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This article deals with the heat equation
du—d2u=finD, D= {(t,x) eR’:a<t<bypt)<z< +oo}

with the function v satisfying some conditions and the problem is supplemented with boundary conditions
of Robin-Neumann type. We study the global regularity problem in a suitable parabolic Sobolev space.
We prove in particular that for f € L*(D) there exists a unique solution u such that u, dwu, Olu €
L? (D),j =1, 2. The proof is based on the domain decomposition method. This work complements the
results obtained in [10].
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1. Introduction and preliminaries

This work is devoted to the analysis of the following one-dimensional second order parabolic
problem
Ou— Pu=f e L?(Qu),
Ozu+ Bulp, =0, (1)
Ozulp, =0,

where L?(£,,) stands for the space of square-integrable functions on Q. with the measure dtdx.
The coeflicient S is a real number satisfying the following non-degeneracy assumption

B <0. (2)
Here, Q. (see, Fig. 1) is an open set of R? defined by

Qoo ={(t,z) ER*ra <t <b () <z < +4oo},
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where a, b are real numbers such that —oco < a < 0 < b < 400, while ¥ is a Lipschitz continuous
real-valued function on (a,b), and such that

J e1(t) on (a,0],
Vi) = { w2 (t) on [0,b).

The function ¢ (respectively, ps) is positive and decreasing (respectively, increasing) on (a, 0]
(respectively, on [0,b)) and verifies the hypothesis ¢; (0) = ¢3(0) = 0. A natural assumption
between coefficient 5 and the function of parametrization ¢; of the domain €., which guarantees
the uniqueness of the solution of Problem (1) is

Wt
<S012() - 6) > 0 almost everywhere t €a,0]. (3)

The lateral boundaries I'y and I's of Q. are defined by
I ={(t.p1(t) ER*:a<t<0}, To={(t,p2(t)) ER*:0 <t <b}.

- l I

Fig. 1. The unbounded domain .

Notice that the section of 2., in the ¢ direction defined by

I = [py (@), 05 ' (2)]

for z in ]0, +oo], is such that the sections I,,n € N* become bounded when n becomes large,
ie.,

VneN, gyt (n) — ¢t (n) <b—a. (4)
The most interesting point of the parabolic problem studied here is the unboundedness of Q.
with respect to the space variable z which prevents one using the methods in [16, 17] and [21].
It’s the characteristic (4) of the z-sections of 2., which helps us to overcome this difficulty. Also,
These specific Robin-Neumann type boundary conditions

Ozu+ Bulp, = Oyulp, =0

are important for the originality of this work. Indeed, to our knowledges, results concerning
parabolic equations on unbounded (with respect to the space variable z) time-varying domains,
subject to such kind of boundary conditions, have not appeared in the literature to date. So, let
us consider the anisotropic Sobolev space

”H}/’Q Qo) := {u e HM? (o) : Opu+ Bu|Fl = aa:u\rz = 0}
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with .
HY? Qo) == {u € L? Q) : Ou, 0lu € L* (), j =1, 2}.

The space H1? () is equipped with the natural norm, that is

1

2

2
2 2 j 2
||u||w,2(szoo) = ||UHL2(QOO) + ”atuHL?(Q(x,) + Z Haiunm(ﬂoo)
j=1

Then, the main result of this paper is the following theorem:

Theorem 1.1. Under the conditions (2) and (3), Problem (1) admits a (unique) solution u €
HY? (Do) -

It is not difficult to prove the uniqueness of the solution. Indeed, let us consider u € ’H,ly’z (Qs0)
a solution of the problem (1) with a null right-hand side term. So,

O — 0%u = 0 in Q.
In addition u fulfils the boundary conditions
Oryu+ Bulp, = Oyulp, =0.

Using Green formula, we have

1
/ (O — O2u) u dt do = / ( lul® vy — u Oyu V,;) do + / (8,u)? dtdz,
Qe 99, \2 Qoo

where vy, v, are the components of the unit outward normal vector at the boundary of Q... We
shall rewrite the boundary integral making use of the boundary conditions. On the parts of the
boundary of Q.. where x = ¢; (t), i =1, 2, we have

o —1 vy = $i0)
V14 (@) () V14 (@) ()

Accordingly, the corresponding boundary integral is

/a0(<p’12(t) - 5) u (L, 1 (t)) dt + /b@z(t)uQ(t,gpz(t))dt.

0

and Oyu (t, o1 (1)) + Bu(t, o1 (1)) = Ozu (t, 2 (t))= 0.

Then, we obtain

0 / b
/Qw (Ou—2u)udt de = /a <¢12(t) — 6) u? (t, 1 (1)) dt +/0 <p22(t) u?(t, oo (t))dt +

+ / (8,u)? dtdz.
Q

oo

Consequently using the fact that u is the solution yields

/ (Opu)? dtdx = 0,
Qoo

because

0 , b 1
[ (B2 5) e tomnars [ 2D palopar > 0
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thanks to the hypothesis (3) and the fact that o9 is an increasing function on [0, ) . This implies
that d,u = 0 and consequently 9?u = 0. Then, the hypothesis dyu — 92u = 0 gives dyu = 0.
Thus, v is constant. The boundary conditions and the fact that 8 # 0 imply that v = 0.

We can find in [10] solvability results for Problem (1) with Dirichlet-Neumann type boundary
conditions, corresponding here to the case where § = oco. In the case of bounded non-cylindrical
domains Q;,1 > 0, studies related to Problem (1) can be found in [7, 11] and [8] both in one-
dimensional and bi-dimensional cases. It is possible to consider similar questions with some other
operators (see, for example, [4] for a 2m-th order operator in bounded non-rectangular domains).
Whereas second-order parabolic equations in bounded non-cylindrical domains are well studied
(see for instance [1, 6, 9, 12, 14, 15, 18, 19, 20, 23| and the references therein), the literature
concerning unbounded non-cylindrical domains does not seem to be very rich. The regularity of
the heat equation solution in a non-smooth and unbounded domain (in the ¢ direction) is obtained
in [21] and [22] by using two different approaches. In [13], uniqueness classes of solutions of non-
divergent second order parabolic equations were obtained. The heat equation in unbounded
non-cylindrical domains with respect to the space variable x were considered in [5] and [2].
In Guesmia [5], the analysis is done in the framework of evolution function spaces. However,
in Aref’ev and Bagirov [2], properties of solutions of the heat equation with Cauchy—Dirichlet
boundary conditions were obtained in the more regular anisotropic Sobolev—Slobodetskii spaces
(more precisely, those of functions with t—and—az derivatives are in weighted L?-spaces). The
class of domains used in [2] corresponds here to

_J —av/—=t on [a,0],
Vit = { 5Vt on [0,0]

for any positive constants « and 6.

This paper is organized as follows. The two next sections are devoted to the proof of
Theorem 1.1. Indeed, in Section 2, we study an auxiliary problem related to Problem (1) in
a bounded domain. Then, in Section 3, prove the energy type estimate

||Um|\7-¢1:2(9m) <C Hf”L?(Qoo) ’

where C' is a constant independent of m and for each m € N*, u,, € HY%(Q,,) is the solution
(obtained in the Section 2) in truncated bounded domain €, approximating {2.. The previous
estimate will allow us to pass to the limit and complete the proof of Theorem 1.1.

2. An auxiliary problem in a bounded domain

In this section, we replace the unbounded domain €2, by the bounded domain 2., ¢ > 0 (see,
Fig. 2) defined by
Qe={t,2) €V :0< <}

and we consider the boundary value problem
Opue — O?u. = f. € L*(Q),
uc‘rgyc = 0’

amuc + Buc‘r‘lvc = 07

amuC‘FQ,c = 07

()

where fo = flo , Toe = {(tc):di<t<dp}, ', = {(t,p1(t)) eR?: dy <t <0} and
Toe={(t,p2(t)) €ER?: 0 <t < dp} with dy = o1 t(e), da = oyt (c).
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Fig. 2. The bounded domain €2,

2.1. Problem (5) in a reference domain

Here, we replace €0, by

1 1
an):{(t7x)eQC:d1+<t<d2—}v
n n

1 1
where n is a large enough positive integer such that d; + — < 0 and dy — — > 0 (see, Fig. 3).
n n

1 1
Thus, ¢ <d1 + ) < c and o <d2 — > < c.
n n

N (L)
e (2,
C Y /1—'(.‘ n

p - - T - e

=
S
o

1 dl |

d]_ + % 0

=
(%)
3=
Y
o~

Fig. 3. The domain Q)
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Theorem 2.1. For a large enough positive integer n, the problem

) — 2l = J € 12 (),

u&”) = ué”’ =0,
t=d1+% r=c (6)
) u(”) + Bu(”) —
T e ¢ ) )
(n) —
Oz e (@) =0,

admits a (unique) solution uﬁ”) e HL2 (an)) . Here, fg") = f|Q<n> ,

1 1
) = {(t,<p1 (t)) ERQ:dH—E <t<0}, rn — {(t,m(t)) ER?:0<t<dy— n}

Proof. The uniqueness of the solution is easy to check. Let us prove its existence. The change

of variable -
T — wcn (t)
ta ta = t? Y, )
( 1’) = ( y) ( o wgn) (t))

o1 (t) on [dl + %,0} ,
Y2 (t) on [O, dg — %} s
transforms QU™ into the rectangle R(™ = Jdi + L, dy — 1[x]0,1[. Putting ul™ (t,x) = v™ (t,y)

and £ (t,z) = ¢ (t,y), then Problem (6) becomes

where

v (1) 1=

1
0™ (t,y) +a(t,y) 0™ (ty) = 73 D 02v™ (t,y) = g™ (t,y) in R™,
v(n)|t:d1+71l - U(n)|y:1 =0, o
5yv(") + Bb(t)v(n)‘r(mdl) =0,
0™ ’r<n,d2> =0,
n)/
n —D)pe 7 (t
where b(t) :=c— i )(t), a(t,y) = W» and
c—1pe (1)
1 1
r(mdi) — {(ao) ER*:di+ - <t< 0}, rnd2) — {(t,O) ER*:0<t<dy— }
n n
1
The aforementioned change of variable conserves the spaces L? and H!2 because —-——— and

b% (t)
a(t,y) are bounded functions when ¢ €]d; + ,d> — 1[. In other words

e 2y o g™ e L2(R™), ul™ e #HH2(QM) < o™ e HLH2(RM).
We need the following lemma:

Lemma 2.1. For a large enough positive integer n, the following operator is compact:
B: 7—[,1/2 (R(")> — L2 (R(”)) , o™ Bo™ = a(t,y) 9,0™.

Here, for a fized t in]dy + L, 0]

#i2 (R) = {m ent? (RM): imirs = 0Py =0 }
9, v™ + Bb (t)”(n)’rwdl) = 8y“(n)‘r<"hd2> =0
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Proof. R™ has the "horn property" of Besov [3], so
9y 1Y (R™) 5 b1 (R™), ol e 9,00

is continuous. Since R(™ is bounded, the canonical injection is compact from Hal (R(")) into
L2 (R™), see for instance [3]. Here

1 1 1 1
H2! (R(")) =17 <d1 + =, dy — —; H']0, 1[) NH? (dl + =, dy — —; L?]0, 1[) .

n n n n
see [17] for the complete definitions of the 7{"* Hilbertian Sobolev spaces. Then, 9, is a compact
operator from ’H}Y’Q (R(")) into L? (R(")) . Since a (., .) is a bounded function for ¢ E]dl—i—%, do— % [,

the operator B = ady is also compact from H}/’Q (R(”)) into L2 (R(n)) . O

So, thanks to Lemma 2.1, to complete the proof of Theorem 2.1, it is sufficient to show that

the operator

1
atfi(c_w(n)yagz #HL2(RM)  — L2 (RM)
(n)

is an isomorphism. A simple change of variable t= h (s) with k' (s)= (c—1¢")? (t), transforms
the problem

1
™ (t,y) — ™y 020 (t,y) = g™ (t,y) € L* (R™)
v gy =™, =0,

8yv(”) + Bb(t)v(”) |r<n~i1) =0,

ayv(n) |F(n>dz> =0,

into the following
Dsw™ (s,y) — 02w™ (s,y) = (™ (s,y),

s=h=1(di+% y=1 0,
Ayw™ + Bb(h(s))w™ | (n.ar) =0,
h

w™)|

8yw(") |F§:L,d2) =0,

(n)
. n 9" (ty n n
with () (s, y) = === Es) ), w™ (s,y) = v (t,y) and

1 1
Fg:“dl): {(S,O) eR?: h1(dy + E) <s < 0}, F;lmdz): {(S,O) ER?*:0<s<h (dy— n)}

Note that this change of variable preserves the spaces L? and H!:2. It follows from Lions and
Magenes [17], for instance, that there exists a unique w™ € H? solution of the problem (8).

In other words, the operator
1 2

— 0
2%
)
is an isomorphism from 7—[}/’2 (R(")) into L? (R(")). On the other hand, the operator ad, is

compact (see Lemma 2.1). Consequently, £; + ady is a Fredholm operator from ’H#’Q (R(”))
into L2 (R(”)) . Thus the invertibility of £; + a0, follows from its injectivity. This implies that

£1 = 8t—
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Problem (6) admits a unique solution u&n) € H12 (QE")) . We obtain the function u&") by setting

ul™ (t,z) = v™ (t,y) = w™ (R~ (t),y) . This ends the proof of Theorem 2.1. a
We shall need the following result in order to justify the calculus of the next section.

Lemma 2.2. The space

1
{um)efﬁ<]d1+,0[xhllo;u“” =u™| =0, d,u™ + pb(t)u™ :0}
n t=di+2% y=1 ’ r(n.dy)
s dense in the space
1
{u(”) € HY? G dy + —, O[ x 10, 1[); u™ = 4™ =0, du™+ b (t)u™ = O}.
n t=dy+1 y=1 [(n.d1)
Proof. 1t is a consequence of [17, Vol. 1, Theorem 2.1]. O

Remark 2.1. We can replace in Lemma 2.2, }dl + %,O[ x]0,1[ by ol

change of variable defined above.

with the help of the
t<0

2.2. Problem (5) in the non-rectangular bounded domain ).

Now, we return to the non-rectangular bounded domain €2.. For a large enough positive
1 1 n n n
integer n such that d; + — < 0 < dy — —, we set fé ) = f\Qm) and denote by ug ) e pt2 (QE )>
n n c

the solution of Problem (6) in Q™. Such a solution exists by Theorem 2.1.

An energy type estimate

First, let us denote

Q1 = W Q=" and fi= fly,,i=1,2.
t>0 °

t<0
Then, consider the following problems:

dyur — O3uy = f1 in Q,

u1|t:d1+711 = uil,_. =0, 9)

Opuy + 5U1|F£n,d1> =0,
O — 02v = fy in Qa,
vlp = v|,_, =0, (10)
81-'U|F(Cn,d,2) =0,

where
1 1
r(md) = {(t,gpl () €R? : dy + —< t< O}’ r(mdz) — {(t7<p2 t))eR*:0<t<dy— n}
and

I'={(0,2) eR*: 2 €]0,c[}.

By a similar argument like that used in Subsection 2.1, Problems (9) and (10) admit (unique)
solutions u; € H*?(Q1) and v € H12(Q2) .

The following Lemmas will be needed in order to establish the uniform estimate of Proposi-
tion 2.1.
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Lemma 2.3. The solutions uy and v of Problems (9) and ( 10) verify the following estimates:

2
1212 = N0l + 0% 72 gn, + 190t 2aqry + I ()
2
1212 = 186022y + 1020132 gy + 10002y (12
where o
L= =000 - [ ) @attp ) a
1+

I'={(0,z) eR*:2€]0,c[}, F/:{<d2_i’x> GRQ:xG]gOQ (@—i),c[}.

Proof. Let us denote the inner product in L? (Q1) by (.,.), then we have

||f1||i2(@1) = (Opuy — OZuy, Opuy — D2uq) =
2
= ||8tu1||iz(Q1) + HagulnLZ(Ql) - 2<8tu1, 83U1>

Calculating the last term of the previous relation, we obtain

<8tu1, 0§u1> = atulaiuldtdw =
Q1
= — O0z0su1.0zur dtdx + Oyu1.0zur v do.
Q1 0Q1
So,
-2 <8,5u17 6§u1> = Oy (3zu1)2 dtdr — 2 Opur.0pu vVpdo =
Q1 0Q1

/ [(amul)Q vy — 28tu1.8xulum} do
Q1

where v, v, are the components of the unit outward normal vector at Q1. We shall rewrite the
boundary integral making use of the boundary conditions. On the parts of the boundary of @,

where t = dy + — and x = ¢, we have u; = 0 and consequently J,u; = 0. The corresponding

n
boundary integral vanishes. On the part of the boundary of Q1 where t = 0, we have v, = 0 and
vy = 1. Accordingly the corresponding boundary integral

/ (Bpur)? da
0

is nonnegative. On the part of the boundary where z = 1 (t), we have

R S | O
V14 (@) (@) V1+ (@) ()

Consequently, the corresponding boundary integral is the following:

and  Oyuq (¢, @1 (t)) + Buy (¢, @1 (t)) =0.

0 0
di+1 di+2

By putting h(t) :=u1(t,¢1(t)), t € [d1 + L, 0], we obtain
Bru(t, 1 () Dpult, o1 (£)) = B (£)D,ult, o1 (£)) — 1 () (Duult, 1(1)))? .
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So, by using the boundary conditions, we get

0
2 / Oy (1, 1 (1))t (1, o1 (1)) dt =
di+2

0 0
= 2 B ($)0,u(t, 1 () dt — 2 1) (Dgu(t, 1 (1) dt =
/M (D)0,ult, o1 (1)) /dﬁﬁ”( (tor ()
0 0 ,
o5 [ W(Oh(t)dt -2 / () (@uult, o1 (0)? dt =
d1+% d1+%
0 0 ,
s ey a2 / () (Duult, o1 (D)° dt =

di++ di+

0
= B0 =2 [ o) @ruttin )
1+
Finally,
0 ’ 2 2
~2(0pur, 0Fur) = —B(ur(0, £1(0))) */d 21(0) (Qoult, 02 (1)))" dt + |0z |72 r)
1+;
and formula (11) follows. By using a similar argument, we can prove formula (12). O
Let us now, consider the following problem
Oyw — 2w =0 in Qa,
wlI‘ = ullFa (13)

w|x:c = 833w|1—‘((:":d2) = 07

where wu; is the solution of Problem (9). Thanks to [17, Theorem 4.3, Vol. 2|, Problems (13)
admits a unique solution w € H'? (Q5). Note that we can approach u;|. (which is in H!(I"))
by regular functions (for example, by functions in H?(T')), then it is easy to prove that

Lemma 2.4. The solution w of Problem (13) verifies
2 2 2 2
10|22y = 100012y + 02022 ) + 10022y - (14)
Now, we set

U2 in Q27

ugn) _ { Uy 1N le

where us = v + w. Note that u&") € H12 (Qé")) is then the solution of Problem (6) obtained in
Theorem 2.1.

Proposition 2.1. There exists a constant C > 0 independent of n such that
2 2

’ L2 (Qg”)) L2 (Qg”))

Proof. Summing up the estimates (11), (12) and (14), we then obtain

|

2
< Cllfellz2,) -

n)|? _ 2 2 S
fe () 112 () + 1f2llz2(g, 2

WV

2 2 2
[0rurll72(q,) + 10wl 12(q,) + 10wll72(g,) +

+ Hﬁim”ig@l) + HaﬁvHiz(QZ) + Ha:iw”iz(cgz) :
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Consequently,

s

) > 0 ag,) + 2 10l 2ai0,) + 10202y + = 020 oy >
I I A CO R L L COR R A CIMP L el S CO R

2

2
1 (n) 2 (n)
> 2 <Hatu(: 12 (an)> + ‘ 8gguc 2 (an)>> .
But )
‘ Je LQ(Qﬁn)) < ”fc”m(gc) )
then,
(n) ? 92u™ ? < 9|l f) 2 <9 2
Hatuc ‘ L2 (an)> + ‘ (L‘uc L2(Q£n)) X ‘ fc 12 (an)> <X ||fc||L2(QC) .

This ends the proof of Proposition 2.1. O

Theorem 2.2. There exists a constant K > 0 independent of n and ¢ such that

4]y < E N oy < B Wy
¢ gz (an)) c 12 (Q(Cn)> (£2)
2 2
Proof. The majoration of H@tugn) HL2 (QQ")) + ‘ 8§ugn) L (an)) is given by Proposition 2.1. The

2 2
majorations of ‘ 8Iu£n) and ‘ uﬁn) H can be obtained by similar arguments used
L2 QS:") L2 (an))
in Lemma 3.1 and Lemma 3.2. O

Passing to the limit
We are now in position to prove the first main result of this work.

Theorem 2.3. Problem (5) admits a (unique) solution u. belonging to

"H}Y’Q Q) = {u e HM (Q0); u|F0’C = Oyu+ B“'H,c = 8w“|F2,C = O} .

Proof. Choose a sequence (an)) of the domains defined above. Then, we have an) — Q.
neN*

as n — —+o00o. Consider the solution uén) e H12 (Qﬁ")> of the mixed Robin-Neumann boundary
value problem
Bl — 92 = § ¢ 12 (Q&’”)

u&n) _ u((:n)

t=di+1
Bpul™ + Bul”

=0,

Tr=c

F(l’") = amun‘rg,n) =0.
c

Such a solution u&n) exists by Theorem 2.1. Let us define

n 1
7T§) = {(t,x)eﬂc:d1<t<d1+n},

" 1
wé) : {(t,x)chzdg—n<t<d2},

o = {(t,x)EQC:tzdg—l}7

n
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and consider u,. the 0-extension of u&") to 71'%”) and the extension by symmetry with respect to

the vertical segment o to Wén). This extension noted by u™ is then in H12(.) and verifies in

particular
2

u&n)

2
< Kllfellzz,) -
’Hl,Q(QC)

The following compactness result is well known: A bounded sequence in a reflexive Banach space
(and in particular in a Hilbert space) is weakly convergent. So, for a suitable increasing sequence
of integers ny, k = 1,2,..., there exist functions

Ue, Ve and vej, j =1, 2

in L? (Q.) such that

e

ul™) — wu, weakly in L?(Q.), k — oo,

dul™ o, weakly in L? (Q.), k — oo,

Hulm) ve; weakly in L? (), k — o0, j =1, 2.

Then, v. = O¢tic, Ve,1 = Ozuc and vo 2 = 02, in the sense of distributions in Q. and so in L? (2..).
So, we have
Oshe — éﬁuc = f. in Q..

On the other hand, the solution u, satisfies the boundary conditions
UC‘FO,C = Oyl +BUC|F1,C = 3xuc|r2‘c =0

since
Vn € N*¥, 'U/C|Q((:n) = ugn).

This proves the existence of solution to Problem (5). O

3. Back to Problem (1)

For a large enough positive integer m, we define §2,, by
O, ={(t,2) € Qoo : 0 <z <M}
Let un, € H2? (Qy) the solution of the following problem:
Ot — Uy = frn € L* (),
Umlp, . = Octm + Bumlp, =0, (15)
Ootimlp, =0,

where
fm = flo, ;Tom ={{t;m) : 7" (m) <t < ;' (m)},

Tim={(t,p1 (1)) ER?: 7" (m) <t <0}, Topm={(t,p2(t)) ER*:0<t < ;" (m)}.

Such a solution u,, exists by Theorem 2.3.

Theorem 3.1. There exists a constant K > 0 independent of m such that

2 2
[umll3120,) < K fmllzeq,,) -
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In order to show the desired inequality, we need the following lemmas:

Lemma 3.1. There exists a constant K1 > 0 independent of m such that

2 2
[umlz2 0,y < Killfmliz,.,) -

Proof. For a real number A\ # 0, we have

/ ﬁnum(f”‘21t dtde = / 8tumumef2)‘2tdtdx—/ 3§umumef)‘2tdtdx, =
Qi Qm Qm

— / [5} <1u$ne2)‘2t) — 0y <8zumum62’\2t)] dtdx +
Q 2

+/ (amum)Qe’z’\Qtdtder/\z/ ufne’z/\rzt dtdr =
Q Q

m m

0 ’
B / wl(t) - 5 ufu(tv@l(t))ei2)\2t dt +
ortm) \ 2

22 / u2 e~ dtdy + / (Opti) e~ 2Nt dtda +
Q Q

m m

’

—1
Po (m) t
[T e
0
> N ugFagq, ) -

On the other hand, for all € > 0, we have

_ 2 1 2 2 _ 2(1
/Q fmtme X P dtdr < (6fm||L2(Qm)+€|um||L2(Qm)> e e

Therefore,
[ fonllZ2 (0 3300 2
e > ()\26 222 (b—a) _ 6) [t |72 cr,, -

Hence, by choosing e small enough, we obtain the desired inequality. O

Lemma 3.2. There exists a constant Ko > 0 independent of m such that

2 2
Hawuan?(Qm) < Ko ”meL?(Qm) .

Proof. We have

O (U Oty ) dtdr = / U O U Vo do,
QU O
where vy, v, are the components of the unit outward normal vector at 9€2,,. On the part of
the boundary of €, where £ = m, we have u,, = 0. The corresponding boundary integral
vanishes. On the part of the boundary where z = @9 (), we have d,u,, = 0. Consequently, the
corresponding boundary integral vanishes. On the part of the boundary where © = ¢ (t), we
have 1

Vp = ————and Opum, (£, 01 (1)) + Bum (¢, 01 (t)) = 0.

1+ (1) (1)

Accordingly, the corresponding boundary integral is

0
B / W2, (1, 1 (1)) dt.

(m)
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Finally,
0

/ O (U Oty )dtdx = —5/ u? (t,1(t)) dt.
Qi ®

Thm)

On the other hand, we have

/ Gz(umf)‘xum)dtdm:/ um(‘?gumdtdwdy—i—/ (@Eum)?dtd;ﬂ.
Q Q Q

m m m

Then, .
-8 /Pll(m) u? (t,1(t)) dt = /Qm Upy 02U dtda + ||8wum||2Lz(Qm) .
Consequently,
0
10tml[32(q,, = 7/9 umaﬁum,dtdz+B[p_l( )ufn(t,sal(t))dt <
m Ttm

< / u? dtdz + / (0%u,,)*dtdr =
Qo Q

m

2 2
= |lumllz2(q,) + ||8§UW||L2(QM)'
Lemma 3.1 and Proposition 2.1 which remains valid in €,, give

2 2 2 2
10zumllz2(0,) < Kilfmlliz,,) + 21 mlliz@,,) < K2 lfmllzq,,) -
O

Theorem 3.1 is a direct consequence of Lemma 3.1, Lemma 3.2 and Proposition 2.1 which
remains valid in §2,,,. We obtain the solution u of Problem (1) by letting m go to infinity in
Theorem 3.1. This ends the proof of Theorem 1.1.

Remark. Let us consider the following problem:

O — d2v = f € L*(D),
dzv + av|p =0, (16)
dyvlp, =0,

where
D:={(t,x) eR*: Iy <t <ly;—00 <z <P(t)},

where [q,ls are real numbers such that —oco < I3 < 0 < Iy < +o0, while ® is a Lipschitz
continuous real-valued function on (l1,l2), and such that

) i(®) on (4,0],
() ‘_{ Pa(t) on [0,12).

The function v (respectively, 15 ) is a negative and increasing (respectively, decreasing) on
(I1,0] (respectively, on [0,13)) and verifies the hypothesis ¢ (0) = ¢2(0) = 0. Here, the coefficient
a is a positive real number and T'; is the part of the boundary of D where x = v;(t), i = 1, 2.
By using the same arguments like those used in solving Problem (1), we can show that
Problem (16) admits a (unique) solution v belonging to H?(D), under the assumption

(1#12(25) - a) < 0 almost everywhere ¢ €]ly,0]. (17)
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PesynbTaThl ncciieioBaHnst PETYJAAPHOCTA B IIPOCTPAHCTBE
AJisd YPaBHEHUS TENJIONPOBOAHOCTU C 'PAHUYHBbIMU

ycaoBusimu tuiia Poomaa-Helimana B m3aMeHsIIonmxcs
BO BpeMeHH 00J/1acTsaX

Taxup Bymxepuy

JlabopaTopusi IPUKIQTHON MaTEMATHKH,

QaxyIpTeT TOYHBIX HAyK, ¥YHuBepcuTer Bemxas, Bemxkas, 6000
Axup

Apeskn Xenydu

JlabopaTopusi IPUKJIAIHON MaTeMaTHKI

Texnonornuecknuit dpakynbret, YHuBepcurer bemxas, bemxast, 6000
Axup

dma cmamva NOC6AUEHA YPAGHEHUIO MENAONPOSOOHOCTIU
Ou—02u=f D, D= {(t,2) eR’:a<t<b(t) <z < +oo}

¢ pynryuet P, ydoeaemsopaowet HEKOMOPbIM YCAOBUAM, U 300444 JONOAHACTNCA 2PAHUYHBLMY YCAO0-
suamu muna Pobuna-Hetimana. Mo usywaem npobaemy 2a00a40H0% peeysapHocmu 6 no0TodAUEM Na-
paboauneckom npocmpancmee Cobosesa. oxasicem, 6 wacmmuocmu, wmo das [ € Lz(D) cywecmeyem
eduncmeennoe pewenue u maxoe, wmo u, O, 0u € L* (D), j = 1,2. Jokazameascmeo ocrosano na
Mmemode dexomnosuyuu obaacmu. Ima paboma ONOAHAEM Pe3yAbMambL, noayertve 6 [10].

Karoueswie caosa: ypasrerue menionposooHocmu, Heo2paruerHsle HeYUAURIPUIECKUE 00aacmu, Ycao-
sue Pobuna, ycaosue Hetimarna, anuzomponnuie npocmparcmea Coboaesa.
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