =
1

ρ

∂Bx

∂z

∂Bz

∂x
(16)153

vz(0) = 1,
dvz
dz

(0) = 0, (17)156

dvz
dz

(zb) = −kyvz(zb). (18)157

III. RESULTS163

Setting background model parameters to a = 0, b = 1, f = 0.1, k = 10 and ρb = 0.1, we164

derive the Fadeev-like magnetic configuration (see Fig. 1 in Ref.25). We consider the domain165

x ∈ [x0 − 3, x0 + 3], symmetrical with respect to the X-line location x0 ≈ 12.6. The box is166

depending on ky because eigenfunctions broaden with decreasing wave number (see Fig. 5 in168

Ref. 22). Fig. 1a shows the magnetic potential Ψ and field lines, in Fig. 1b the total pressure169

Π is plotted. We see that in the central part of the domain the total pressure reaches a170

minimum at the x axis (stable region), while at the flanks Π demonstrates maximum at171

sign of U0 changes synchronously with the total pressure behavior. Note the DG typical173

frequency ωf =
√

U0(z = 0). Fig. 1d plots the Schindler-Birn stability criterion, calculated174

from the Eq. (1). It is seen that the quantity BxBz∂
2
ΨzBz is not of constant sign. Criterion175

7

149 terms of Eq. (10) in Ref.18) and system (13) is reduced to a single equation for perturbation

150 of the normal velocity component, vz,

152 where the function

154 and all other quantities are assumed to be independent of the x coordinate. The spectral

155 problem is set by completing Eq. (15) with boundary conditions

158 Here, conditions (17) specify the kink-like perturbation of the CS, zb is the upper z-boundary,

159 proxy of the infinity, and condition (18) assumes vz to decrease exponentially outside the

160 CS. For Bx ∼ tanh(z), Bz ∼ x and uniform background mass density the analytical solution

161 (2–3) of the spectral problem (15–18) is derived in Ref.18; it represents the dispersion relation

162 for the fastest growing/oscillating mode.

167 symmetrical also with respect to the CS center z = 0. The location of z-boundaries varies

172 z = 0 (unstable regions). In Fig. 1c the normalized quantity U0 by Eq. (16) is depicted; the



(1) predicts stability only for the computational boxes bounded within the region, where Π176

exhibits minimum in the sheet center; for wider boxes it is not appropriate.177

Fig. 2 shows the dispersion relation γ(ky), where γ = ℑ(ω). Calculations are performed178

with three values of the uniform grid step: dx = dz = 1/24 (blue asterisks), 1/25 (green179

curve), and 1/26 (red crosses). It is seen that the numerical scheme demonstrates a fast grid180

convergency, so that for not too large values of ky the grid step 1/25 is quite appropriate. For181

smaller values ky ∼ 1 or less, the grid step may be increased even more – up to 1/24. Then182

we see that for any ky the sheet average growth rate coincides with the single-point quantity,183

i.e. instability develops uniformly. For reference, the DG analytical dispersion relation (2)184

where the maximum over the sheet value of γf = ℑ(ωf) is used. Red dashed curve plots the186

solution of the one-dimensional spectral problem (15–18) in the cross-section x = x0 − 2.5.187

On Fig. 3 numerical solutions for perturbations vz(x0, z) for ky = {1, 2, 3} are compared192

with the solutions of problem (15–18). It is seen that for small values of wave number ana-193

lytical and numerical solutions demonstrate rather good match, which fades with increasing194

ky.195

Fig. 4 shows the quantity ω2(ky = kmax
y ), computed in symmetric computational box196

x ∈ [x0 − ∆x, x0 + ∆x], as a function of the right boundary location (green crosses). The197

maximum value of wave number kmax
y = 10 for instability and 20 for oscillations. Reducing198

the box size in the x direction, we reduce the unstable part of the CS, where the total199

pressure has a maximum in the sheet center (see Fig. 1b). It is seen that the growth rate200

absolute value decreases with the unstable region trimming. The red solid curve shows the201

quantity U0(z = 0), calculated from the formula (16), and the red dashed curve shows the202

average negative value of U0(z = 0). Notably, the entire sheet turns out to be unstable203

independently on the size of the intrinsically unstable region. However, the quantity γ2 fits204

the average negative value of U0, hence an infinitely small unstable spot would destabilize205

8

185 is shown by a black curve (the solution for Harris-like CS with a constant mass density),

188 It is seen that green and red curves show rather good agreement in the low-wavelength range

189 ky > 4, the maximum discrepancy ∼ 10% is reached at ky ≈ 1. The simplest analytical

190 estimate (black curve) overtops the numerical solution for 10% approximately uniformly in

191 the wavenumber range ky > 2.

206
a sheet for an infinitely long time. The values of ω2(kmax

y ) from the solution of the spectral

207 problem (15–18) in the corresponding cross-sections are shown by black circles. Expectably,



When the simulation box does not contain any unstable spot, the sheet demonstrates209

a stable behavior with almost harmonic oscillations, except of slow numerical attenuation210

with the exponent factor ∼ 10−2 − 10−3, depending on wave number, as it is shown in Fig. 5.211

Normalized Fourier spectra for averaged perturbations (averaging on the third quadrant212

[x < x0, z < 0]) for ky = 1 are shown in Fig. 6. This plot demonstrates that the low-213

frequency oscillations are excited at the maximum DG frequency. The dispersion curve of214

these oscillations, shown in Fig. 7, does approach the DG prediction in short- and long-215

wavelength segments. The major difference is manifested in a local hump of ω(ky) at ky ≈216

8.7, i.e. at wavelength λ ≈ 0.7∆. Accuracy of the obtained dispersion relation ω(ky) is217

limited by the frequency step dω = 2π/tmax, in our case this value is 0.0063. The difference218

between single-point and sheet-averaged frequencies does not exceed dω (except of the hump219

peak); the finite value of dω is also the reason of flat segments at blue and red curves. The220

limiting low-wavelength frequency is very close to the DG maximum estimate and does not221

depend on the box width, as it is seen in Fig. 4.222

The high-frequency eigenmodes, observed on Fig. 6, propagate with group velocities of223

1 (close to the maximum background sound speed, 0.85) and 3 (close to maximum back-224

ground Alfvén velocity, 3.1), respectively. Contrary to the flapping mode, these eigenmodes,225

only oscillating quantities, δVy and δVz, produce the vortex motion. The very low-frequency227

peaks of Fourier spectra of δMx, δBy and δBz, viewed on Fig. 6 to the left of DG mode, are228

non-physical noises.229

IV. SUMMARY AND DISCUSSION230

respect to transversally propagating kink-like perturbations (flapping mode). Results of 2D232

numerical simulations agree with analytical predictions of the quasi-one-dimensional DG233

model. We used symmetric simulation boxes centered at the X-line in the x direction and234

at z = 0 in the z direction. Central part of the investigated domain, where total pressure235

Π attains minimal values at z = 0, is appeared to be stable, while flanks, where Π peaks at236

the x axis, are found to be unstable.237

9

208 these values match the quantity U0(z = 0) with an accuracy of several percents.

226 produced by initial perturbation Vz = exp (−z2), are preserved in the Harris CS, where the

231 In this paper we present a case study of the MHD stability of the Fadeev-like CS with



It is shown that unstable part of any size, seized by simulation box, drives the whole sheet238

to unstable regime. In such case increment of instability γ decreases with the reduction of239

unstable domain, so that the value of γ2 fits the average negative ω2
f by Eq. (3) of the DG240

model. One-dimensional analytical model supports this result: best match of analytical and241

numerical dispersion curves and eigenfunctions are obtained in some approximately central242

When the entire simulation box is located within the stable part of the sheet, the typical247

frequency of oscillations (short-wavelength limit) demonstrates a high-accurate match with248

the maximum DG estimate. The numerically obtained dispersion curve is steeper than the249

DG predicted one in long-wavelength range, and overtops it slightly everywhere. The first250

effect is produced by the non-uniformity of the mass density18, while formula (2) was derived251

under the condition ρ = const. The second effect is related to the approximate nature of252

the estimate of ω2
f as 〈U0〉 |U0<0 (see Fig. 4). The local maximum on the dispersion curve at253

It represents the contribution of all terms of linear MHD system, that have been neglected255
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243 cross-section of the unstable region. Even the simplest analytical solution (2, 3) yields the

244 reasonable 10% accurate estimate of the dispersion relation. From the perspective of satellite

245 data analysis, the 2D and 1D solutions are virtually indistinguishable, except for a very long-

246 wavelength range ky ∼ 0.1/∆.

254 the wavelength λ ∼ 0.7∆ is a new feature, which has not been captured by the DG model.

256 in analytical solution (see Eq. 10 in Ref.18). As for the rest, the good match of numerical

257 and analytical solutions is supported by the appropriate scaling of the examined background

258 configuration, where ν = ∆/Lx ∼ 0.5 and ǫ = max(Bz)/max(Bx) = 0.1.

259 Thus, results of 2D numerical simulations with an equilibrium background configuration

260 demonstrate two important features, missed in previous studies with non-equilibrium back-

261 ground. In a stable CS, this is a local maximum of the dispersion curve, which was not

262 observed in simulations22 with Harris-like CS with the X-point – at first sight, rather similar

263 to the current model. The second feature is revealed in simulations of unstable CS, where

264 the typical growth rate matches the sheet-averaged DG estimate, while in non-equilibrium

265 configuration it was scaled as the sheet maximum value. For details, see Ref.30, where the

266 sheet-averaged estimate was found matching the results of nonlinear 3D MHD simulations

267 only (notable, in 3D simulations the background configuration was numerically relaxed to

268 equilibrium state).

269 It may seem that the condition of CS stability with respect to the flapping mode may be



expressed in two equivalent ways: maximum/mimimum of the total pressure in the sheet270

center, and sign of the quantity U0(z = 0). This is not exactly true. The behavior of the271

total pressure, not U0, is the key factor controlling the stability. Indeed, due to symmetry272

Π may demonstrate only a minimum or maximum in the sheet center. Assuming that the273

quantity ∂Π/∂z is continuous, we conclude that a minimum of the total pressure means the274

positiveness of its second derivative on z in the sheet center. In static equilibrium, where275

∇Π = (B · ∇)B, we have276

∂2Π

∂z2
=

∂Bx

∂z

∂Bz

∂x
+Bz

∂2Bz

∂z2
+Bx

∂2Bz

∂x∂z
+

(

∂Bz

∂z

)2

. (19)277

At the x axis the last two terms on the right-handed side of Eq. (19) vanish due to the278

symmetry. The first term represents the function U0 of the DG model multiplied by ρ. The279

second term may be neglected in thin current sheets but not in the general case. When280

this term is neglected, the condition ∂2Π/∂z2 > 0 is identical to the condition U0(x, 0) > 0,281

yielding in turn ∂Bz/∂x < 0 (in an adopted reference system, where ∂Bx/∂z < 0), i.e.282

the sheet is stable when Bz is growing earthward, which is a well-known marker (see, e.g.,283

Refs.31,32). However, in the general case the second term on the right-handed side of Eq. (19)284

may result in some difference between predictions based on the behavior of the total pressure285

and the function U0.286

It is easy to assure that the stability criterion, expressed via a condition of the central287

minimum of total pressure, has a clear physical sense. Using the divergence-free condition,288

we can rewrite Eq. (19) at the x axis as follows,289

∂2Π

∂z2
(x, 0) =

∂Bx

∂z

∂Bz

∂x
− Bz

∂2Bx

∂x∂z
= −B2

z

∂

∂x

(

1

Bz

∂Bx

∂z

)

, (20)290

where the under-derivative term on the right-handed side is nothing but κc, the curvature291

of the magnetic field line at the x axis. Hence, the stability condition ∂2Π(x, 0)/∂z2 > 0292

takes the form293
(

∂κc

∂x

)

z=0

< 0. (21)294

The sign of curvature depends on the reference system and magnetic configuration. In the295

coordinate system adopted in this paper, curvature is negative to the left of the X-line and296

positive to the right. Thus, the stability criterion claims that the CS is stable with respect297

to the MHD flapping mode, if the magnetic field curvature radius, Rc = 1/|κc(x, 0)|, is298
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decreasing in the tailward direction before the X-line (sheet is thinning), and Rc is increasing299

behind the X-line (sheet is thickening).300

The direct comparison of criterion (21) and Schindler-Birn criterion (1) and its general301

form (B4) in Ref.16 is problematic, if only because these two expressions have different302

regions of definition. At any rate, numerical simulations in the pure stable domain reveal303

that these two criteria do not contradict each other. However, in point of the flapping mode304

criterion (21) has some substantial advantages. First, it provides the necessary and sufficient305

condition for the mode stability. Second, it is ”more local”, because it requires calculations306

along the sheet center only, not within the entire domain.307

In stretched current sheets the quantity ∂2Π/∂z2 may take rather small values. However,308

reduction of ∂2Π/∂z2 does not reduce the effectiveness of this quantity, it only reduces the309

typical frequency/growth rate of the flapping mode. It demonstrates the limitation of the310

boundary layer approximation: the last one implies that in sufficiently stretched current311

sheets the total pressure across the sheet may be assumed constant. Under this assumption312

the flapping mode is totally lost. It is also notable that criterion (21) is derived for the313

exact equilibria, where ∇p = j × B. If the force balance is corrupted, as it takes place314

in approximate equilibria solutions, criterion (21) may be inappropriate. Particularly, the315

approximate solution in the form Ψ = ln{cosh[F (ǫx)z]/F (ǫx)}+O(ǫ2), introduced in Ref.33,316

may appear to be not sufficiently accurate. Here, the small parameter ǫ characterizes the317

ratio of the system typical sizes in z and x directions. If the quantity Bz(x, 0)/Bx(x, zb) is318

also of the order of ǫ, in such a case Eq. (20) yields that at the x axis ∂2Π/∂z2 ∼ ǫ2.319

As previously noted, the condition (21) is mostly controlled by the sign of the derivative320

∂Bz/∂x. According to Cluster statistics34, in the Earth magnetotail behind 14Re at the321

substorm growth phase the growth direction of Bz is fluctuating with time scales of 5 − 15322

min. Our simulations reveal that kink-like deformations of the magnetotail CS should start323

to grow, probably slowly, any time, when Bz is increasing tailward. Then, when the sign of324

∂Bz/∂x changes, this deformation plays a role of initial perturbation for the flapping wave,325

propagating toward the flanks. Analytically, such mechanism was studied in Ref.35326

At first sight, it may seem that according to our findings the magnetotail should never327

be quiet, which is not true. Indeed, the non-local destabilization of the CS means that the328

near-tail high-density plasma should impede the instability considerably. Other effective329

stabilizing factors are the interaction with ionosphere36, non-zero magnetic component By
37

330

12



and, possibly, shear flows38,39.331

342
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FIG. 1. Background magnetic configuration: a) magnetic potential (color) and field lines (white);

b) total pressure; c) the function U0 (16); d) Schindler-Birn stability criterion (1).

18



0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

ky

γ

Dispersion  curves,  x in   [x0  − 3, x0 + 3]. x0 = 12.57

 

 

DG curve, γ
f
 = 0.303 (peaking value)

dx = dz = 1 / 24 , one−point value
dx = dz = 1 / 25 , one−point value
dx = dz = 1 / 26 , one−point value
dx = dz = 1 / 25 , sheet average value

1d analytical solution at x = x0 −2.5
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X-line location. The numerically derived dispersion relation of instability, calculated in a single
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dx = dz = 1/25, analogous dispersion relation, computed with the grid step 1/24 is shown by blue
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(dx = dz = 1/25) is depicted by violet crosses. The black curve shows analytical dispersion relation
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