Journal of Siberian Federal University. Mathematics & Physics 2019, 12(1), 125-129

VK 517.97
On a Transversality Condition for One Variation Problem
with Moving Boundary

Sergey O. Gladkov*

Moscow Aviation Institute (National Research University)
Volokolamskoe shosse, 4, Moscow, 125993

Russia

Received 14.09.2018, received in revised form 16.10.2018, accepted 20.11.2018

We give an algorithm to obtain a transversality condition for one wariation problem with a moving
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Many practical applications of analytic methods (see monographs [1-5]| where the output
equations describing basic physical laws are given by using variational methods, however, only
for cases with fixed boundary) often involve moving boundaries, as shown by, for example, the
works [6, 7]. It should be noted that study of such problems is not limited to the above sources
and attracts a great interest even from the general scientific point of view.

Solution of the Problem

We shall restrict ourselves to a specific problem of calculus of variations with moving bound-
ary, which until now has not been studied. Namely, we consider the functional

T
J(y) = / Fla,yy',y"y", ... )dz, (1)
xo
where the point M; = M (z1,y1) moves and the point My = M (zg, yo) is fixed. Note that such
a functional has been treated in [6], however, the order of derivatives in the function under the
integral sign was bounded by two there. In this note we drop this restriction.

In the classical setting for a variational problem with moving boundary [8,9] one considers
the Euler-Lagrange functional having the simplest form

1w - [ " Fla,y.y)de

0

and finds a transversality condition in the form

F—(y —¢)Fy, =0, (2)

=T

oF

where the function op(z) is the given trajectory of the moving point My, and F = Evh
Y
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The question now is: How the condition (2) changes, if the the Euler-Lagrange functional is
generalized to have the form (1) and the upper limit of integration, i.e. the point M; moves. We
could not find an answer to this question in scientific literature and, therefore, give an answer in
this note.

According to the geometry depicted on Fig. 1, let us compute the variation of the functional
(1) in simplest case when

a0 = [ " Fa,y. sy e, 3)

Zo

Fig. 1. The schematic representation of independent displacements dz; and dy,. CE = dy(x1),
BC = y/(x1)6x; and, as can be seen here, 6y(z1) = dy(x1) + y/(z1)dx1. R is the radius of
curvature at the point M7, and R at the point A. The points A and M; are the points of contact
of tangents to the extremals y(x) and g(x), respectively. The point My is the fixed point.

As a result we have

0J(y) = F

z1
o1+ [ (Bydy+ BySy + Fyeby) o (1)
=T T

0

where
By(a) = y(@) ~ §(a). 8y () = y' (@) ~ (@), 69" (2) = y"(a) ~ (@)
are variations and

oF oF

B =y T =5y

The second integral in (4) we integrate by parts to get

1 zl F/
8Jy = / F,6y'dx = F, dy(x1) —/ 5yddj dx. (5)
o Tr=x1 T

0
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Analogously, for the third integral we have

T1 d 1 d2F .
5J5 = / Fydy'dx = Fyr oy’ (x1) — %Fyu 0y(z1) —l—/ oy——5—du. (6)
x 1 xo

o r=x1 r=x dil?

Here we have taken into account that since My = M (xo,yo) does not move, the variation of the
function and all its derivatives at this point are equal to zero

oy(wo) = 6y (z0) = 6y (wo) = --- = 0.
Substituting (5) and (6) into (4) we find

d
5J(y) ~ F‘a::améxl + Fy/ 5y(x1) - %Fy” 5y(l’1) + Fyu 5y/(qjl) + (;CI), (7)
T=x T=T] =1
where N e 2
_ _ Y’ y”
00 = /xo (Fy T + e ) dydzx. (8)

According to the necessary condition for extremum, the expression (7) must be zero. Besides, two
more equalities must be identically satisfied: the Euler-Poisson equation (which is the necessary
condition for an extremum of a functional of the type (1), see, for example, [8])

dF, d*F,.
j pp—— Y _...=0 9
Y dx + dx? ’ )
from which the extremals are found and the condition
d
F b1+ Fy dy(z1) — %Fyn dy(x1) + Fyr §y' (1) =0 (10)
=T =T =T T=T1

directly derived from (7) and the Poisson equation (9) when necessarily 6J = 0. A simple
algorithm for obtaining equalities of the type (9) and (10) was demonstrated on the simplest
example in the monograph [8] for the Euler-Lagrange functional.

As can be seen on Fig. 1, for the variation dy(z1) we have (see [8])

dy(z1) = dy1 — v/ (x1)dz1, (11)

where dy;, dz; are independent displacements of x1,y;. it is not so simple with dy’'(x1), to find
it we turn to Fig. 1 again and get

)
3y (x1) = ¥/ (1) -7 (z1) = tana—tan @ = tan a—tan(a—da) ~ g = [1+y?(z1)] 6. (12)
cos? o
1
Here we have used simple properties 3/ = tan« and, as a consequence, 1 +¢'? = ——. It is

cos? o
well known from differential geometry [10] (see also [11]) that the curvature of a plane curve K

at a point M can be determined by the formula

1 1
K=x= — (13)
(1+y2)}
!/
where R is the radius of curvature at M. Substituting here ¢y’ = tana and y"’ = 5— we have
cos? a
—_ = /
7 = ¢ cosa,or
2(z1)] 2
5 dx1 |1+ 9" (x
da = B LS U VI (14)
R(x1) cosa(xy) R(z1)
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It follows from (12) that
8y (z1) = v (w1)0m1. (15)

Hence the condition (9) gives

dF " dF "
oo () ]| _ e

(Syl =0. (16)

T=T1

In the case if dx1 and dy; are independent, it follows from the expression (16) for a functional of
the type (3) that

dF,.
F — y/ <Fy/ — ;{ ) —|—y”Fy// = 0,
o= (17)
dF 1"
F, - —Y =0.
Y dz
T=T1

If the point M; moves along the trajectory ¢(z1), instead of independent conditions (17) we get
only one transversality condition

dF,,
F+ ((,0/ - y/) <Fy/ — d; > —|—y”Fy//

—0. (18)

=21

This condition is the required transversality for the case when the functionality has the form
(3). It should be noted that if we consider a more complex functional, i.e., of the type (1), the
variation dy”(z1) should be sought not as dy” (1) = y"/(x1)d(x1), as it might seem from (15),
but according to the procedure described above using calculation of curvature. Namely, one
should compute as follows

o a’
5”.’E :H.’E —_”x :tana/—tandlzi_ ~
Yo =y(m) = g(m) = = ) cos2a  cos?a

1 1 >_1+y’2

o —a&

<O ST @ @) =)

— = = COSQ — COS Q) =
Rcosa Rcosa Rcosoz( )

1+ y/2 1+ y/2 ] (1 + y/Q)y/
= — (S - ~ 5 = 5 ‘
Tcosa [cos(ar — dex) — cos @ Toosq, Snada 7 a

cos? o

According to (14), from here we have

3
" - (1 + y/Q)y/ oz _ 01 (1 + y/2) > _
oy (w1) ~ R Rcosa R? (14?3 6z,

and finally

6y (x1) = —y/m)ym(m; Sy (19)

(1+y2(21))2
As we can see, the difference between expression dy”(z1) = ¢’ (x1)dz1 and (19) is significant.
Following the proposed algorithm one can find any necessary variation of derivatives dy(™ and
obtain appropriate transversality conditions. Indeed, taking into account the expression (19),
instead of (18) we arrive at the following transversality condition

dF 1’ d2F 11 dF 11 ! X "2 s
Pl =) (B = g )+ (B )y P <o
(1 + y’2(x1))5 T=T1
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Conclusion

1. An algorithm is proposed for finding transversality conditions for variational problems
with moving boundary when a functional has the form (1).

2. A detailed calculation methodology based on the use of geometric properties of curvature
is proposed.
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OO0 ycjoBum TpaHCBEPCAJbHOCTU AJA OAHON BapUaIMOHHOM
3a/1a4M C MOABU>KHOM I'PDaHUIIEN

Cepreit O. I'magkoB

Mockosckuit apuaruonubiit nacruryT (HarmonanbHblil nccieno0BaTebCKuil yHUBEPCUTET)
Bonokosamckoe mocce, 4, Mocksa, A-80, I'CII-3, 125993

Poccus

Jlam an20pumm NOAYHERUA YCAOBUA MPAHCEEPCAALHOCTU OAA APUALUORHOT 30004 ¢ NOJ8UNCHOT 2pa-
HUYEU 8 cayyae PYHKUUOHAAA, COOEPAHCAULE20 NPOUIEBOIHDIE Th-20 NOPAIKA OM GYHKUUU 00HOT Nepemet-
noti. IIpusedero mamemamuveckoe obocHo8arue 3moz20 nodroda.

Karoueswie crosa: 6apuayus, KpusudHa, nodSUNCHAA 2PAHULA, GYHKUUOHAN, YCAOBUE MPAHCEEDCANDHO-
cmu.
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