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In this paper is estimated a special solution for solving thermal diffusion equations, that describe motion
of binary mixture in a flat layer. If Reynolds number is small, these equations are reduced to some easier
inverse boundary problems. For solving these problems are used Laplace transformations. Temperatures
are setted on the walls and velocity field is found. Analytical solution for stationary mode and numerical
results for non-stationary regime are presented and is found, when boundary conditions stabilize with
increasing time, then all velocity components and temperature go to stationary ones.
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Introduction

Exact and approximate solutions of hydrodynamics equations are widely used for mathe-
matical modeling of many processes in the chemical and petrochemical technology [1], including
convection of mass processes and heat transfer, and various natural phenomena [2].

This paper deals with the unsteady motions of a binary mixture in a flat channel with solid
fixed walls. Solution of the thermodiffusion convection equations is sought in a special form: one
velocity component is a linear function along the length of channel, and the temperature and
concentration are quadratic functions along this coordinate.

First time solutions for the stationary Navier-Stokes equations are considered by Hiemenz [3].
A review for similar type of exact solutions is available in [4]. The solution was used to describe
the flow of a viscous fluid on the plane taking into account the adherence on it [5]. For moving
plates nonstationary solutions Himenz was considered in [6]. In the works [7] and [8] given
further development of the results [6], when distance between the plates varies according to a
power function of time.

If in Himenz solution, pressure depends only on one spatial variable, then for the correspond-
ing systems of equations it is necessary to solve direct problem [9]. In general, longitudinal
pressure gradient further velocity, temperature and concentration fields are desired functions.
Therefore, the initial-boundary value problem is reversible. In physical point of view, this means
that for any mentioned pressure gradient, motion of mixture can not be realized. In this case,
the problem is reduced to a series of one-dimensional inverse problems for parabolic equations
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(thermal conductivity). For creeping motions (Re ≪ 1) are found exact solution of station-
ary problem and numerical results for non-stationary one and it is showed, that under certain
conditions non-stationary results go to stationary with increasing time.

1. Statement of problem

Two-dimensional motion of a binary mixture in dimensionless variables, is described by the
Oberbeck–Boussinesq’s equations system [9]

ux + vy = 0,

ut + Re(uux + vuy) + px = uxx + uyy,

vt + Re(uvx + vvy) + py = vxx + vyy + G(T + C),

Tt + Re(uTx + vTy) =
1

Pr
(Txx + Tyy),

Ct + Re(uCx + vCy) =
1

Sc
[Cxx + Cyy − φ(Txx + Tyy)],

(1)

where u(x, y, t), v(x, y, t) are the components of the velocity vector along the x, y coordinate
axes; p(x, y, t) is the modified pressure (deviation from the hydrostatic pressure); T (x, y, t),
C(x, y, t) are the deviations of temperature and concentration from their average constant values;
Re = U0h/ν is Reynolds number; U0 is the velocity characteristic of the flow, ν is kinematic
viscosity, h is the linear characteristic of the dimension; Pr = ν/χ is the Prandtl number, χ
is the coefficient of thermal diffusivity; Sc = χ/D is the Schmidt number, D is the diffusion
coefficient; ψ = −βCDT /(βTD) is the separation parameter, βT , βC are the coefficients of
thermal and concentration expansion of the mixture, DT is the thermal diffusion coefficient, in
charge of the Soret effect; G = gβT∆Th

2/(U0ν) is the analogue of Grashof number, ∆T is the
characteristic of temperature difference in the mixture. All mentioned parameters are assumed
to be constant.

The solution of (1) is sought in the next form

u(x, y, t) = U(y, t)x,

v(x, y, t) = V (y, t),

p(x, y, t) =W (y, t)
x2

2
+D(y, t),

T (x, y, t) = A(y, t)x2 +B(y, t),

C(x, y, t) =M(y, t)x2 +N(y, t).

(2)

The velocity field (2) corresponds to the known solution [3] of the Navier—Stokes equations.
As you can see from this equations, temperature includes expression x2, that means it will
be maximum (minimum) when function A(y, t) takes negative (positive) amounts. Substitution
expressions (2) in system of equations (1) leads to non-linear equations containing only functions,
which depend on variables y, t. Suppose, that the motion is creeping (R ≪ 1, G = O(1)), in
addition, it happens in a flat layer with thickness (in dimensional variables h)with solid fixed
walls y = 0, y = 1. So, the above-mentioned equations become linear, and raises a number of
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initial-boundary value problems 0 < y < 1,

At =
1

Pr
Ayy,

A(y, 0) = A0(y), A(0, t) = A1(t), A(1, t) = A2(t);
(3)

Bt =
1

Pr
(Byy + 2A),

B(y, 0) = B0(y), B(0, t) = B1(t), B(1, t) = B2(t);
(4)

Mt =
1

Sc
(Myy − ψAyy),

M(y, 0) =M0(y), [My(y, t)− ψAy(y, t)]

∣∣∣∣
y=0,y=1

= 0;
(5)

Nt =
1

Sc
(Nyy + 2M − 2ψA− ψByy),

N(y, 0) = N0(y), [Ny(y, t)− ψBy(y, t)]

∣∣∣∣
y=0,y=1

= 0;
(6)

Uyy − Ut = 2G
∫ y

0

[A(z, t) +M(z, t)] dz +W0(t),

U(y, 0) = U0(y), U(0, t) = 0, U(1, t) = 0.

(7)

Other unknown functions are defined as

W (y, t) = 2G
∫ y

0

[A(z, t) +M(z, t)] dz +W0(t),

D(y, t) = G
∫ y

0

[B(z, t) +N(z, t)] dz +

∫ y

0

[Vzz(z, t)− Vt(z, t)] dz +D0(t),

V (y, t) = −
∫ y

0

U(z, t) dz.

(8)

In (8) function D0(t) can be considered arbitrary, since in the initial problem (1), there are
gradients of pressure. As regards to W0(t), which also appears in right side of equation (7), it is
desired, thereby problems (3)–(7) will be reversible. An additional condition for W0(t) follows
from the sticking conditions for vertical component of the velocity vector V (y, t) at y = 1∫ 1

0

U(z, t) dz = 0. (9)

There is similar condition on bottom wall y = 0 by definition of V (y, t) in the last equation (8).
Clearly, for smooth solutions of the problems (3)–(9), it’s required to fulfill compatibility

conditions

[M0y(y)− ψA0y(y)]

∣∣∣∣
y=0,y=1

= 0, [N0y(y)− ψB0y(y)]

∣∣∣∣
y=0,y=1

= 0,∫ 1

0

U0(z) dz = 0, U0(0) = U0(1) = 0.

(10)

Boundary conditions for functions A and B correspond to specific temperatures on the walls
T (0, x, t) = A1(t)x

2 + B1(t), T (1, x, t) = A2(t)x
2 + B2(t) with known functions A1(t), A2(t),

B1(t), B2(t). For functions M and N conditions on the walls mean lack of flow from them,
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namely [Cy − ψTy]
∣∣
y=0,y=1

= 0. Also, it is possible to put heat isolation condition for one of the
walls, for example Ty = 0 at y = 0. Therefore on this wall Cy = 0.
Remark 1. Integrating from equation (5) taking into account the initial and boundary condi-
tions, will be found ∫ 1

0

M(z, t) dz =

∫ 1

0

M0(z) dz.

Remark 2. As it follows from the problem statement (3)–(9) functions B(y, t), N(y, t) do
not affect on velocity field, but they determine temperature field, concentration and pressure of
binary mixture.

2. Stationary flow

Assume that Aj(t) = As
j , Bj(t) = Bs

j with constants As
j , j = 1, 2. So, problems (3)–(9) have

stationary solution
As(y) = As

1 + (As
2 −As

1)y,

Bs(y) = Bs
1 +

(
Bs

2 −Bs
1 +

As
2 + 2As

1

3

)
y −As

1y
2 − (As

2 −As
1)
y3

3
,

Ms(y) = ψ
[
As

1 + (As
2 −As

1)y
]
= ψAs(y),

Ns(y) = ns + ψ

[(
Bs

2 −Bs
1 +

As
2 + 2As

1

3

)
y −As

1y
2 − (As

2 −As
1)
y3

3

]
= ns + ψ(Bs(y)−Bs

1),

Us(y) =
1

2
W s

0 (y
2 − y) +

G(1 + ψ)

3

[
As

1(y
3 − y) +

(As
2 −As

1)

4
(y4 − y)

]
,

W s
0 = −G(1 + ψ)

10
(7As

1 + 3As
2).

The vertical component of velocity V s(y) will be found by last equality (8) and is equal to

V s(y) = −1

2
W s

0

(
y3

3
− y2

2

)
− G(1 + ψ)

3

[
As

1

(
y4

4
− y2

2

)
+

(As
2 −As

1)

4

(
y5

5
− y2

2

)]
.

Another functions in (8) have the next representations

W s(y) =W s
0 + G(1 + ψ)

[
2As

1y + (As
2 −As

1)y
2
]
,

Ds(y) = G
{
(ns +Bs

1)y + (1 + ψ)

[(
Bs

2 −Bs
1 +

As
2 + 2As

1

3

)
y2

2
− As

1y
3

3
− (As

2 −As
1)
y4

4

]}
.

Constant ns, which goes to the expression for Ns(y) and Ds(y), can be determined by setting

the average concentration in dimensionless form
(
C∗ =

(C − Cave)βC
△ TβT

)
at x = 0 :

∫ 1

0

Cs(x, y)

∣∣∣∣
x=0

dz = 0,

this gives

ns = −ψ
2

(
Bs

2 −Bs
1 +

As
1 +As

2

6

)
.
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3. Non-stationary motion

Problems (3)–(9) can be reduced to problems for loaded equations (when A(y, t), M(y, t) are
known) to function U(y, t), and then it will be reduced to an equation of the 2-nd relative to
unknown W0(t), see., for example [10, 11]. In these works, generally, unknown function of time
includes a factor with known function of the variable y and t. In this case, W0(t) goes to right
side, additively, so is applied separation of variables method, in which basis functions along y are
solutions of problem as Sturm–Liouville, with integral conditions [12]. In this paragraph, using
the specifics of the problems (3)–(9), will be applied the Laplace transformation method, which
allows to receive quantitative characteristics of the motion for specific mixtures.

Suppose

Â(y, p) =

∫ ∞

0

A(y, t)e−pt dt

is Laplace transformation of function A(y, t). Definitions, properties and its domain of appli-
cability see in [13]. In Laplace images problems (3)–(9) become boundary for the system of
ordinary differential equation, the solution of which is in quadrature. Here are presented just
formulas for basic unknowns Â(y, p), M̂(y, p), Û(y, p), Ŵ0(p):

Â(y, p) =
1

sh
√
pPr

[
Â2(p)− Â1(p) ch

√
pPr +

√
Pr
p

∫ 1

0

A0(z) sh
√
pPr (y − z) dz

]
×

× sh
√
pPr y + Â1(p) ch

√
pPr y −

√
Pr
p

∫ y

0

A0(z) sh
√
pPr (y − z) dz,

M̂(y, p) = ψÂ(y, p) +

√
Sc
p

[ ∫ y

0

F (z, p) sh
√
pSc (y − z) dz−

− 1

sh
√
pSc

∫ 1

0

F (z, p) ch
√
pSc (1− z) dz ch

√
pSc y

]
,

F (y, p) = ψpÂ(y, p)−M0(y),

Û(y, p) =
sh√p y
sh√p

[
Ŵ0(p)

p
(1− ch

√
p)− 1

√
p

∫ 1

0

H(z, p) sh
√
p (1− z) dz

]
+

+
Ŵ0(p)

p
( ch

√
p y − 1) +

1
√
p

∫ y

0

H(z, p) sh
√
p (y − z) dz,

H(y, p) = 2G
∫ y

0

[
Â(z, p) + M̂(z, p)

]
dz − U0(y),

Ŵ0(p) =
1

2 ch√p−√
p sh√p− 2

[
√
p ( ch

√
p− 1)

∫ 1

0

H(z, p) sh
√
p (1− z) dz−

− p sh
√
p

∫ 1

0

∫ y

0

H(z, p) sh
√
p (y − z) dz dy

]
.

(11)

Suppose
lim
t→∞

Aj(t) = As
j , (12)

So using explicit expressions (11), are driven the next limit equalities

lim
t→∞

A(y, t) = lim
p→0

pÂ(y, p) = As(y),

lim
t→∞

M(y, t) = lim
p→0

pM̂(y, p) =Ms(y),
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lim
t→∞

U(y, t) = lim
p→0

pÛ(y, p) = Us(y),

lim
t→∞

W0(t) = lim
p→0

pŴ0(p) =W s
0 ,

where on the right sides, functions are stationary solutions in Section 2. Also, similar conclusions
are valid for the functions B(y, t), N(y, t). Finally, if equalities (12) are implemented, so with
increasing time, solutions of the problems (3)–(9) go to stationary mode which are presented in
Section 2.

4. Numerical results

Let us apply the numerical method of inversion of Laplace transformation to formulas in
Section 3.

Required boundary conditions and initial conditions are supposed to

A1(t) = 1− 4e−αt sin(ωt),

M0(y) = ψ (1− y), A0(y) = A2(t) = 0,

and ψ = 0.1, α = 0.01, ω = 0.1, G = 1. It’s obvious that, when this function takes amounts
with minus sign so temperature has a maximum and vice versa. Equation (2) shows the relation
between temperature and A1(t). For the better interpretation of results, desire functions will
be shown at extremum points of function A1(t). So results for functions A(y, t) and M(y, t) are
presented in Fig. 1.

Fig. 1. Stationary and non-stationary results for A(y, t) and M(y, t)

Here bold lines illustrate stationary solutions and non-bold lines are non-stationary ones.
Each graph shows the results in extremum points for boundary condition A1(t). It is important
about function A(y, t), that all graphs, which indicate to minimum points in function A1(t), are
placed above the stationary line whereas corresponding graphs for maximum points in A1(t),
are down of it. About function M(y, t), there isn’t such relation between graphs and extremum
points.

– 245 –



Nemat B.Darabi Solution of Non-stationary Motion of Binary Mixture by Laplace Transformation

Finally in Fig. 2 are presented the velocity components and it illustrates evolution of non-
stationary regime to stationary one.

Fig. 2. Evolution of non-stationary motion of velocity components for A1(t) = 1− 4e−αt sin(ωt)

In according to numerical results (Fig. 2) non-stationary motion convergences to stationary.
It was expected from theoretical concepts (12), so that when boundary conditions stabilize with
increasing time, then all velocity components and temperature go to stationary ones.

Fig. 3 illustrates velocity components when A1(t) = 2 sin(0.01t).

Fig. 3. Evolution of non-stationary motion of velocity components for A1(t) = 2 sin(0.01t)

Although non-stationary solution in some moments approximately coincides with stationary
(t ≈ 350 for U(y, t) and t ≈ 70 for V (y, t)), but for moments larger than these amounts the
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solutions diverge. Fig. 3 shows that time-dependent solution because of periodical boundary
condition on bottom wall (A1(t)), fluctuates about stationary and there isn’t any direct relation
between them. This fact was extractable from theoretical points (12), because in this case
lim
t→∞

A1(t) there isn’t.
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Решение нестационарного движения бинарной смеси
с помощью преобразования Лапласа

Немат Б. Дараби
Институт математики и фундаментальной информатики
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Россия

В работе оценивается специальное решение для уравнений термодиффузии, описывающих дви-
жение бинарной смеси в плоском слое. Если число Рейнольдса мало, то эти уравнения сводят-
ся к некоторым простым обратным краевым задачам. Для решения таких задач используются
преобразования Лапласа. На стенах устанавливаются температуры и определяется поле ско-
ростей. Приведено аналитическое решение для стационарного режима и численные результаты
для нестационарного режима, когда граничные условия стабилизируются с увеличением времени,
тогда все компоненты скорости и температура переходят к стационарным.

Ключевые слова: число Рейнольдса, уравнения термодиффузии, бинарная смесь и нестационарное
движение.
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