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Introduction

The moral of the Cauchy problem for elliptic equations is that, after J. Hadamard, a Cauchy
problem for a Laplace equation is ill-posed. Of course, the instability refers here to the standard
setting, for in spaces with the two-norm convergence the Cauchy problem for elliptic equations
proves to be stable, see [1].

The classical equations of electrodynamics are usually formulated in terms of the de Rham
complex in R®. In [4], we formulated Maxwell’s equations within the framework of arbitrary
elliptic complexes on a compact manifold X with boundary. Using the methods of [9] we studied
both the Hilbert problem and the Cauchy problem with data on a part of the boundary X
for solutions of the corresponding stationary equations. The character of instability, solvability
criteria and regularisation methods of the Cauchy problem for elliptic equations are studied in
[9, 5]. For the complete bibliography we refer the reader to these books. Much of the theory
developed in [9] extends immediately to other ill-posed problems of complex analysis or partial
differential equations. N. Tarkhanov and A. Shlapunov has published a continuation formula for a
larger class of boundary value problems not only for elliptic systems but also for elliptic complex.

Examples of bases with double orthogonality can be found in [6]. When working with domains
such as a spherical layer, the main technique is to decompose the elements of a suitable space
into a series of homogeneous harmonic functions that form a basis on the sphere. The main
difficulty in the implementation of the proposed idea in practice is the choice of a basis with the
property of double orthogonality in a given domain.

In this paper we will describe a simpler Carleman formula for the Maxwell equations, i.e.
we consider the problem of analytic continuation of a solution of Maxwell equations in a spatial
bounded domain from data on part of the boundary of the domain.

An explicit Carleman function for this problem was first described in [10]. Based on the ideas
and methods developed by Sh.Yarmukhamedov, we will construct an example of the Carleman
function of the Cauchy problem for the Maxwell equations In the limit, it and its derivative
disappear outside an arbitrary fixed cone. It decreases rapidly enough at infinity.
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1. Maxwell’s equations

The Maxwell equations on an n-dimensional compact manifold X with boundary have the
form

cEl = —oE+d°H,
wH = —dE,

with E and H being unknown functions of ¢ = [0, 7] with values in differential forms of degree i
and 7 + 1, respectively, and ¢, i and o positive constants. Substituting

E(z,t) = (c¢+10/w) e ty(x,t), )
Hwt) = p~'Pe f(a,t)
we get
(epw/k)uy = ku+d*f,

—(kfw) Sl = du—ikf @
in X x [0, 1], where w is a nonzero real constant and k? = (¢ + 10 /w)pw?. The sign of k is chosen
from the condition Sk > 0. Equations (2) still make sense within the framework of arbitrary
complexes of differential operators on X, see [4]. The operator on the right-hand side of (2)
proves to be elliptic in the sense of Douglis—Nirenberg (see Example below). The Cauchy data
on OX of forms u and f of Sobolev class H'(X) with respect to the stationary Maxwell operator
consist of t(u), the tangential part of u, and n(f), the normal part of f. Both ¢(u) and n(f)
are differential forms of degree i on the boundary. Further we discuss the first mixed problem
for solutions of Maxwell’s equations (2) in the cylinder X x [0,7]. It stems from scattering of
incident electromagnetic waves by a perfectly conducting body. In this case the tangential part
t(u) of the “electric” field u must vanish on the body surface 9X. Hence, we pose the initial
conditions on the lower basis of the cylinder and a Dirichlet condition on the lateral surface.
Let X be a compact differentiable manifold of dimension 3 with or without boundary. More
explicitly, we use the de Rham complex in R3

0— 2°R?) -4 Y (R?) -4 22(R?) -5 23(R3) — 0,

where 2°(R3) is the space of smooth functions, £2*(R?) is the space of 1-forms, and so forth.
Forms which are the image of other forms under the exterior derivative, plus the constant 0
function in 2°(R3) are called exact and forms whose exterior derivative is 0 are called closed
(see closed and exact differential forms); the relationship dod = 0 then says that exact forms are
closed. Then we can think of E as a differential form u of degree 1, H as a differential form f
of degree 2, thus identifying curl £ with du and curl H with d* f. Here, d* stands for the formal
adjoint operator of d. Let us denote by A = d*d+ dd* is the Laplacian of the de Rham complex.
In this way Maxwell’s equations in stationary form can be written as

ku+d*f = 0,

_ (3)
—kf+du = 0,

which already make sense not only for differential forms v and f of degree 1 and 2 in R3,

respectively, but also for differential forms v and f of degree ¢ and i+1 in R", where —1 < 7 < n.

Definition 1. Let —1 < i < 3. By the Mazwell operator for the de Rham complex at step i is

meant .
. 7%
M= ( ke d )

db —ik
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A characteristic and important example of a system elliptic in the sense of Douglis—Nirenberg
and not elliptic in the sense of Petrovskii is the Maxwell equations (1.2) in the domain X C R3.
In the case of the de Rham complex in R? at step i = 0, Maxwell’s equations (1.2) have the form:

tku —divf =0 —tku+divf =0 (@)
—ikf + gradu =0 —ikf 4+ gradu=0"

The system (1.3) with constant coefficients and its operator is:

T
5 Ox1 Oxg Oxs
MQ _ @ —uk 0 0
87 0 —k 0
82
87,123 0 0 —uk

We try to find the vectors s and ¢ with integer components that simultaneously satisfy the
conditions of definitions.
For the system (1.3) we choose the weights , for example, the form

s=(2,1,1,1) and t=(0,—1,—1,—1).

The corresponding main part will have the form

o 2 92 9
9 6371 (’)xg 81'3
— —k 0 0
i) - | %
’ 87 0 —uk 0
2
% 0 0 —uk
3

and its determinant
det MO, (D) = k*(E2 + €3 +€3) #0, VEe€R® and k#0.

Using definition, we come to the conclusion that the system (1.3) is elliptic in the sense of
Douglis—Nirenberg.

By definition, M? is a first order differential operator from sections of F* @ F**! to sections
of the same bundle over X'. This operator fails to be elliptic of order 1 in the classical sense
unless N = 2. On the other hand, applying d* to both sides of 1k u + d* f = 0 we conclude that
di~"u = 0 unless k = 0. Analogously, from —ik f + du = 0 it follows that d*t!'f = 0 unless
k = 0. Complementing Maxwell’s equations by their differential consequences d*~'*u = 0 and
d*t!f = 0 yields a system of first order differential equations for v and f, whose classical symbol
is injective. Another way of stating this is to say that there is a differential operator C* from
sections of F*@ F"+! to sections of the same bundle, such that C?M? is a second order differential
operator on X elliptic in the classical case. As is usual in homological algebra, we will omit the
index i of M? i.e. M* = M when it is clear from the context. An easy computation shows that

ok + (1/dk)dd d*
o= d k- (/) )’ (5)
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Lemma 1. As defined above, C satisfies

A — k? 0
CM:MC:( 0 A—k2>
Proof.
B - —k? 4 dd* + d*d kd* + (1/2k)d*d* —kd* \
CM=MC = ( 1kd — ikd — (1/1k)d*dd dd* — k* + d*d ) N

:( Af)kz AEI# )

Lemma 2. The pseudodifferential operator

[ Gk + (1)ik)dd") Gd
2= Gd G (—k — (1/2k)d*d) )

is a left fundamental solution of the Mazwell operator M on X'.

Proof. From Lemma 1 it follows immediately that

0=(§ §)ec

is a left fundamental solution of M. It remains to substitute the explicit expression (5) for C. O

2. The Carleman formula

We now turn to the classical Maxwell equation in a three-dimensional space, which can be
a three-dimensional manifold X’ as well. To demonstrate our constructions along more classical
lines, we consider the case X’ = R3. As mentioned in Section 1, the classical Maxwell equations

have the form
Wk E+d*H = 0,
—kH+dE = 0,

E and H being functions in a closed domain X C R? with values in R3. If E is suitably specified
within 1-forms and H within 2-forms, both the exterior derivative d and its formal adjoint d*
can be identified with the operator curl on vector fields in R3.

Applying Corollary 3.3 [4] to the classical Maxwell equations we obtain the Stratton—Chu
formula [7].

Theorem 1. Suppose (E, H) is an electromagnetic wave in X whose electric component E and
magnetic component H are both continuous up to the boundary. Then

(1/2k)d*d —d* —lexp(eklz —y|) [ wm(H) _ (E(z)
( —d  —(1/k)dd" )/ax am p|33—y| ’ <—V/\t(E)>dS - (H(I)>

for all x € X\ OX, and the left-hand side vanishes away from X.

Let o be a positive number. Consider the entire function K(w) = exp(ocw?) of complex
variable w € C. The restriction of K to any vertical line w = u 420 just amounts to K (u+w) =
= K(u) exp(2to0uv — ov?), which is a rapidly decreasing function of v.

Assume that X is a bounded domain in the upper half-space {x3 > 0} of R? whose boundary
consists of a smooth surface S lying in the half-space {z5 > 0}, and a closed piece of the plane
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{z5 = 0}. Such domains are usually referred to as cap type domains. Note that the unit outward
normal vector on the piece 9X \ S just amounts to (0,0, —1). We consider the problem of finding
an electric field £ and a magnetic field H in X with given tangential component Ey of E and
normal component Hy of H on S. Given two different points = (2/, z3) and y = (v/,y3) in R3,
set 7’ = |y’ — 2’| and introduce the integral

@U(ﬂc,y):_—l 1 /S(K(u})) cos kv a0,
0

27 K (x3) w—x3/ /112 492
where w = y3 + 1v/r'2 + 92. An easy calculation shows that
b, (x,y) = / Do (z,y; ) cos kY dd, (6)
0

where py(x,y;9) is given by
-1 eo’(y%—x%)e—o’(TIQ-&-ﬂQ)
272 92 + 12

Hence it follows that

sin 20y3 V1’2 + 92
((y3 —z3) \/TZW — cos20y3\/ 1’2 + 192).

1 efoazgefa(r/ngﬂz)

po(@,y39) = 55 K ,

1 e—amge—a(r/2+q92)
72 (02 4+ r2)2

on the plane y3 = 0. If 0 = 0 and K(0) = 1 then kernels ¢,(z,y) is a classical fundamental
solution of the Helmholtz equation. Substituting (2.5) into the formula for the fundamental

solution @(x —y) of M we conclude that ¥, (z,y) is a Carleman function of the Cauchy problem
in the domain X with data on S, parametrised by o.

Oys Do (2, ;) 23 (1+ (9 +17))

o (k)drd —d
Lemma 3. The ¥, (z,y) matriz-valued function on the set R3 x (R3\ {y = z}), satisfying
M(0y) ¥ (z,y) = 0,

M'(0y)(¥s(z,y))" = 0.
Proof. The proof follows from the properties of the fundamental solution @(x —y) of the Maxwell

operator M. O

Theorem 2. Let (E,H) be an electromagnetic wave in X continuous up to S. Then the limit

relation
(i) = . [ et (N

holds uniformly on each compact subset of X .

Proof. As is known, the value of the regular solution of Maxwell equations at a point z inside X
in terms of ¢(F) and n(H) on the boundary X. Using the Stratton—Chu formula of Theorem 2.1

(2= [ w10 Nas [ ot (100 s

The convergence of the improper integral on the right-hand side of @, (z,y) is thus guaranteed
by the factor e~ If ¢ — oo the expression ¥, (x,y), ps(x,y;9¥) and its partial derivative
OysPo(x,y; V) tends to zero exponentially on the plane {z3 > 0}. It follows that the part of
the boundary integral over OX \ S tends to zero on {x3 = 0}. This establishes the desired

formula. ]

-321 —



Komil O. Makhmudov Carlman Formula for Maxwell Equation in a Cap Type Domain

References

(1]

2]

3]

14]

15]

[6]

7]
18]

19]

[10]

L.A.Aizenberg, N.N.Tarkhanov, Conditionally stable problems and Carleman formulas,
Siberian Math. J., 31(1990), no. 6, 9-15.

L.A.Aizenberg, Carleman’s Formulas in Complex Analysis. Theory and Applications,
Kluwer Academic Publishers, Dordrecht, 1993.

D.Colton, R.Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-
Verlag, Heidelberg, 1998.

K.Makhmudov, O.Makhmudov, N.Tarkhanov, Equations of Maxwell type, J. Math. Anal.
Appl., 378(2011), no. 1, 64-75.

A.Shlapunov, Green’s Integrals and Their Applications to Elliptic systems, Tesi di per-
fezionamento, Scuola Normale Superiore, Pisa, 1996.

A.Shlapunov, N.Tarkhanov, Bases with double orthogonality in the Couchy problem for
systems with injective symbols, Proc. Londom Math. Soc., 71(1995), no. 1, 1-52.

J.A Stratton, Electromagnetic Theory, McGraw-Hill, NY, 1941.

N.Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht,
NL, 1995.

N.Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag,
Berlin, 1995.

Sh.Yarmukhamedov, The Cauchy problem for the Laplace equation, Soviet Math. Dokl.,
18(1977), no. 4, 939-942.

®opmyna Kapiaemana aasa ypaBaeansas MakcBesjia B 00JIacTu
TUTIA TTAITKA

Komvmua O. MaxmymoB
MexaHUKO-MaTeMaTHIECKHUH PaAKYIBTET
CaMapKaH/ICKUH YHUBEPCUTET

Yuusepcurerckuii 6ynbBap, 15, Camapkanm, 140104
V3bekucran

Pacemompunm 3adavy Koww daa ypasneruti Makceeana s obaacmu muna wanku X 6 R3. Mu yxasvisaem

PABYMHOE YCAOBUE PA3PEWUMOCTIU U popmyary Kapremara daa ee peuseHus.

Karoueswie caosa: gopmyaa Kapaemana, paccesanue, aasunmuseckuts xomnaexe, gopmyave I'puna, dop-

myave Cmpammona- 9y, 3adaua Kowu.
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