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We give an algorithm to obtain a transversality condition for one variation problem with a moving
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Many practical applications of analytic methods (see monographs [1–5] where the output
equations describing basic physical laws are given by using variational methods, however, only
for cases with fixed boundary) often involve moving boundaries, as shown by, for example, the
works [6, 7]. It should be noted that study of such problems is not limited to the above sources
and attracts a great interest even from the general scientific point of view.

Solution of the Problem

We shall restrict ourselves to a specific problem of calculus of variations with moving bound-
ary, which until now has not been studied. Namely, we consider the functional

J(y) =

∫ x1

x0

F (x, y, y′, y′′, y′′′, . . . )dx, (1)

where the point M1 = M(x1, y1) moves and the point M0 = M(x0, y0) is fixed. Note that such
a functional has been treated in [6], however, the order of derivatives in the function under the
integral sign was bounded by two there. In this note we drop this restriction.

In the classical setting for a variational problem with moving boundary [8, 9] one considers
the Euler–Lagrange functional having the simplest form

J(y) =

∫ x1

x0

F (x, y, y′)dx

and finds a transversality condition in the form

F − (y′ − φ′)Fy′

∣∣∣
x=x1

= 0, (2)

where the function φ(x) is the given trajectory of the moving point M1, and F ′
y =

∂F

∂y′
.
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The question now is: How the condition (2) changes, if the the Euler-Lagrange functional is
generalized to have the form (1) and the upper limit of integration, i.e. the point M1 moves. We
could not find an answer to this question in scientific literature and, therefore, give an answer in
this note.

According to the geometry depicted on Fig. 1, let us compute the variation of the functional
(1) in simplest case when

J(y) =

∫ x1

x0

F (x, y, y′, y′′)dx. (3)

Fig. 1. The schematic representation of independent displacements δx1 and δy1. CE = δy(x1),
BC = y′(x1)δx1 and, as can be seen here, δy(x1) = δy(x1) + y′(x1)δx1. R̄ is the radius of
curvature at the point M1, and R at the point A. The points A and M1 are the points of contact
of tangents to the extremals y(x) and ȳ(x), respectively. The point M0 is the fixed point.

As a result we have

δJ(y) ≈ F
∣∣∣
x=x1

δx1 +

∫ x1

x0

(Fyδy + Fy′δy′ + Fy′′δy′′) dx, (4)

where
δy(x) = y(x)− ȳ(x), δy′(x) = y′(x)− ȳ′(x), δy′′(x) = y′′(x)− ȳ′′(x)

are variations and

Fy =
∂F

∂y
, Fy′′ =

∂F

∂y′′
.

The second integral in (4) we integrate by parts to get

δJ2 =

∫ x1

x0

Fy′δy′dx = Fy′

∣∣∣
x=x1

δy(x1)−
∫ x1

x0

δy
dFy′

dx
dx. (5)
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Analogously, for the third integral we have

δJ3 =

∫ x1

x0

Fy′′δy′′dx = Fy′′

∣∣∣
x=x1

δy′(x1)−
d

dx
Fy′′

∣∣∣
x=x1

δy(x1) +

∫ x1

x0

δy
d2Fy′′

dx2
dx. (6)

Here we have taken into account that since M0 = M(x0, y0) does not move, the variation of the
function and all its derivatives at this point are equal to zero

δy(x0) = δy′(x0) = δy′′(x0) = · · · = 0.

Substituting (5) and (6) into (4) we find

δJ(y) ≈ F
∣∣
x=x1

δx1 + Fy′

∣∣∣
x=x1

δy(x1)−
d

dx
Fy′′

∣∣∣
x=x1

δy(x1) + Fy′′

∣∣∣
x=x1

δy′(x1) + δΦ, (7)

where

δΦ =

∫ x1

x0

(
Fy −

dFy′

dx
+

d2Fy′′

dx2

)
δydx. (8)

According to the necessary condition for extremum, the expression (7) must be zero. Besides, two
more equalities must be identically satisfied: the Euler-Poisson equation (which is the necessary
condition for an extremum of a functional of the type (1), see, for example, [8])

Fy −
dFy′

dx
+

d2Fy′′

dx2
− · · · = 0, (9)

from which the extremals are found and the condition

F
∣∣∣
x=x1

δx1 + Fy′

∣∣∣
x=x1

δy(x1)−
d

dx
Fy′′

∣∣∣
x=x1

δy(x1) + Fy′′

∣∣∣
x=x1

δy′(x1) = 0 (10)

directly derived from (7) and the Poisson equation (9) when necessarily δJ = 0. A simple
algorithm for obtaining equalities of the type (9) and (10) was demonstrated on the simplest
example in the monograph [8] for the Euler–Lagrange functional.

As can be seen on Fig. 1, for the variation δy(x1) we have (see [8])

δy(x1) = δy1 − y′(x1)δx1, (11)

where δy1, δx1 are independent displacements of x1, y1. it is not so simple with δy′(x1), to find
it we turn to Fig. 1 again and get

δy′(x1) = y′(x1)−ȳ′(x1) = tanα−tan ᾱ = tanα−tan(α−δα) ≈ δα

cos2 α
=

[
1 + y′2(x1)

]
δα. (12)

Here we have used simple properties y′ = tanα and, as a consequence, 1 + y′2 =
1

cos2 α
. It is

well known from differential geometry [10] (see also [11]) that the curvature of a plane curve K

at a point M can be determined by the formula

K =
1

R
=

y′′

(1 + y′2)
3
2

, (13)

where R is the radius of curvature at M . Substituting here y′ = tanα and y′′ =
α′

cos2 α
we have

1

R
= α′ cosα, or

δα =
δx1

R(x1) cosα(x1)
=

δx1

[
1 + y′2(x1)

] 1
2

R(x1)
. (14)
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It follows from (12) that
δy′(x1) = y′′(x1)δx1. (15)

Hence the condition (9) gives[
F − y′

(
Fy′ − dFy′′

dx

)
+ y′′Fy′′

] ∣∣∣∣∣
x=x1

δx1 +

(
Fy′ − dFy′′

dx

) ∣∣∣∣∣
x=x1

δy1 = 0. (16)

In the case if δx1 and δy1 are independent, it follows from the expression (16) for a functional of
the type (3) that 

F − y′
(
Fy′ − dFy′′

dx

)
+ y′′Fy′′

∣∣∣∣∣
x=x1

= 0,

Fy′ − dFy′′

dx

∣∣∣∣∣
x=x1

= 0.

(17)

If the point M1 moves along the trajectory φ(x1), instead of independent conditions (17) we get
only one transversality condition

F + (φ′ − y′)

(
Fy′ − dFy′′

dx

)
+ y′′Fy′′

∣∣∣∣∣
x=x1

= 0. (18)

This condition is the required transversality for the case when the functionality has the form
(3). It should be noted that if we consider a more complex functional, i.e., of the type (1), the
variation δy′′(x1) should be sought not as δy′′(x1) = y′′′(x1)δ(x1), as it might seem from (15),
but according to the procedure described above using calculation of curvature. Namely, one
should compute as follows

δy′′(x1) = y′′(x1)− ȳ′′(x1) = (tanα)′ − (tan ᾱ)′ =
α′

cos2 α
− ᾱ′

cos2 ᾱ
≈

≈ α′ − ᾱ′

cos2 α
= (1 + y′2)(α′ − ᾱ′) = (1 + y′2)

(
1

R cosα
− 1

R̄ cos ᾱ

)
=

1 + y′2

R cosα
(cos ᾱ− cosα) =

=
1 + y′2

R cosα
[cos(α− δα)− cosα] ≈ 1 + y′2

R cosα
sinαδα =

(1 + y′2)y′

R
δα.

According to (14), from here we have

δy′′(x1) ≈
(1 + y′2)y′

R

δx1

R cosα
=

δx1

(
1 + y′2

) 3
2

R2
=

y′y′′2
(
1 + y′2

) 3
2

(1 + y′2)3
δx1,

and finally

δy′′(x1) =
y′(x1)y

′′2(x1)

(1 + y′2(x1))
3
2

δx1. (19)

As we can see, the difference between expression δy′′(x1) = y′′′(x1)δx1 and (19) is significant.
Following the proposed algorithm one can find any necessary variation of derivatives δy(n) and
obtain appropriate transversality conditions. Indeed, taking into account the expression (19),
instead of (18) we arrive at the following transversality condition

F +(φ′− y′)

(
Fy′ − dFy′′

dx
+

d2Fy′′′

dx2

)
+

(
Fy′′ − dFy′′′

dx

)
y′′+

y′(x1)y
′′2(x1)

(1 + y′2(x1))
3
2

Fy′′

∣∣∣∣∣
x=x1

= 0. (20)
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Conclusion
1. An algorithm is proposed for finding transversality conditions for variational problems

with moving boundary when a functional has the form (1).

2. A detailed calculation methodology based on the use of geometric properties of curvature
is proposed.
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Об условии трансверсальности для одной вариационной
задачи с подвижной границей

Сергей О. Гладков
Московский авиационный институт (Национальный исследовательский университет)

Волоколамское шоссе, 4, Москва, A-80, ГСП-3, 125993
Россия

Дан алгоритм получения условия трансверсальности для вариационной задачи с подвижной гра-
ницей в случае функционала, содержащего производные n-го порядка от функции одной перемен-
ной. Приведено математическое обоснование этого подхода.

Ключевые слова: вариация, кривизна, подвижная граница, функционал, условие трансверсально-
сти.
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