УДК 517.55 + 519.1

Permanents as formulas of summation over an algebra with a unique n-ary operation

Georgy P. Egorychev
Institute of Mathematics and Computer Science,
Siberian Federal University,
Svobodny 79, Krasnoyarsk, 660041
Russia

Received 22.06.2018, received in revised form 08.09.2018, accepted 04.11.2018

We give a new general definition for permanents over an algebra with a unique n-ary operation and study their properties. In particular, it is shown that properties of these permanents coincide with the basic properties of the classical Binet-Cauchy permanent (1812).

Keywords: permanents, noncommutative and multioperator algebras, the polarization theorem, polynomial identities.

Introduction

The following concept of the permanent was first introduced independently by J. Binet and A. Cauchy in 1812. The permanent of a square \(n \times n \) matrix \(A = (a_{ij}) \) over fields \(\mathbb{R} \) or \(\mathbb{C} \) (a commutative ring \(K \)) is defined to be the following sum: \(\text{Per}(A) = \sum_{\sigma \in S_n} a_{\sigma(1)} \times \cdots \times a_{\sigma(n)} \), where the sum is taken over all permutations of the set \(\{1, 2, \ldots, n\} \). In other words,

\[
\text{Per}(A) = \frac{1}{n!} \sum_{\tau, \sigma \in S_n} a_{\tau(1)\sigma(1)} \times \cdots \times a_{\tau(n)\sigma(n)} = \sum_{\sigma \in S_n} \text{Sym}\{a_{1\sigma(1)} \times \cdots \times a_{n\sigma(n)}\}, \tag{1}
\]

where \(\text{Sym}\{a_{1\sigma(1)} \times \cdots \times a_{n\sigma(n)}\} = \frac{1}{n!} \sum_{\tau \in S_n} a_{\tau(1)\sigma(1)} \times \cdots \times a_{\tau(n)\sigma(n)} \).

Let \(G \) be a groupoid with division by integers, \(\Psi \) an algebra with a unique n-ary operation \(f(x) = f(x_1, x_2, \ldots, x_n) : \Psi^n \to G \). By analogy with (1) we introduce a more general definition for permanents (compare with [1, 2] and many others).

Definition. The e-permanent \(e\text{Per}(A, f) \) of a square \(n \times n \) matrix \(A = (a_{ij}) \) over the algebra \(\Psi \) is defined to be the following sum

\[
e\text{Per}(A, f) = \frac{1}{n!} \sum_{\tau, \sigma \in S_n} f(a_{\tau(1)\sigma(1)}, \ldots, a_{\tau(n)\sigma(n)}). \tag{2}
\]

In other words,

\[
e\text{Per}(A, f) := \sum_{\sigma \in S_n} \text{Sym}\{f(a_{1\sigma(1)}, \ldots, a_{n\sigma(n)})\} = \sum_{\tau \in S_n} \text{Sym}\{f(a_{\tau(1)1}, \ldots, a_{\tau(n)n})\} \tag{3}
\]

where the symmetrization operator

\[
\text{Sym}(x_1, x_2, \ldots, x_n) := \frac{1}{n!} \sum_{\sigma \in S_n} f(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}),
\]

and \(\text{Sym}(x_1, x_2, \ldots, x_n) = f(x_1, x_2, \ldots, x_n) \), if \(f(x_1, x_2, \ldots, x_n) \) is a symmetric function.
1. Results

Properties of permanents $e\text{Per}(A, f)$ follow directly from properties of a general term of sums (1)–(2). For example, a general term of sum (3) is a symmetric function of its arguments.

In particular, we have obtained several combinatorial formulas (polynomial identities) for e-permanents that contain several free elements from algebra G. As a special case, one of them includes the known Ryser-Wilf formulas for $\text{Per}(A)$ (H. Wilf, 1968; H. Ryser, 1963), which gives the fastest algorithm for computing $\text{Per}(A)$. All computation formulas for e-permanents obtained here by means of the known polarization theorem for recovering a polyadditive function from its values on a diagonal [3, 4].

Theorem 1.

(a) $e\text{Per}_f(A) = e\text{Per}_f(A^T)$.

(b) $e\text{Per}_f(A)$ is a symmetric function of rows and columns of the matrix A.

(c) If the n-ary operation $f(x_1, x_2, \ldots, x_n): \Psi^n \rightarrow G$ is polyadditive then $e\text{Per}_f(A)$ is a polyadditive function of rows and columns of the matrix A.

(d) The e-permanent over the algebra Ψ_0 it is equal to 0, if the square $n \times n$ matrix A contains (up to shifts of rows and columns) a proper a $r \times k$ zero-submatrix, where $r + k > n$. In this case $e\text{Per}(A) = 0$, if the matrix A contains a zero-row or a zero-column.

(e) If the algebra Ψ_0 contains the unit e, and I_n is the identity matrix then the equality $e\text{Per}_f(A) = e$ for the e-permanent over Ψ_0 is valid.

In general case the Laplace formulas for permanent are not valid.

Theorem 2. If an n-ary operation $f(x_1, x_2, \ldots, x_n): \Psi^n \rightarrow G$ is polyadditive then the following formula for $e\text{Per}(A)$ over the algebra Ψ is valid:

$$e\text{Per}(A, f) := \sum_{i=0}^n (-1)^k \sum_{1 \leq j_1 < \ldots < j_k \leq n} \text{Sym} f(\gamma_1-a_{1j_1}-a_{1j_2}-\ldots-a_{1j_k}, \ldots, \gamma_n-a_{nj_1}-a_{nj_2}-\ldots-a_{nj_k}),$$

where $\gamma_1, \gamma_2, \ldots, \gamma_n$ are elements from Ψ. In a special case, if an n-ary operation $f(x_1, x_2, \ldots, x_n): \Psi^n \rightarrow G$ is symmetric and polyadditive then

$$e\text{Per}(A, f) := \sum_{i=0}^n (-1)^k \sum_{1 \leq j_1 < \ldots < j_k \leq n} f(\gamma_1-a_{1j_1}-a_{1j_2}-\ldots-a_{1j_k}, \ldots, \gamma_n-a_{nj_1}-a_{nj_2}-\ldots-a_{nj_k})$$

(4)

Introduce the operation

$$F(x) := f(x, x, \ldots, x) : \Psi \rightarrow G.$$

Theorem 3. The following formula for $e\text{Per}_f(A)$ over the algebra Ψ containing $n!$ any elements $\gamma_\sigma \in \Psi, \sigma \in S_n$, is valid:

$$e\text{Per}(A, f) := \left\{ \sum_{\sigma \in S_n} \sum_{k=0}^n (-1)^{n-k} \sum_{1 \leq j_1 < \ldots < j_k \leq n} F(\gamma_{\sigma} + \sum_{s=1}^k a_{js_{\sigma(s)}}) \right\} / n!,$$

(5)

If in (5) $\gamma_{\sigma} = \gamma$ for each $\sigma \in S$ then

$$e\text{Per}(A, f) := \left\{ \sum_{k=0}^n (-1)^{n-k}(n-k)! \sum_{1 \leq j_1 < \ldots < j_k \leq n, 1 \leq i_1 < \ldots < i_k \leq n} F(\gamma + \sum_{s=1}^k a_{js_{\gamma(s)}}) \right\} / n!,$$

which for $\gamma = 0$ gives

− 797 −

\[e\text{Per}(A, f) := \left\{ \sum_{k=1}^{n} (-1)^{n-k}(n-k)! \sum_{1 \leq j_1 < \ldots < j_k \leq n, 1 \leq i_1 \ldots < i_k \leq n} F \sum_{s=1}^{k} a_{j_s i_s} \right\} / n! \]

Remark. In the simplest case, if in (4) we put \(f(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} x_i; \mathbb{R}^n \to \mathbb{R} \), \(F(x) = x^n \) then we get the first polynomial identity for permanents over the field \(\mathbb{R} \) (G. Egorychev, 1979). In its turn, this polynomial identity for special values of free parameters gives the known Ryser-Wilf formulas (computing algorithm) for the Binet-Cauchy permanents.

It is common knowledge that the determinant \(\det(A) \) can be computed in poly \((n)\) time. On the other hand, the fastest Ryser-Wilf algorithm known for computing \(\text{Per}(A) \) runs in \(n^{2n-1} \) time. Moreover, L. Valiant (1979) has shown that the problem of computation \(\text{Per}(A) \) even for \((0, 1)\)-matrices is \(P \)-complete. The formulas (4) – (5) for \(e\text{Per}(A, f) \) is the same as the Ryser-Wilf formulas for \(e\text{Per}(A) \) (up to replacing an \(n \)-ary operation of multiplication for elements of a commutative ring by an \(n \)-ary operation \(f(x_1, x_2, \ldots, x_n) : \Psi^n \to G \)). Thus, the complexity of computation of \(e\text{Per}(A, f) \) by formulas (4) – (5) directly depends on the complexity of the Ryser-Wilf algorithm for \(\text{Per}(A) \) and the complexity of \(P \)-algorithm for computation of the concrete polyadditive \(n \)-ary operation \(f(x_1, x_2, \ldots, x_n) : \Psi^n \to G \) and one-ary operation \(F(x) := f(x, x, \ldots, x) : \Psi \to G \) (see, for example, [5]).

Illustrative examples Let \(K_{ij} \), \(i, j = 1, 2, \ldots, n \), be non-empty convex compact sets in Euclidean space \(\mathbb{R}^n \) bodies in \(\mathbb{R}^n \) with the addition of bodies by Minkowski, \(A \) be any unimodular transformation in \(\mathbb{R}^n \). Let \(V(K_1, K_2, \ldots, K_n) \) be the mixed volume of bodies \(K_1, \ldots, K_n, V(K) \) the volume of body \(K \) ([6], Chapter 4). Then the following formula of multiple summation is valid:

\[
\sum_{\sigma \in S_n} V(AK_1) \cdots AK_{n}(n) = \left\{ \sum_{k=0}^{n} (-1)^{n-k}(n-k)! \sum_{1 \leq j_1 < \ldots < j_k \leq n, 1 \leq i_1 \ldots < i_k \leq n} V(K_0 + \sum_{s=1}^{k} AK_{j_s i_s}) \right\} / n!,
\]

where \(K_0 \) is any body in \(\mathbb{R}^n \).

Similarly, let \(A_{ij} \), \(i, j = 1, 2, \ldots, n \) be square \(n \times n \) matrices over the field \(\mathbb{R} \), \(D(A_1, A_2, \ldots, A_n) \) be the mixed discriminants of matrices \(A_1, \ldots, A_n \), \(A \) be any unimodular \(n \times n \) matrix over field \(\mathbb{R} \) ([6], § 25). Then

\[
\sum_{\sigma \in S_n} D(AK_1) \cdots AK_{n}(n) = \left\{ \sum_{k=0}^{n} (-1)^{n-k}(n-k)! \sum_{1 \leq j_1 < \ldots < j_k \leq n, 1 \leq i_1 \ldots < i_k \leq n} \det(A_0 + \sum_{s=1}^{k} AK_{j_s i_s}) \right\} / n!,
\]

where \(A_0 \) is any \(n \times n \) matrix over the field \(\mathbb{R} \).

It is of interest to obtain similar results for Schur functions, the mixed discriminants, the resultants, and many other planar and space matrix functions over different algebraic systems of various type and its applications (see [4], [7] – [10] and many others). In our view, an answer to the following question is particularly interesting: for which operations \(f(x_1, x_2, \ldots, x_n) : \Psi^n \to G \) a fast evaluation of \(e\text{Per}(A, f) \) with the help of quantum computers is possible? (see, example [11]).

I am very grateful to my good colleagues L.V. Knaub, S. G. Kolesnikov, V. P. Krivokolesko, A. V. Shchuplev, A.I. Sozutov, V. A. Stepanenko, A. K. Tsikh for their help and useful remarks.
References

Permanents as formulas of summation over a algebra with a unique n-ary operation

Georgy P. Egorychev
Institut matematiki i fundamental'noi informatsii,
Sibirskii federal'nyi universitet,
Svobodnyi 79, Krasnoyarsk, 660041
Rossiya

Дано новое общее определение перманентов над алгеброй с единственной n-арной операцией и изучены его свойства. В частности, показано, что свойства этих перманентов совпадают с основными свойствами классического Бине-Коши перманента (1812).

Ключевые слова: перманенты, некоммутативные и мультиоператорные алгебры, теорема поляризации, полиномиальные тождества.