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Standard models of ionospheric delays have errors of order 1–8 TECU (standard total electron content
units). On the basis of the free interpolation framework we propose a new simple model of the slant TEC
distributions approximating slant TEC distributions obtained from the three-dimensional ionospheric
models NeQuick2 and IRI-2016 with RMS error < 0.05 TECU. The proposed model was tested for varios
positions of receivers in mid-latitude and equatorial regions. Stability of the coefficients of the model with
respect to the position of the receiver and time is substantiated.
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Introduction

Ionospheric delays are an important factor in degradation of navigation precision for users
of global navigation satellite systems (GNSS) so their modeling and mitigation is an active field
of research. Neglecting higher-order effects (they usually do not exceed a few centimeters, [1])
one can reduce estimation of ionospheric delays to estimation of the so-called total electron
content (TEC) along the straight lines connecting a receiver and GNSS satellites. The well-
known models of ionospheric delays widely used in GNSS practice [2–7] have an accuracy of 1–8
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TECU (standard units of total electronic content) which is approximately equivalent to 0.15–1.2
meter in terms of pseudorange errors for GPS L1 frequency. These models are mainly based on
the approximation of the real three-dimensional distribution of electrons in the ionosphere by a
single-layer or two-layer distribution. Three-dimensional ionosphere models don’t use this rough
assumption but they are complicated and still have reduced precision due to modeling latency and
difficulties in modeling of short-term mesoscale ionospheric disturbances and other complicated
ionospheric phenomena. A typical distribution of electron concentration in the ionosphere given
by the NeQuick2 model [8] is shown below on Fig. 1. It clearly shows why single-layer or even
multi-layer ionospheric models have fundamental precision limitations.

We propose a new model of ionospheric delays, significantly more accurate than single and
double layer approximations, but simple enough for practical use in radionavigation. It is based
on the free interpolation framework, successfully applied in [10, 11] (under the name of “univer-
sal interpolation framework”) to the problem of high-precision reconstruction of GNSS satellite
orbits using SP3 data. Our framework is not limited to polynomials, trigonometric or spherical
functions conventionally used as the basis for interpolation. The interpolating basis in our frame-
work automatically adapts to the data to be interpolated and uses a simple machine learning
approach. Due to this simple trick the accuracy of our free interpolation framework (as we have
demonstrated below and in [10, 11]) is much higher than the accuracy of the traditional models
of ionospheric delays. Our framework still retains a relatively small number of parameters unlike
the three-dimensional models.

In this paper we make a first step towards the modeling and determination of real slant
TEC (STEC) values, namely we investigate the level of approximation of our model to widely
used three-dimensional ionospheric models. Adequacy of our model for real-time determination
of ionospheric delays and accompanying determination of differential code and phase biases
(DCBs, cf. [4]) from dual-frequency receiver measurements as well as incorporation of higher-
order ionospheric effects into the free interpolation framework will be studied later.

As shown below, our model of ionospheric delays is quite universal, stable over time and
provides (with a relatively small number of parameters) the values of STEC having standard
deviation < 0.05 TECU from those calculated using the modern three-dimensional empirical
models of the ionosphere. Thus our model, keeping expressions for STEC calculation simple
(cf. (2)), has no fundamental precision limitations typical for the models based on layered electron
density distributions.

1. Three-dimensional models of the ionosphere used
for calculation of the slant TEC distributions

We used two empirical models of the space-time distribution of electron concentration: IRI-
2016 [9], and NeQuick2 [8]. IRI-2016 gives the space distribution of the electron density Ne for
heights from 65 km in the day–time and from 80 km in the night–time ionosphere to 2000 km.
To calculate STEC, we integrate Ne along various inclined (“slant”) rays starting at the selected
point on the surface of the Earth (receiver location), to the height of 2000 km. The NeQuick2
model gives the distribution of Ne from 90 km to 20, 200 km and has its own functions for STEC
calculation. Fig. 1 shows the meridional cross-section of the distribution of the electron concen-
tration Ne in the model NeQuick2 for the Greenwich meridian for midnight UT, 03.22.2002, in
conditions of equinox with high solar activity F10.7 = 160, Northern hemisphere. Bold curves
are the lines of constant value of log10 Ne with a contour interval 1/3, where Ne is given in
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m−3 units. Dashed lines correspond to values less than 11. The complicated, essentially three-
dimensional, structure of Ne distribution is clearly visible. In the same figure, the thin lines
show 7 rays originating from a point on the Earth’s surface at the latitude λ = 45◦. Their slopes
relative to the vertical at this point are shown above the figure, positive values correspond to
slope to the north, negative – to the south, ±90◦ correspond to horizontals. In the coordinates
λ, h, the rays, of course, are not straight. Integrating Ne along these lines yields STEC values.
As we see, the largest contribution to the integrals is made by the heights of 200–500 km.

Fig. 1. Typical distribution of electron concentration in the meridional cross–section of the
ionosphere

The layer between the heights 1000–2000 km and the ionosphere and plasmasphere above
2000 km add approximately 5% each. Since the nearly horizontal rays extend in the ionosphere
tens of degrees of latitude away from the receiver, where the properties of the ionosphere are
significantly different, simple formulae for the expression of STEC through the vertical TEC used
in standard single or multi-layer models (mapping functions) can be accurate only for moderate
slopes and give a significant error for other slopes.

Our interpolation framework does not prescribe closed-form explicit mapping functions; in-
stead, we use the big data collections of STEC values from the 3D models to deduce an analogue
of mapping functions (obtained as value tables, not as a formula) as we explain in the next
section. In principle such tabular mapping functions could strongly depend on the position of
the receiver, local time, ionospheric conditions etc. Amazingly enough we were able to obtain a
universal table valid for both mid-latitude regions and (with some limitations, see Section 3.) for
equatorial region, for a span of more that 15 years with small dependence on solar activity.

As the first step of our approach we need to accumulate a sufficient stock of sufficiently
precise STEC values—either using real measurements (from dual-frequency receivers) or from
the 3D ionospheric models described above. In this paper we choose the second option.

At the installation point of a GNSS receiver at selected times tm a set of STEC values is
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formed for azimuth angles ai = 1◦, . . . , 360◦, and zenith angles zj = 0◦, . . . , 90◦, both with a
step 5◦ using the two empirical models of the ionosphere as two different STEC collections (they
will be analysed separately). In the examples below, the time step of t equal to 1 hour was
chosen, for the complete UTC 24-hour days. As test periods one day (22nd) of each month for
the years 2001 (high solar activity) and 2017 (low solar activity) have been chosen. The following
positions of GNSS receivers from the IGS network [2] have been chosen, with coordinates given
as latitude (◦), longitude (◦), height (m):

1. OHI3 (Antarctica) –63.1915941 –57.5404987 32.15
2. SYOG (Antarctica) –69.002520 39.350132 50.0902
3. KERG (Kerguelen Islands) –49.210528098 70.1519885966 73.009
4. HOB2 (Hobart, Tasmania) –42.481699 147.261944 41.1
5. KAT1 (Katherine, Australia) –14.22336335 132.09117652 184.4760
6. TWTF (Taoyuan, Taiwan) 24.571296 121.095220 203.122
7. PIE1 (Pie Town, USA) 34.301506 –108.118927 2347.710900
8. AMC4 (Colorado Springs, USA) 38.803125 –104.524594 1912.489800
9. ALBH (Canada) 48.232328 –123.291464 32.0

10. KOUR (Kourou, French Guiana) 51.50792 –52.482160 25.57
11. BOR1 (Poland) 52.163704 17.042445 124.9
12. NOVM (Novosibirsk, Russia) 55.014980 82.543416 149.98
13. SPT0 (Boras, Sweden) 57.425384 12.532884 219.9
14. SCOR (Greenland) 70.290720 –21.570121 128.5
15. THU2 (Greenland) 76.321320 –68.493000 36.1

For the stations AMC4 and PIE1 also every 22nd day of the months of 2008 and 2017 (both
with low solar activity) were taken for generation of more dense STEC tables with a step 1◦ for
azimuth and zenith angles and 5-minute time step.

All STEC values were computed with (nominal) precision 10−6 TECU. NeQuick2 has internal
double precision so this nominal accuracy is easy to output; for IRI-2016, which has internal single
precision, we used a palliative: after forming a 3D grid of the electron density with 2◦ step along
latitude, 5◦ step along longitude and 5 km step for height we convert this array to double precision
and after multilinear interpolation to the slant rays (connecting a receiver and a satellite) we used
the standard numeric univariate quadrature formulas to get the prescribed precision. Also some
minor limitations of NeQuick2 w.r.t. solar activity upper limit were encountered; fortunately
they affected only a few days in our experiments. In order to get valid results for 2017, the
internal NeQuick2 table of solar activity index (provided only till 2009) was extended.

2. Free linear interpolation framework for STEC modeling

As explained in [10, 11], the transition from the classical univariate polynomial Lagrange
interpolation basis

f(t̂ ) =

N∑
n=1

f(tn)αn(t̂ ), αn(t̂ ) =

N∏
k=1,k ̸=n

t̂− tk
tn − tk

(1)

(cf. similar formilae for trigonometric interpolation and other fixed functional classes chosen
as the bases for interpolation) to the proposed free interpolation basis is formally simple: one
does not fix the explicit form of the basis functions αn(t) (we leave them “free”), instead, we
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obtain the αn(t)-basis as a set of tabular functions from a large set of data: the values of
the analyzed (interpolated) function f(t) at sufficiently dense set of points t, using a simple
machine learning trick. Being adapted to the data under study, this αn(t)-basis gives much
better results than the standard polynomial or trigonometric bases. Below we explain this new
interpolation framework in detail in the form modified for the case when we have functions with
three-dimensional argument: STEC values at the given receiver location depend on azimuth and
zenith angles and time.

As the result of the interpolation in our framework, the value of STEC must be obtained for
a ray with the direction (â, ẑ) defined via its azimuth and zenith angles, which we call a target
direction. It will vary as in other interpolation approaches. First we introduce the basic concept
of an interpolation pattern: fix N basic directions given by azimuths an and zenith angles zn,
n = 1, . . . , N . They are chosen arbitrarily, but some rational choices will be described below.
We include the target direction (â, ẑ) into the interpolation pattern as well. On the contrary, the
time t is not included into the interpolation pattern. Once the interpolation pattern is fixed, we
define the basic equation of the multidimensional linear free interpolation:

u(â, ẑ, t0) =
N∑

n=1

u(an, zn, t0) γn(â, ẑ) + ε0(â, ẑ, t0). (2)

Now, when the form of the basic equation (2) is fixed, we proceed to the stage of finding γn(â, ẑ).
For this we provisionally suppose that all the STEC values (the function u) are known — namely
we take their arguments belonging to the grid of azimuth and zenith angles as well as time t0
from the large set of STEC data computed using the IRI-2016 and/or NeQuick2 model in the
previous section. In particular, the basic directions and the target direction must be from the
grid (ai, zj) used in the previous section. For a fixed target direction (â, ẑ), and the time t0,
the interpolating basis functions γn(â, ẑ) are the N unknown (yet) numbers, which we call free
interpolation coefficients; u(an, zn, t0) as well as u(â, ẑ, t0) are the known STEC values for the
corresponding directions of the rays at this fixed moment of time t0 at the given point (receiver
location) on the Earth; ε0 is the interpolation residual. We emphasize that we are trying to
find time-independent functions γn(â, ẑ). To find the numbers γn and the residual ε0 for the
fixed (â, ẑ), we shift the selected interpolation pattern (this affects only the STEC values u in all
directions (an, zn) and (â, ẑ)) by some time step ∆t (5 minutes or 1 hour, in our experiments).
So we replace u(â, ẑ, t0) with their values for the new moment of time and obtain a similar to (2)
equation with the same coefficients γn(â, ẑ) and another ε0. Performing such time shifts M > N

times, we get the system:
u(â, ẑ, t0) =

N∑
n=1

u(an, zn, t0) γn(â, ẑ) + ε0(â, ẑ, t0),

· · ·

u(â, ẑ, t0 +M∆t) =

N∑
n=1

u(an, zn, t0 +M∆t) γn(â, ẑ) + εM (â, ẑ, t0 +M∆t).

(3)

For a fixed target direction (â, ẑ), the system (3) has M+1 linear algebraic equations with N

unknown numbers γn as well as M + 1 numbers εm to be defined. We solve (3) by the standard

least squares algorithm, finding γn such that
M∑

m=0
ε2m will be minimized. After reproducing these

steps for all directions of the selected grid for the target directions (âi, ẑj) in our experiments:
âi = 1◦, . . . , 360◦, ẑj = 0◦, . . . , 90◦ with step 5◦ (resp. 1◦), we get the values of N interpolating
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basis functions γn(â, ẑ) as tables for the chosen grid of the arguments (âi, ẑj). Note that in the
proposed method, the interpolating functions γn(â, ẑ) are neither polynomials, nor trigonometric
or spherical functions, etc., this explains the meaning of the term “free interpolation”.

Secondary interpolation. Obviously enough, in practice we need the values u(â, ẑ, t) for
arbitrary target directions (â, ẑ) not limited to the precomputed grid (ai, zj). For sufficiently
dense precomputed target grids this problem is easily solved by the standard interpolation tech-
nique (polynomial or trigonometric interpolation); this will give the values u(â, ẑ, t) for any (â, ẑ)

from the values of u computed using (2) (with omitted ε0) and the precomputed table of free
interpolation coefficients γn(ai, zj) on a few grid points close to the target direction (â, ẑ). Since
those grid points are close to the target grid point, polynomial interpolation will give the re-
sult with high precision, not obtainable when one would try to perform a direct polynomial (or
trigonometric, splines etc.) interpolation from the rarefied basis directions (an, zn) of the chosen
interpolation pattern; the first stage of free interpolation is essential for high precision of the
result.

2.1. The ionospheric delay model and its use

Now we summarize the steps and procedures necessary for practical use of our free interpo-
lation framework for high-precision computation of STEC values at a given receiver location.

First, we form the set of STEC values on a sufficiently dense grid (ai, zj) of directions using
either NeQuick2 or IRI-2016 model. Then we fix the number N of basis directions and the
directions (an, zn) themselves. The larger N and the more dense the basic directions grid the
higher the resulting precision of interpolation.

Second, we form the system (3) and use the least squares algorithm to find the table of free
interpolation coefficients γn(ai, zj). The obtained table will provide good results for a wide range
of receiver locations and years of similar solar activity, as explained in the next Section, so the
first and second stage shall be done once for such locations and solar activity periods. In fact,
such tables of free interpolation coefficients can be provided to a user as ready precomputed tables
in a file. One shall keep in mind that in order to get the most from the proposed interpolation
framework we need the table of γn(ai, zj) obtained either from a large set of real measurements
for dual-frequency receivers (and separating the ionospheric delays in their measurements from
DCBs of the receivers and the satellites) or from the models of ionosphere and plasmasphere
that incorporate higher-order effects [1, 4].

Finally, given the table of free interpolation coefficients γn(ai, zj) one can use the simple
formula (2) (with omitted ε0) and secondary polynomial interpolation to compute the STEC
values for arbitrary target direction, if the STEC values u(an, zn, t) in the basic directions are
known for the current time t. Such basic STEC values (unlike the coefficients γn(ai, zj)) give
the set of parameters of our model ; they vary in time and place and shall be either provided to
the user by some local or global GNSS analysis center (similar to VTEC tables provided as IGS
products [2]) or found independently from local observations.

3. Experimental verification of the proposed method

The free interpolation framework has a lot of “hidden” freedom which can be used for further
adaptation to the problems to be solved. The most important freedom is in the choice of data
set used on the stage of forming the system (3).
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As the first example of such a flexibility we choose only two stations from the list given in
Section 1. – AMC4 and PIE1, and limit the STEC data formed with NeQuick2 and IRI-2016 by
the range of zenith angles 0 6 z 6 60◦. This will give high-precision approximation with small
number N of parameters in our model.

Experiment 1. Stations AMC4 and PIE1, years 2008 & 2017, azimuth and zenith angle
steps 1◦, 0 6 z 6 60◦, ∆t = 5 min.

For each year we used interpolation patterns with N = 7, 10, 14, 31, 49 points. Basic
directions were chosen with increasing density for large zenith angles, so for N = 7 we choose
{(an, zn)} = {(0, 0), (70, 40), (190, 40), (310, 40), (10, 60), (130, 60), (250, 60)}.

Let us denote the array of interpolation coefficients corresponding to some station, say AMC4,
and some year, say 2008 and N = 7 as γ⃗(AMC4, 2008, 7). In this experiment we compute the γ’s
only from the STEC sets obtained with NeQuick2. The vectors of residuals

ϵ⃗(â, ẑ) = A · γ⃗(â, ẑ)− B⃗ (4)

(for all (â, ẑ) in the grid (ai, zj)) are computed using the matrix A and the l.h.s. vector B⃗ of the
STEC values u(an, zn, tm) and u(â, ẑ, tm) in (3). Note that we can use the array γn(ai, zj) in (4)
for one station, say, the array γ⃗(AMC4, 2008, 7) but form A, B⃗ from the STEC values for another
station (and the same or another year). This is done for testing the validity of a γ array for
several receiver locations and time. To estimate the obtained array ϵm(ai, zj) we use the RMS
estimate σ = std(ϵ) averaging w.r.t. all indices m, i, j. All estimates are given in TECU.

In the following Tab. 1 in the columns 2–5 we give the σ’s obtained from ϵ’s in (4) with
the γ-array γ⃗(AMC4, 2008, N), while in the columns 6–9 they are obtained using the γ-array
γ⃗(AMC4+PIE1, 2008+2017, N) (the complete set of all data) with corresponding N . The columns
denote the data sets used to form A, B⃗ in (4). As one can see, already for small N we get a
good approximation; N > 10 are in fact unreasonable in this experiment.

Table 1. Model NeQuick2, sets γ⃗(AMC4, 2008, N), γ⃗(AMC4 + PIE1, 2008 + 2017, N)

N AMC4 AMC4 PIE1 PIE1 AMC4 AMC4 PIE1 PIE1
2008 2017 2008 2017 2008 2017 2008 2017

1 2 3 4 5 6 7 8 9
7 0.023 0.025 0.029 0.029 0.024 0.026 0.025 0.025
10 0.016 0.018 0.020 0.021 0.017 0.018 0.018 0.018
14 0.012 0.013 0.015 0.015 0.012 0.013 0.013 0.013
31 0.006 0.007 0.007 0.008 0.006 0.007 0.006 0.006
49 0.005 0.006 0.005 0.006 0.005 0.005 0.005 0.005

In Tab. 2 we give the resulting RMS errors for γ⃗(AMC4, 2008, N) in the columns 2, 3 while in
the columns 4, 5 we use γ⃗(AMC4+PIE1, 2008+2017, N) (computed with NeQuick2) substituted into
(4) with A, B⃗ formed from the the STECs of the model IRI-2016. Small RMS errors indicate
universality of the γ-tables.

Experiment 2. NeQuick2 data for 13 mid-latitude and 2 equatorial stations, years
2001 & 2017, azimuth and zenith angle steps 5◦, larger zenith angles interval: 0 6
z 6 80◦, ∆t = 1 hour.
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Table 2. STECs for IRI-2016, NeQuick2-sets γ⃗(AMC4, 2008, N), γ⃗(AMC4+PIE1, 2008+2017, N)

N AMC4 PIE1 AMC4 PIE1
2017 2017 2017 2017

1 2 3 4 5
7 0.031 0.044 0.031 0.044
10 0.017 0.022 0.018 0.023

We took N = 19, 32 with denser basic direction grids for z > 60◦. In Tab. 3. we give the
respective σ, and used γ-arrays γ⃗(AMC4, 2001, N) and γ⃗(AMC4, 2017, N) for substitution into (4)
for matching year and N .

Table 3. NeQuick2, γ⃗(AMC4, 2001, N), γ⃗(AMC4, 2017, N)

N ALBH ALBH AMC4 AMC4 BOR1 BOR1 HOB2 HOB2 KERG KERG
2001 2017 2001 2017 2001 2017 2001 2017 2001 2017

19 0.036 0.057 0.029 0.050 0.046 0.060 0.052 0.081 0.041 0.069
32 0.021 0.036 0.017 0.028 0.026 0.030 0.038 0.054 0.029 0.044

N KOUR KOUR NOVM NOVM OHI3 OHI3 PIE1 PIE1 SCOR SCOR
2001 2017 2001 2017 2001 2017 2001 2017 2001 2017

19 0.039 0.056 0.043 0.062 0.062 0.087 0.036 0.051 0.048 0.075
32 0.028 0.036 0.027 0.040 0.040 0.055 0.022 0.031 0.029 0.042

N SPT0 SPT0 SYOG SYOG THU2 THU2 KAT1 KAT1 TWTF TWTF
2001 2017 2001 2017 2001 2017 2001 2017 2001 2017

19 0.047 0.057 0.045 0.074 0.073 0.107 0.239 0.271 0.368 0.323
32 0.027 0.031 0.028 0.045 0.041 0.055 0.119 0.152 0.183 0.159

Since the results for the equatorial stations KAT1, TWTF are much worse let us compute the
γ-sets for those stations, separately for each year, station and N . Tab. 4 gives the obtained σ’s
for matching years, stations and N .

Table 4. NeQuick2, matching γ⃗(KAT1, year,N), γ⃗(TWTF, year,N)

N KAT1 KAT1 TWTF TWTF
2001 2017 2001 2017

19 0.283 0.269 0.225 0.468
32 0.072 0.138 0.103 0.200

Next we tried forming the γ-sets using the united NeQuick2 data for all 15 stations and years.
The resulting σ’s for N = 19, 32, averaged over all stations separately for the years 2001, 2017
are given in the Tab. 5.

Experiment 3. IRI-2016 data for 13 mid-latitude and 2 equatorial stations, years
2001 & 2017, azimuth and zenith angle steps 5◦, larger zenith angles interval:
0 6 z 6 80◦, ∆t = 1 hour.
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In this experiment we use the γ-arrays γ⃗(AMC4, 2001, N) and γ⃗(AMC4, 2017, N) obtained using
NeQuick2, for substitution into (4) for matching year and N and A, B⃗ in (4) formed from the
the STECs of the model IRI-2016. Tab. 6 gives the obtained σ’s for matching years and N for
each station separately. As we can see, the results in most cases approximately are twice larger
than in Tab. 1, so universality of the NeQuick2 γ-tables was not as good as shown in Tab. 2
PIE1 was not processed due to IRI-2016 height limitations.

Table 5. NeQuick2, all stations and years

N All stations All stations
2001 2017

19 0.073 0.036
32 0.029 0.017

Table 6. IRI-2016, all stations and years, NeQuick2 γ-tables

N ALBH ALBH AMC4 AMC4 BOR1 BOR1 HOB2 HOB2
2001 2017 2001 2017 2001 2017 2001 2017

19 0.096 0.033 0.001 <0.001 0.137 0.051 0.111 0.044
32 0.039 0.016 0.001 <0.001 0.078 0.041 0.064 0.029

N KERG KERG KOUR KOUR NOVM NOVM OHI3 OHI3
2001 2017 2001 2017 2001 2017 2001 2017

19 0.084 0.045 0.089 0.025 0.140 0.056 0.182 0.060
32 0.053 0.034 0.040 0.015 0.093 0.047 0.113 0.033

N SCOR SCOR SPT0 SPT0 SYOG SYOG THU2 THU2
2001 2017 2001 2017 2001 2017 2001 2017

19 0.097 0.036 0.148 0.062 0.094 0.040 0.076 0.027
32 0.046 0.027 0.118 0.053 0.050 0.025 0.032 0.015

For equatorial stations the results are again significantly worse:

N KAT1 KAT1 TWTF TWTF
2001 2017 2001 2017

19 0.302 0.166 0.800 0.154
32 0.119 0.075 0.342 0.106

Now let us use the NeQuick2 γ-sets formed using the data for all 15 stations and years (see
Experiment 2), for N = 19, 32 and substitute them into (4) with A, B⃗ from IRI-2016 data. The
resulting σ’s averaged over all stations separately for the years 2001, 2017 are given below:

N All stations All stations
2001 2017

19 0.112 0.040
32 0.041 0.014
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4. Conclusion and outlook

The proposed free interpolation framework has substantially lower nominal errors than many
other models used in GNSS practice, still keeping the modeling algorithm very simple. Its
validity for ionospheric data from real measurements (as well as feasibility of separation of re-
ceiver+satelite DCBs) will be reported in subsequent publications. A remarkable property of
stability of the best fitted coefficients of our model (without adaptation to the day/night or sea-
sonal variation of the ionosphere) should be explored in more detail, as well as weak dependence
of the coefficients on solar activity.

S. P.Tsarev was supported by the grant from the Ministry of Education and Science of the
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Россия

Стандартные модели ионосферных задержек имеют точность 1–8 TECU (стандартных еди-
ниц полного электронного содержания, ПЭС). На основе метода свободной интерполяции со-
здана новая простая модель ионосферных задержек, имеющая точность определения наклонных
ПЭС < 0.05 TECU относительно наклонных ПЭС, вычисленных с помощью трехмерных моде-
лей ионосферы NeQuick2 и IRI-2016. Предложенная модель опробована для различных положений
приемника в средних и низких широтах. Показана стабильность ее коэффициентов по времени
и положению приемника на поверхности Земли.

Ключевые слова: ионосфера, полное электронное содержание, ГЛОНАСС, GPS, интерполяция,
машинное обучение.
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