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New method is proposed to identify topology of a low-dimensional manifold approximating multidimen-
sional datasets. The method is based on the implementation of the compliment for the discrete set of
data. Some essential properties and constraints of the method are discussed.

Keywords: order, complexity, clusterization, complement, surface genius

Introduction

Rapid growth of capabilities of hardware and power of software to compute and maintain
extended data sets meets a reciprocal growth of available data capacity thus resulting in im-
plementation of basically new approaches to treat multidimensional datasets. Indeed, a search
and exploration of a structuredness, or partial order, or patterns in huge multidimensional data
sets goes ahead; classical way consisted in formulation of a hypothesis accompanied with fur-
ther verification of that latter is not currently the only way of a study. A search for structures
and patterns being apparent in tremendous datasets may help in further formulation of various
hypotheses and suggestions that later could be verified.

Instead, the up-to-date approach pursues to seek for structuredness, order, patterns and
other peculiarities that might be gathered into “unexpectedness”. That latter is an issue that
differs from that one expected from the combination of “smaller” parts, or other “bricks” used to
develop an entity [4–6,9]. Clustering techniques become the key issue here, changing the methods
based on distribution parameters estimation, etc. Thus, an up-to-date approach to treat the
multidimensional data is to model them and approximate with manifolds of lower dimension,
with due accuracy. Basically speaking, this approach had taken the start in principle component
analysis (PCA), where the linear vector space was the approximating manifold. The point is
that PCA is the linear procedure, thus failing to treat properly strongly non-linearly distributed
data. So, currently the basic idea is to approximate (and model) the multidimensional data sets
with general (non-linear) manifolds.

A sounding progress has been achieved in this direction, both in theory [1–3], and in specific
applications [9–11]. Meanwhile, the topology of an approximating manifold becomes the essential
constraint here, since the key idea of the approximation is to maintain the topology of the
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manifold used to model (or approximate) the data set. The conservation rule does not make a
problem itself, theoretically. Indeed, there is (almost) no problem to fit a manifold of the given
topology to a dataset; the point is that one knows nothing about the topology of this manifold,
in advance. There might be two ways here: to use a manifold with the given topology, and to
try to learn the details of the topology of an approximating manifold.

Figure 1: An example of
a “tough” topology.

Below we show the problem of the topology impact on the approx-
imation manifold choice. We shall use two-dimensional illustrations,
keeping in mind their incompleteness, constraints and fallacy. The
simplest example of a data configuration posing a problem for con-
ventional methods of clustering is shown in Fig. 1. Yet, even simpler
configuration (that is a two-dimensional torus) makes a problem: one
fails to identify reliably any cluster pattern within such data set, if
a genus-one manifold is not used to approximate the dataset. Obvi-
ously, being a “flatland inhabitant”, one fails to make a clue towards
the stricture of the torus shown in Fig. 1. A growth of the data set
dimension just makes the problem worse.

One must avoid a mispresentation of the problem of dimension reduction, and the cast of a
dataset elabouration, for determination of a topology of an approximating manifold; the method
provided below has nothing to do with the data set dimension reduction, at least, immediately.
On the contrary, the method aims to held a researcher to fit the best initial manifold, to model
(or approximate) the data.

1. The method

Basically, the idea of the method is rather apparent: to make a kind of cast of the dataset, and
then study its structure. More rigorously, the idea is to change a study of the original set for the
complement M of that former. Here a problem arises towards the definition of the complement,
and the method essentially addresses the question. Let M be the set of multidimensional data
points mj ∈M with index j enlisting the points at the dataset, so that |M| = M and ∀j mj ∈ Rn;
mj = (xj1, x

j
2, x

j
3, . . . , x

j
n−1, x

j
n)T. Here | · | is the capacity of a set.

At the first step, suppose the point mj ∈ M are located in space rather densely, and one is
always able to figure out an ellipsoid, or n-dimensional cube, or any other quite simple body Ω

gathering the greatest majority of the points, so that they do not diffuse outside of the border
slowly (see Fig. 3(a)). To make a cast, one needs to know an average density of the points
determined over the ellipsoid; otherwise, one needs to know M figure, and the volume of Ω. So,
let the density be equal to d. Suppose, then, that all the points mj ∈ M are colored in blue.
Disperse then randomly and independently the points from another set L, lj ∈ L, colored in red
(see Fig. 3(b)), supposing that |M| ∼ |L|.

At the third step, to reveal the gaps and breaches, one must eliminate all the red points
located closely enough to blue ones. The proximity of the points lj ∈ L and mi ∈ M could be
determined in a number of ways, see Sec. 1., and the result of M development may differ, for
various definitions of a used metrics. As soon, as the added (red) points lj ∈ L are eliminated,
for some j ∈ J , one must eliminate the original set M (blue points). Here J is the set of indices
of the points lj ∈ L that are located closely enough to the points mi ∈M. Thus, the rest points
colored in red (those belonging to L) represent the complement M to M; M ⊂ L. Finally, one
should study the complement with a number of convenient methods and advanced techniques [7];
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Figs. 3 and 2 illustrate the method.

1. Decision rule to remove the points

A simple idea to eliminate the added (red) points lj ∈ L located proximately enough to the
points mj ∈M to figure out a topology of M sounds apparently, but may cause some calamities.
A proximity of the added (red) points to the original ones is not defined in an unambiguous and
obvious way. The point is that the local density of the point mj ∈ M may depend on a space
location, thus making a problem of a “stop” of the selection process of the added (red) points to
be eliminated. To choose these points, one may follow two opposing ways. Let now discuss three
more issues in the method implementation; these are

a) the method to identify the red (added) points lj ∈ L located closely enough to the original
(blue) ones to be eliminated (Sec. 1.);

b) the problem of a “fuzzy” pattern of an original set M, and
c) the choice of parameters of the distribution of the added points set lj ∈ L.
First of all, there are two opposing, to some extent, approaches to define the proximity of the

points lj ∈ L to the points mi ∈M: the former is absolutely local, and the latter is based on the
overall distribution of point mi ∈ M. Locality in lj ∈ L determination means that the nearest
point mi ∈M (the blue one) point is used to do it. Practically, it means that one must cover all
point mi ∈M with balls of the given radius ε, and eliminate all those lj ∈ L (red ones) that fall
into the ball

lj ∈ Bε(mi) .

Here Bε(mi) is a ball of the radius ε centered at mi. So, the set L̃ of eliminated points is defined
then as

L̃ =
⋃

mi∈M

lj ∈ Bε(mi) . (1)

 

Figure 2: The complement L̂.

The method (1) is absolutely insensitive to a pattern of whole
distribution of points m ∈M. Meanwhile, there are no any rea-
sons to eliminate the impact of the whole set M on the choice
of excluded points belonging to L: one may want to include
the effect of an “environment” on the selection process of the
points lj ∈ L to be eliminated. Typical way to do it consists in
implementation of some field (called also “glue” here) to take
into account the impact of all experimental (blue) points on
the choice of the excluded red ones.

Another option consists in the similar procedure, while it
takes start from the point lk ∈ L: considering each point lk ∈ L

as a center, cover them with the balls of the radius r, and
remove all the centers of the balls containing points from M.
These two procedure yield the same set L∗ of the points to be
removed. Indeed, consider the set L∗1 of the points falling inside
a ball of the radius r with the center at a point m0 ∈M. Since
the radius r is the same, for both procedures, then all the points from L∗1 considered as centers
would contain the point m0 inside the balls centered at the point from L∗1. Similar conclusion
holds true, if one changes a point m0 for l0, and the set L∗1 for the similarly defined set M∗1.
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(a) Original set M.

 

(b) Superposition of the sets M and L.

Figure 3: Illustration of the method to develop the complement L̂.

In other words, a relation to occupy the same ball is symmetric, for two points x and y, if
ρ(x, y) 6 r, where r is the ball radius.

As it has been said above, the first approach is absolutely local: there is no matter how
other points (blue or red ones) are located in space, if one needs to make a decision towards the
elimination of a given lj ∈ L (red) point. The second approach resembles, to some extent, a
mean-field approach. The idea standing behind this approach is to develop a “glue” that adheres
the points to be removed. To do that, supply each point mj ∈M with a bell-shaped function f(r),
and make a sum of all the functions

F(x1, x2, x3, . . . , xn−1, xn) =
∑

mj∈M

fmj
(x1, x2, x3, . . . , xn−1, xn) (2)

to get an averaged “potential field”. The function fmj (x1, x2, x3, . . . , xn−1, xn) in (2) is defined
over Ω (or even Rn). Of course, the set of lj ∈ L to be eliminated strongly depends on the type
of the function fmj

(x1, x2, x3, . . . , xn−1, xn). Probably, the function f(x1, x2, x3, . . . , xn−1, xn) is
not an n-dimensional function, but a single-dimensional one, depending on the radius r measured
from the center point mj only:

r =

√√√√ n∑
i=1

(
zi − xi

)2
, (3)

where xi is i-th coordinate of a point x, and zi is the i-th coordinate of the point mj .
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Function f(r) may be chosen in a number of ways; it must be integrable (probably, with its
square) in Ω. Another stipulation is monotonicity of the function; thus, a typical function has a
bell-shaped form. Practically, one might want to implement the following functions, in (2):

1. Gaussian function

f(r) = exp

{
− r

2

β2

}
;

this is the classical function to develop a mean-field like approximation, and the motivation
to use it comes from probability theory (the law of large numbers). Here parameter β is
adjustable one, changing the typical width of a bell surrounding a center.
2. Exponential function

f(r) = exp

{
− r
β

}
with β having the same meaning.
3. Resonance curve function

f(r) =
1

β2r2 + 1

(to be more exact,

f(r) =
1

βn−1rn−1 + 1
,

for n-dimensional case) with β having the same meaning.
Of course, there could be other functions meeting the constraints mentioned above.

As soon, as the function F(x1, x2, x3, . . . , xn−1, xn) is developed, one should choose the cut-off
(or glue-off) level γ, and finally remove from L all the point l∗ ∈ L so that

F(xl
∗

1 , x
l∗

2 , x
l∗

3 , . . . , x
l∗

n−1, x
l∗

n ) > γ , (4)

thus yielding the complement L̂.
We started from the case where the set M could be almost unambiguously identified (as

embedded into Ω), so that no problem takes place with the definition of the set L. A configuration
of M meeting this supposition might be met in a number of situations, nonetheless, there could
be alternative patterns with fuzzy “border”; here we quote this word, since no one has clear,
concise, self-consistent and productive definition of the border, for discrete sets.

Less evident is the situation, if M looks like a gradually dispersal set, as one goes outside from
the center of that former. Thus, some difficulties in determination of Ω might take place. Here
few options could be implemented, to overcome the problem. Firstly, one can follow a standard
technique of image filtration [12]. A glance at Fig. 2 allows to see that the effect of contouring
is present even for rather compact sets M, so the filtration should be applied at any chance.

Another option is to develop the area Ω artificially, say, building up the body Ω due to an
ellipse of scattering implementation: counting all the eigenvectors of the covariance matrix for
the set M, one can then build up the corresponding (n-dimensional) ellipsoid. By scaling that
latter, one can fit the best subset M∗ ⊂ M completely falling inside the ellipsoid; thus, that
latter might represent Ω.

As soon, as the complement is developed, one may treat it with standard and custom tech-
niques, to find out, say, its cluster structure. As one can see from Figs. 3 and 2, the approximating
manifold, at this example, is to be a part of plane with two holes inside. In other words, this
is must be a manifold of genius two type. The occurrence of two holes could easily be detected
with K-means technique applied to the complement L̂.
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2. Discussion and Conclusion

A new method to discover the features of a low-dimension manifold to approximate multidi-
mensional data is proposed. The method is based on the development of specially constructed
the complement of an original dataset, through the implementation of special finite discrete set
of randomly dispersed points covering the same area in a space, as the original dataset does.

Namely, the method aims to address the question towards the topology peculiarities of the
approximating manifold, since one has no other way to be assigned to the manifold. Apparently,
whether an approximation with (say) elastic map would be of a proper quality, strongly depends
on the well done choice of a starting manifold to do the approximation.

The proposed technique to reveal the features of topology of an approximating manifold may
face some problems resulted from the dimensionality, and dataset structure. For sufficiently
high dimensions, one may meet various topological features that may not be visible, for two-
dimensional case. In fact, there is no guarantee that the complement L̂ will always be simpler,
from topological point of view, than the original set M. Yet, an absolute universality was not
the ultimate value here. Still, there are some other ways to improve a situation, if a direct
implementation of the technique described above fails to figure out the topology features. A
change from Euclidean metrics for Mahalanobis metrics may bring a success here, as well, as an
implementation of other metrics into the analysis.

An idea to figure out a border of a complement L̂ of M seems to be rather close to the ideas
of the clusters identification through the local density methods (see, e. g., [13, 14]). Yet, they
are not equivalent; meanwhile, further investigations are to be done in order to reveal the closer
relations of these two approaches.
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