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We propose an elegant approach to produce photonic
band gap structures with multiple photonic band
gaps (PBGs) by constructing quasiperiodic photonic
crystals (QPPCs) composed by a superposition of
photonic lattices with different periods. Generally
QPPC structures exhibit both aperiodicity and multiple
PBGs due to their long-range order. They are
described by a simple analytical expression instead of
quasiperiodic tiling approaches based on substitution
rules. Here we describe the optical properties
of quasiperiodic photonic crystals exhibiting two
PBGs that can be tuned independently. PBG
interband spacing and their depths can be varied by
choosing appropriate reciprocal lattice vectors and their
amplitudes. These effects are confirmed by the proof-
of-concept measurements made for the porous silicon
based QPPC of the appropriate design. © 2017 Optical

Society of America

OCIS codes: (230.5298) Photonic crystals; (290.4210) Multiple
scattering; (350.2460) Filters, interference.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Photonic crystals (PC) have attracted much attention in
the last decades since the concept was introduced [1]. The
main feature of PCs is the existence of photonic band gap
(PBG) with prohibited transmission [1, 2]. Insertion of a
defect layer into PCs breaks the periodicity and results in
the appearance of a defect mode placed within the PBG,
which can be used for spectral filtering. Depending on
their composition, PCs can conditionally be distinguished as
periodic, quasiperiodic and aperiodic photonic crystals. There
are common ways for the formation of quasiperiodic photonic
crystals (QPPCs), which are also called as deterministic
aperiodic structures [3] or tilings, and that are the intermediate
between the periodic and aperiodic PCs. Some substitution rule
representing a mathematical sequence in layer positions has

to be introduced to interleave layers with different refractive
indexes to form a QPPC structure. So far, QPPCs of several
kinds have been investigated; among them are Fibonacci,
Thue-Morse, Rudin-Shapiro, double periodic, octonacci, Cantor
and Pell-like structures [4]. Earlier, deterministic PCs were
successfully used for optical filtering, multi-frequency terahertz
manipulation, near-perfect absorption and omnidirectional
reflection, photoluminescence emission enhancement [5–12].
Fibonacci and Thue-Morse-like photonic structures have
been reported for the Bloch-like surface waves [13] and
multimode photon-exciton coupling [14], which represent a
significant advantage compared to periodic PC counterparts.
Alternatively, introduction of random deviations into the layer
thicknesses or refractive indexes violates the periodicity of
a structure thus leading to widening of photonic band gaps
[15–17]. Another kind of 1D PC structures represents a
logical combination of two 1D PCs of close periods [18]. The
transmission spectrum of these structures demonstrates the
frequency region with a finite number of slow modes. Recently,
Alagappan et al. considered a dual-periodic structure obtained
by summation of the two harmonic functions [19]. Such
structures can be used for designing high quality, broadband
and multichannel slow light devices to create a new class of
passive superluminal structures. Nevertheless the formation of
deterministic PC structures with required optical characteristics
are complicated and secondary (parasitic) PBGs may appear.

In this letter, we propose a way for the composition of
quasiperiodic photonic crystals with pre-designed multiple
photonic band gaps. The QPPC is constructed by a
superposition of several spatial harmonics with different spatial
frequencies, that determine the spectral position of multiple
PBGs. We show that the spectra of such QPPCs represent
a combination of those for the two conjugated periodic 1D
PCs. To the best of our knowledge, such an approach has
not been applied for the composition of linear PCs, while it
was considered in nonlinear optics for the multi-wavelength
conversion [20, 21] and multiple spatial harmonic generation
[22].

The refractive index of the proposed linear QPPC structure
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Fig. 1. (a) Modulation of the refractive index calculated using
Eq. (2), and (b) Fourier transform of the refractive index as a
function of spatial coordinate for both periodic PC (red and
black), for conjugated PCs (indigo) and QPPC (yellow green)
structures.

is described by

n(z) = n0 + Δnsgn
(
∑ aj sin

[
Gjz + φj

])
. (1)

Here n0 is the average refractive index, Δn is the maximum
deviation of the refractive index from its average value n0, aj,
Gj and φj are the amplitude, reciprocal lattice vector (RLV) and
relative phase of the jth spatial harmonic, sgn(x) = |x|/x is a
signum function. We restrict our consideration by the case of
two RLVs, so that Eq. (1) is simplified to

n(z) = n0 + Δnsgn (a1 sin G1z + a2 sin G2z) . (2)

We study the spatial and spectral characteristics of QPPC
in comparison to the 1D PC with G1 and G2. In the plane
wave approximation and for the linearly polarized waves, the
wave propagation in arbitrary structured PC and respective
transmission coefficients can be calculated using the transfer-
matrix formalism [23]. Modulation of the refractive index
becomes a periodic one if any of two amplitudes in Eq. (2)
equals to zero (a2 = 0). The period of the structure is
Λ = 2π/|G1|, and its Fourier transformation demonstrates a
maximum at the spatial frequency G1 (Fig. 1(b)). As a result,
the first order PBG in the transmission spectrum appears that
corresponds to the RLV G1 (Fig. 2(a)), which spectral position
satisfies the Bragg condition [1, 2]:

λm = 2π(n1 + n2)/mG, (3)

where n1,2 are the refractive indexes of the PC constituting
layers.

Keeping both terms in Eq. (2), we get a more complicated
spatial modulation of the refractive index corresponding to the
QPPC structure (Fig. 1(a)). In our calculation we used the
parameters that were taken for the fabrication of the porous
silicon QPPC described below. So we took: n0 = 1.40, Δn =
0.08, a1 = a2, |G1| = 26.7 rad ·μm−1, |G2| = 35.6 rad ·μm−1. The
period of QPPC structure is Λ = 2π/|G3|, where |G3| = G3
is a highest common factor of {G1, G2}. If G2/G1 is a rational
number then Λ is a finite number and the structure possesses

Fig. 2. (a) Calculated transmission spectral dependencies for
periodic PC with |G1| = 26.7 rad ·μm−1 (red) and |G2| = 35.6
rad ·μm−1 (black). (b) Calculated transmission spectra for the
conjugated PCs (indigo) and QPPC (yellow green).

the translational symmetry. In the case under study, the highest
common factor G3 is 8.9 rad ·μm−1. Then the period of QPPC
equals to 0.706 μm, and 12 periods fall on the thickness of
QPPC. The QPPC period contains 8 layers in a unit cell. Such
a structure differs from common 1D photonic crystals based
on bilayer structures or even of a more specific case of three-
layered structures described previously (see, e.g. [24, 25]). In
our case, the proper choice of RLVs can provide the unit cell
consisting of arbitrary number of layers, therefore the unit cell
may exceed an overall thickness of the structure. The Fourier
spectrum of the structure described by Eq. (2) demonstrates the
presence of two peaks corresponding to the spatial frequencies
G1 and G2, instead of one at G3 arising from the periodicity
of QPPC structure (Fig. 1(b)). Accounting for an interplay
between the spatial and spectral characteristics, we expect the
appearance of the two PBGs with the spectral positions defined
by Eq. (3). Indeed, the calculated transmission spectrum
of the QPPC confirms this assumption (Fig. 2(b)): one can
see the presence of two PBGs with the central wavelength
corresponding to that of periodic PCs as is shown in Fig. 2(a). In
general, the PBG central wavelengths can be found from Eq. (3)
by substituting the values G1 and G2. In this case the ratio of G1
to G2 is 3:4 and the PBG central wavelengths are given by G3
with multipliers m = 3 and 4, respectively. Our calculations
demonstrate that optical waves undergo the selective Bragg
diffraction for both RLVs. Note that the approach provides
the Fourier amplitudes for relevant RLVs as high as possible,
which is evident from the comparison of the QPPC and the two
conjugated PCs shown in Fig. 1(b)). It makes QPPCs differing
from other deterministic PCs (see, e.g.[5–12]), where series of
parasitic PBGs are exhibited.

Compare QPPC with more straightforward implementation
of PC stacked by two conjugated periodic PCs with the primary
spatial frequencies G1,2. Fig. 2(b) shows calculated transmission
spectra for QPPC and for the conjugated PC stacked by two
4.5-μm-thick periodic PCs. For the conjugated PCs the edges
and the bottom of the PBGs suffer from distortions, while
QPPC provides PBGs with smooth and sharp edges. Moreover,
average interband transmittance of QPPC manifestates weaker
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Fig. 3. Measured (indigo) and calculated (yellow green)
transmission spectral dependence of QPPC with G1 = 26.7 rad
·μm−1 and G2 = 35.6 rad ·μm−1. Insertion: SEM image of the
porous silicon-based QPPC structure (Sample 5 from Table 1).

Table 1. Predesigned and Fitted values of RLV G2 as well as
Measured and Calculated (Eq. (3)) PBG central wavelengths at
fixed G1 = 26.7 rad ·μm−1

Sample Predesigned G2 Fitted G2 λmeas. λcalc.

# (rad ·μm−1) (rad ·μm−1) (nm) (nm)

1 17.8 18.1 976 972

2 22.2 22.4 790 785

3 26.7 26.8 655 657

4 31.1 30.9 570 570

5 35.6 37.9 464 464

6 40.0 44.3 398 397

oscillations. The same difference is deduced from the analysis
of the Fourier spectra of both structures (Fig. 1(b)).

For the proof-of-concept experiments, the QPPC based on
mesoporous silicon is fabricated by electrochemical etching of
crystalline silicon [26]. The refractive indexes of the layers
were 1.32 and 1.48, providing n0 = 1.40, Δn = 0.08. The
structure has the thickness 9 μm and contains 52 layers. As
shown in Fig. 3, the measured QPPC transmission spectra
demonstrate two PBGs centered at 494 and 660 nm, respectively.
The refractive indexes and primary RLV were reasonably tuned
to obtain a good agreement between calculated and measured
transmission spectra. The designed and fitted values of G2 are
given in Table 1. The adjustment of these values is imposed
by the uncertainty inherent to the sophisticated fabrication
method of QPPC. Nevertheless, it can be deduced that the
proper choice of RLVs can fit the transmittance dependencies of
QPPC. In addition, by varying the amplitudes aj in Eq. (1) we
can distribute the ratio of transmittance or reflectance between
the individual PBGs.

In order to reveal the dependence of the transmission spectra
on the continuous variation of the ratio of G1 and G2, we made
a set of structures with the fixed G1 and varied G2 values.

Fig. 4. Calculated transmission spectral dependence of QPPC
versus the fraction G2/G1.

The PBG corresponding to G2 shifts towards short wavelengths
while increasing the value of G2 (Fig. 4). The PBG for G1
keeps its position except for a small spectral shift in the vicinity
of PBG crossing point at |G2| = |G1|, corresponding to the
single periodic PC. The adjustment of the spatial frequencies
G1 and G2 is used to form the pass band with arbitrary width
in the visible spectral range. Moreover, a set of additional
narrow PBGs appear inside the pass bands. It can be seen
that these PBGs are equidistant in the frequency domain and
correspond to the Fourier transform peaks of Fig. 1(b) with
the spatial frequency increment G3. They originate from a
nonharmonic spatial profile of the dielectric permittivity and
are well evaluated using the coupled mode theory (see Ch.12
of [27]). These PBGs represent the mirror counter-part of the
primary PBGs in the frequency domain.

Fig. 5 shows the measured transmittance spectra for all
QPPC samples vs the value of G2. It is clearly seen that
the PBG corresponding to G2 exhibits a pronounced spectral
shift. The experimental results are in a good agreement with
the numerical results shown in Fig. 4. The experimental and
theoretical results are summarized in Table 1. As one can see,
the fitted values G2 are close enough to the predesigned values,
as well as the PBG central wavelengths calculated for fitted RLV
G2 are in the vicinity of the measured values.

The analysis of the transmission and reflectance spectra
allowed to estimate the attenuation of the sample by 1.2
cm−1 at 670. This value is higher than the absorption of
amorphous quartz. This discrepancy can be explained by the
light scattering on the layer interfaces.

Summing up, we propose a versatile approach of refractive
index superposition modulation for structuring quasiperiodic
photonic crystals with adjustable multiple band gaps. The
obtained results show that the light undergoes the selective
Bragg diffraction resulting from a long-range order of QPPC.
PBGs spectral position and their depths can be specified prior
to the fabrication by a proper choice of RLVs. The approach
proposed can be extended to a wide range of wave phenomena
of arbitrary nature in periodic structures in such areas as
acousto-optics, plasmonics and magnonics.
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Fig. 5. Measured transmission spectra of QPPC (indigo) on
the value G2 and corresponding PBG central wavelength
positions calculated by using Eq. (3) (red).
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