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Abstract. Data aggregation issues for numerical modeling are reviewed in the present study. 

The authors discuss data aggregation procedures as preprocessing for subsequent numerical 

modeling. To calculate the data aggregation, the authors propose using numerical probabilistic 

analysis (NPA). An important feature of this study is how the authors represent the aggregated 

data. The study shows that the offered approach to data aggregation can be interpreted as the 

frequency distribution of a variable. To study its properties, the density function is used. For 

this purpose, the authors propose using the piecewise polynomial models. A suitable example 

of such approach is the spline. The authors show that their approach to data aggregation allows 

reducing the level of data uncertainty and significantly increasing the efficiency of numerical 

calculations. To demonstrate the degree of the correspondence of the proposed methods to 

reality, the authors developed a theoretical framework and considered numerical examples 

devoted to time series aggregation. 

1. Introduction 

Aggregation is quite a popular method of converting big data [2, 8, 12]. For example, the application 

of the histogram allows reducing dimensions of the data set and the level of uncertainty and increasing 

significantly the efficiency of numerical calculations. It is important to note that the histograms are 

examples of the symbolic data using in the Symbolic data analysis [2, 3].  

Symbolic Data Analysis and Data Mining use the histograms to study a variety of different 

processes and are applied to model the variability of quantitative characteristics. 

Histogram data models and histogram regression models based on the Symbolic analysis are a new 

important direction to discover knowledge in a data base. Billard L., Diday E. proposed the symbolic 

data type named as histogram-valued variables to employ them for regression modeling [3, 4]. 

In this study, the authors propose a new approach to numerical modeling using input data 

aggregation. To develop a novel method for performing efficient aggregation, let us employ 

mathematical aggregation functions presented through piecewise polynomial models, including 

piecewise linear functions and splines. A spline is a good example of the piecewise polynomial 

functions to perfectly employ in this study. This approach will allow employing the probability density 

function models as input data. 

To examine the structure of input data uncertainty, let us use density functions (DF). It is important 

that data uncertainty should be studied to identify the relationship between the input and output 

characteristics when input probability density functions are unknown. The following statements 

confirm the usefulness of piecewise polynomial models. 
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The application of the piecewise polynomial functions as a mathematical model allows reducing 

the level of uncertainty and increasing significantly the efficiency of numerical calculations. This 

approach allows one to represent accurately enough the arbitrary distribution. It is important to note 

that despite its simplicity, the piecewise polynomial functions cover all possible ranges of probability 

density estimation. Histograms and frequency polygons are widely used in practice and are most 

popular. A histogram is a piecewise constant function which approximates the probability density with 

accuracy O(h). However, even midpoints of histograms approximate the probability density function 

with accuracy O(h
2
). Consequently, the frequency polygon approximates the function with accuracy 

O(h
2
) [10].  

2. Data aggregation 

In this section, let us consider the data aggregation as a pre-treatment method for subsequent and 

numerical modeling. The essence of the aggregation procedure is methods for reducing the dimension 

of the original empirical data in order to increase the efficiency of data processing, knowledge 

discovery in data bases and to reduce data uncertainty. Data aggregation plays a most concerned role 

to extract useful information from large volume of data. The essences of the aggregation procedures 

constitute methods to reduce the initial data set to less data. Aggregation can be considered as 

converting data with a high degree of detail to a more generalized representation.  

The aggregation procedure has its own advantages and disadvantages. The positive moment is that 

detailed data are often very volatile due to the impact of different random factors, making difficulties 

to discover general trends and data patterns. In many cases, it is useful to consider numerical big data 

in an aggregated form such as summation or average. 

It is important to bear in mind that the use of such aggregation procedures as averaging, the 

exclusion of extreme values (emission), the smoothing procedure can lead to loss of important 

information. There are various methods of data aggregation. Therefore, the choice of the aggregation 

method is a complex problem, because the wrong numerical methods of calculation may introduce 

additional uncertainty, which is not present in the original problem. The data aggregation can used 

various mathematical models. Numerical probabilistic analysis outlines the following models such as 

histograms, frequency polygons and splines. 

A spline is a sufficiently smooth polynomial function that is piecewise-defined, and possesses a 

high degree of smoothness at the places where the polynomial pieces connect (which are known as 

knots). Let us consider the probability density of the random variables as an approximated spline. 

In numerical analysis, a Hermite spline is a spline where each piece is a polynomial specified in 

Hermite form. A cubic Hermite spline is a piecewise polynomial function where each piece is a third 

degree polynomial specified in Hermite form. On the unit interval of [0 1]x  , polynomial s  can be 

defined by: 

 1 2 3 4( ) ( ) (0) ( ) (0) ( ) (1) ( ) (1)s x x s x s x s x s          

where  

 
3 2 3 2 3 2 3 2

1 2 3 4( ) 2 3 1 ( ) 2 ( ) 2 3 ( )x x x x x x x x x x x x x                   

 

In arbitrary interval 1[ ]i ix x  , the polynomial can be written in the form: 

 1 2 3 1 4 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i is x t s x h t s x t s x h t s x    
       

where  

 1( ) /i i it x x h h x x       

A quintic Hermite spline on uniform mesh   with step h  can be defined by:  

 0 1 2

0

( ) (( ) ) ( ) (( ) ) ( ) (( ) ) ( )
n

i i i i i i

i

s x x x h f x x x h f x x x h f x  


            

where 
2

i C   are basis functions, and if 1x  , then ( ) 0i x  . If 1x  , then:  
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3 2 3 3 2

0 1 2( ) (1 ) (6 3 1) ( ) (1 ) (3 1) ( ) (1 )x x x x x x x x x x x                           

3. Spline aggregation  

Let us consider the spline approach to data aggregation. This approach is useful for the following 

reasons. Underlying this approach is the notion of the spline. The spline can be regarded as a 

mathematical object that is easy to describe and calculate the mathematical procedures and operations, 

while maintaining the essence of the frequency distribution of the data. Since the spline is a piecewise 

polynomial function, then it can be regarded as a data aggregation function in the aggregation issues. 

An aggregation function performs the numerical calculations on a data set and returns the spline 

values. Splines are useful for data uncertainty analysis due to the fact that they adequately represent 

the random distribution of random variables. Despite its simplicity, the spline covers all possible 

ranges of probability density function estimation. A simple and flexible spline structure greatly 

simplifies their use in numerical calculations and it has a clear visual image, which is useful for 

analytical conclusions. It is important to note that the construction of regression models with 

aggregated inputs requires the use of appropriate numerical procedures. To this end, let us consider 

numerical probabilistic analysis. Let us use the numerical probabilistic analysis to compute the 

arithmetic operations for aggregated data and to apply for regression modeling. Let us assume that 

samples 1 2{ }N…        of random variable   with probability density function f(x) and support 

[a,b] are known. 

It is remarkable that the histogram stood as the only nonparametric density estimator until the 

1950s, when substantial and simultaneous progress was made in density estimation and in spectral 

density estimation. During the following decade, several general algorithms and alternative theoretical 

modes of analysis were introduced by Rosenblatt, Parzen, and Cencov [10].  

Next, let us consider the use of Richardson's extrapolation to improve the accuracy of the kernel 

estimator [5].  

The basic kernel estimator may be written compactly as [15]: 

 
1 1

1 1
ˆ ( ) ( ) ( )

N N
i

h ih
i i

x
x K K xf

Nh h Nh




 


      

where ( ) ( )hK t K t h h   .  

Let us note that: 

 ( ) ( )i
h i

x
K x K

h





    

Here   is a random variable with probability density function ( )f x .  

Then the expected value is: 

 ˆE[ ( )] E[ ( )]hf x K x    

and variability is: 

 
1ˆVar[ ( )] Var[ ( )]N hf x K x
N

      

Let us suppose that kernel K  satisfies the requirements: 

 ( ) 1 ( ) 0K d K d    
 

 
     

and   

 
3 ( ) 0K d  




   

 

Let us denote that: 

 
2 2( )K d   




   
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Let us define ( )hf x  as: 

 
2 2 4ˆ( ) E[ ( )] ( ) ( ) 2 ( )h

h
f x x f x h f x O hf        (1) 

and 
2 ( )hf x  as: 

 
2 2 2 4

2
ˆ( ) E[ ( )] ( ) 4 ( ) 2 ( )h

h
f x x f x h f x O hf         (2) 

Let us apply the Richardson’s extrapolation to ( )hf x  and 
2 ( )hf x  [7]. In the next stage, let us 

multiply (1) by 1/4 to subtract the result from (2). Excluding 
2 2 ( ) 2h f x    from (4) and (5), let us 

get: 

 
2 44 1

( ) ( ) ( ) ( )
3 3

h hf x f x f x O h     

Let us note that the approximation to function ( )f x  has been constructed: 

 
24 1

ˆ ˆ( ) ( ) ( )
3 3

h hh

corf x x xf f    (3) 

with accuracy 
4( )O h .  

 

 
a    b 

Figure 1. Improving the accuracy of the probability density function estimation. 

 

In Figure 1, let us represent a numerical example. The solid line is exact probability density 

function f(x), a − kernel estimator of the probability density function, b − correction of the kernel 

estimator function by Richardson’s extrapolation. 

Thus, setting z   successively, let us obtain values
4( ) ( ) ( )h

cor i if x f x O h  . Further, using the 

obtained values, it is possible to construct systems of linear algebraic equations for constructing a 

cubic spline [1, 11]. 

4. The application of the regression approach to spline-aggregated time series 

Let us consider the issue of constructing a numerical modeling on aggregated time series. The time 

series is suitable for representing many practical situations. It should be noted that in many cases, the 

time-series is analyzed as the data of large amount. To analyze the relationships between the data time 

series, the authors used the aggregation procedures. To begin with, the following arguments were 

noted. Although it is well known that the time series describe appropriately the empirical data for 

many practical and theoretical situations, there is an argument in the studies that time series do not 

faithfully present phenomena where a set of realizations of the observed variable has a certain degree 

of variability. 

There are two typical situations when this happens [2]: if a variable is measured through time for 

each individual of a group and the interest does not lie in the individuals but in the group as a whole. 

In this case, a time series of the sample mean of the observed variable over time would be a weak 

representation. When a variable is observed at a given frequency (e.g. minutes), but has to be analyzed 

at a lower frequency (e.g. days).  

These two situations describe a contemporaneous and temporal aggregation, respectively. In each 

case, a time series of distributions would offer a more informative representation than other forms of 

aggregated time series. As evidence, let us present the viewpoint of Schweizer stating that 

“distributions are the numbers of the future” [9]. Thus, instead of simplifying them, it seems better to 
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propose methods which deal with distributions directly. In order to do this, one has to determine how 

to represent the observed distributions.  

In this study, let us propose representing them using a piecewise-polynomial aggregation function, 

because it offer a good tradeoff between simplicity and accuracy.  

Let us consider the use of an regression approach to spline-aggregated time series. In this issue, let 

us focus on situations where it is necessary to describe the data variability as a regression model. Let Y 

be the spline aggregation variable.  

At the beginning, let us propose studying the following model: 

 1 1 2 2 3 3( ) ( ) ( )Y a t a t a t       

where 1a , 2a , 3a  are constants.  

For example, let us consider the temperature data for the last hundred years in Krasnoyarsk city. 

For each day, from 01 April to 01 October, the data are aggregated in the form of splines iY , 

1 2 184i    .  

Let us construct approximation empirical cumulative distribution function Fi for each day by 

quintic Hermite spline s [11]: 

 0 0 1 1 2 2 0( ) ( ) ( ) (( ) )s a t a t a t x b h           

where 0( )t x x h   , 0 ( ) 2x a b   , ( ) 2h b a   ; boundary conditions are:  

 ( ) 0 ( ) 0 ( ) 0s a s a s a       ( ) 0 ( ) 0 ( ) 0s b s b s b        

Let us find unknown constants 0 1 2a a a   by the method of least squares: 

 
0 1 2

2

0 1 2( ) min i
a a a

a a a F s
 

         

Let us approximate probability density function Yi by differentiating spline s. 

In this case, the regression model can be represented in the form: 

 1 1 2 2 3 3
ˆ ( ) ( ) ( ) ( ) 1 2 184i i ii

A A t A t A t iY            

where 1 2A A , 3A  are the probability density functions, 1 , 2 , 3  are quadratic functions: 

1 1 1 92 1 184( ) 1 ( ) 0 ( ) 0t t t        2 1 2 92 2 184( ) 0 ( ) 1 ( ) 0t t t       

3 1 3 92 3 184( ) 0 ( ) 0 ( ) 1t t t         

Density functions 1 2A A , 3A  are represented in the form of Hermite splines is . Splines are defined 

by mesh 1 2 3{ }i i ix x x  . Boundary conditions are 1( ) 0is x  , 1( ) 0is x  , 3( ) 0is x  . For variables, 1 3

i ix x  

are chosen by regression curves of minimum and maximum temperatures. 2

ix  is chosen by the 

regression curve of average temperatures and:  

 
184

2

1

ˆ( ) ( ( ) )ii

i

A A YY


     

 ( ) min ( )
A

A A     
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Figure 2. Probability density functions of the temperature data for the last 70 years in Krasnoyarsk 

city 

Figure 2 shows the probability density functions of the temperature data for the last 70 years in 

Krasnoyarsk city, from 01 April to 01 October. Shades of gray define the values of the probability 

density. The top and bottom lines represent maximum and minimum temperature on each day over the 

last 70 years respectively. Middle line denotes the mean of daily temperature over the last 70 years. 

Each vertical section is approximation of the probability density function of the temperature 

corresponding to a certain day of the year, according to the observations of the day in the last 70 years. 

At the first stage, the data presented the cumulative distribution function for each day in a quintic 

Hermite spline as it was mentioned above.  

The regression data are presented in the form of a derivative of a quintic Hermite spline. Thus, the 

temperature data for last 70 years from April to October are aggregated with the help of quintic 

Hermitian splines. The visual representation shows the change in the maximum, minimum, and most 

probable temperature. Shades of gray show the distribution of the probability density. 

5. Conclusion 

Although there are many ways of data aggregation, including simple average, let us argue that the use 

of piecewise linear and piecewise polynomial aggregation functions will offer a more informative 

representation of the variability in the data than other forms of data aggregation. To prove their thesis, 

the authors considered the aggregation procedure based on the histogram time series. Using these 

types of data aggregation for preprocessing and regression modeling, it is possible to contribute to the 

reliability of the study of natural systems and processes. The spatial and time aggregation procedures 

help to reduce the amount of computation in data processing and are an important basis for the 

extraction of useful knowledge from large volumes of data. Developed methods reduce the level of 

uncertainty in the information flow; reduce significantly the processing time and the implementation 

of numerical procedures. This approach allows one to choose the mode of interactive visual modeling 

to provide the necessary data for operational decision making under remote surveillance techniques 

and distributed object systems. In concluding the discussion about the applicability of this approach to 

practice, it is necessary to mention the advantage of uncertainty treatment and big data processing. 

Using the proposed model, applications with real and simulated data are presented.  
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