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The problem of construction of optimal quadrature formulas in the sense of Sard in the space Lg’")(o, 1)
is considered in the paper . The quadrature sum consists of values of the integrand at internal nodes and
values of the first, third and fifth derivatives of the integrand at the end points of the integration interval.
The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional
is calculated for arbitrary natural number N and for any m > 6 using Sobolev method. It is based on
discrete analogue of the differential operator d*™/dz*™. In particular, for m = 6,7 optimality of the
classical Fuler-Maclaurin quadrature formula is obtained. Starting from m = 8 new optimal quadrature
formulas are obtained.
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1. Introduction. Statement of the problem

We consider the following general quadrature formula

1 N 3
| etarar=>"clpemn + 3 4, (90(2"1)(0) - @(2”1)(1)) (L1)
0 B=0 n=1

with the error functional
N 3

U(z) = epy(x) = Y ClBlo(@ — hB) + Y Ay (5(2"_1)(90) — 6 (@ — 1)) (1.2)

=0 n=1

in the space Lém) (0,1) for m > 6. Here C[g], 8 = 0,N and A,, n = 1,2,3 are the coefficients
1
of formula (1.1), h = —, N is a natural number, €| 1j() is the characteristic function on the
interval [0,1], 6(z) is the Dirac delta-function and ¢ is an element of the Sobolev space
Lém)(O7 1) :={¢:[0,1] = Rjp™ Y is abs. cont. and o™ € Ly(0,1)}

equipped with the norm

1/2

1
lolZS™ (0, 1) = { / <so<m><m>>2dx} (13)
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1
and [ (™ (2))%dz < co.
0

Equality (3) is a semi-norm and ||| = 0 if and only if ¢(x) = Pp,—1(z) where Py, _1(x) is
a polynomial of degree m — 1.
The difference

N 3

(6,9) = / p@)de — S ClBle(hB) — 3 An (go@"-”(m - @(2”_1)(1)) (1.4)

B=0 n=1

is called the error of quadrature formula (1.1).
By the Cauchy-Schwarz inequality

1(6,0)] < [lplLS™ (0, 1) - [E1LS™ (0, 1)]]

error (1.4) of formula (1.1) is estimated by the norm of error functional (1.2) in the conjugate
space Lgm) (0,1), i.e,. by

s o= s el
el L8 0,1)]|=1

Thus estimation of error (1.4) of quadrature formula (1.1) on functions in the space Lgm)(O7 1)

is reduced to finding the norm of the error functional £ in the conjugate space Lém)* (0,1).

Obviously the norm of the error functional ¢ depends on coefficients and nodes of quadra-
ture formula (1.1). The problem of finding the minimum of the norm of the error functional
¢ that depends on coefficients and nodes is called Nikol’skii problem. The resulting formula is
called optimal quadrature formula in the sense of Nikol’skii. This problem was first considered
by S.M. Nikol’skii [11], and by many authors (see e.g. [1-4,12,29] and references therein). Mini-
mization of the norm of the error functional ¢ in terms of coefficients when the nodes are fixed
is called the Sard problem. The resulting formula is called the optimal quadrature formula in the
sense of Sard. This problem was first investigated by A.Sard [13].

The results of this paper are related to the Sard problem. So here we discuss some of the
previous results on optimal quadrature formulas in the sense of Sard which are closely related to
our results.

There are several methods of construction of optimal quadrature formulas in the sense of
Sard such as spline method, ¢-function method (see e.g. [1,15]) and the Sobolev method which
is based on construction of discrete analogue of a linear differential operator (see e.g. [25,26]).
The Sard problem was investigated in various spaces by many authors (see, for example, [1,3,7—
10,14-16,18, 20,21, 24-28| and references therein).

The main aim of this paper is to construct optimal quadrature formulas (1.1) in the sense of
Sard in the space Lgm) (0,1).

We use the Sobolev method [25,26] which is based on the discrete analogue of the differential
operator d*™ /dz*™.

In order to define error functional (1.4) in the space Lgm)(O, 1) it should satisfy the following
conditions (see [24])

l,z*)=0, a=0,1,2,...,m—1. (1.5)

Hence it is clear that for existence of quadrature formulas (1.1) the condition N > m — 4 should
be satisfied.

As it was noted above the error of formula (1.1) is estimated by the norm ||¢]| of error
functional (1.2). Furthermore the norm of error functional (2) depends on coefficients C[5], A,,.
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We minimize the norm of error functional (2) in terms of coefficients C[3] and A,, i.e., we find

= inf

2 ClB),An

(1.6)

Coefficients C[f] and A,, which satisfy (1.6) are called the optimal coefficients and they are
denoted by C [8] and An The corresponding quadrature formula is called the optimal quadrature
formula in the sense of Sard. For the sake of convenience the optimal coefficients C[3] and A,
will be denoted as C[f] and A4,,.

Thus to construct optimal quadrature formulas (1.1) in the sense of Sard we need to solve
consequently the following problems.

Problem 1. Find the norm of error functional (1.2) of quadrature formula (1.1) in the space
Li(0,1).

Problem 2. Find coefficients C[B] and A,, which satisfy relation (1.6).

It should be noted that many mathematicians have contributed to the development of
the theory of cubature and quadrature formulas among them S.L.Sobolev, I.P. Mysovskikh,
V.I. Lebedev, M.D. Ramazanov, G.N. Salikhov, V.I. Polovinkin, M. V. Noskov, V.L. Vaskevich
and others.

The paper is organized as follows: in Section 2 we give representation of the norm of error
functional (1.2) and we obtain the system of linear equations for the coefficients of the optimal
quadrature formulas in the space Lgm) (0,1). Moreover, the existence and uniqueness of the
solution of this system are discussed; in Section 3, using the discrete analogue of the operator
d*™ /dx®™, explicit formulas for coefficients of optimal quadrature formulas (1.1) are found, and
the norm of error functional (1.2) is calculated.

2. The system of equations for optimal coefficients

To solve Problem 1 we get the following expression for the norm of error functional (1.2) [23]

115 — I o — g
i = [ch 2——220 /OT_U_M

=04=0
- 2;3:1/1“ /01 (x2m‘2;(;rnf1_;§))fm2”)dx_
9 Ei: A, ﬁ: Clp) ((hﬂ)Q’";;;(_l ;nf;!ﬂ)zm%) .

23: zg: (2m = infk?k ot (2m1+ 0l (2.1)

n=1k=1

Further, in order to solve Problem 2 we apply the Lagrange method, i.e., to find the minimum
of ||¢||* under conditions (1.5) we consider the following function

U= =2 (-1)™ Z Aa(l(x),2%),

where )\, are unknown multipliers. The function ¥ is the multidimensional function with respect
to coefficients C[B], A, and \,. Setting partial derivatives of ¥ with respect to coeflicients
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C[B], A, to zero and taking into account conditions (1.5), we obtain the following system of
linear equations

ZC Ihﬂ fw\?ml Z o, (BB + (1= hB)*™)

2(2m — 2n)! *
m—1
+ 3 Ma(hB) = fu(hB), =T, N,  (22)
a=0
N 2m—2k 2m—2k
((hB) + (1 —hp) ) A,
B;C[B] 2(2m — 2k)! _; 2@m —on -2k
m—1 1
+ag2:ka(o‘_1)"'(a_2k+2)')\a = m, k’=1,2,3, (2.3)
T 1
;:jocm(hﬂ) a0l o
N ) )
ﬁ;oc[ﬂ](hﬁ) —ad = m, a=2,3, (2.5)
N
> ClBI(hB)* — aAr — a(a = 1)(a = 2) 4y = — i o a=4.5, (2.6)
B=0
N
Z CIB](hB)* — aA; — a(a —1)(a — 2)Ay—
B=0
_a(a_1)(0‘_2>(a_3)(04—4)143=a+1, a=06,m—1, (2.7)
where
B 1 |$_hﬁ‘2m—1 (hﬁ om  2m—1 (—hB)2m—1-3
fm(hﬁ)—/O md = + Z 2m_1_j) GO (2.8)

System (2.2)—(2.7) is called the discrete system of erner—Hopf type for the optimal coefficients
[24,26]. Coefficients C[f], 8 =0,N, A, and A\, @ =0, m — 1 are unknowns of system (12)—(17).
System (2.2)—(2.7) has unique solution and this solution gives the minimum of ||¢||?. Here we
omit the proof of the existence and uniqueness of the solution of this system. The proof of the
existence and uniqueness of the solution of this system coincides with the proof of the existence
and uniqueness of the solution of discrete Wiener-Hopf type system for the optimal coefficients in

the space L( )(0 1) for quadrature formulas of the form ff )dx = Z C101115] (see [24,26]).

It should be noted that the uniqueness of the optimal quadrature formulas in the Sard sense
was also discussed [9].

3. The coefficients and the norm of the error functional
of the optimal quadrature formulas

In this section we solve system (2.2)—(2.7) and find the explicit formulas for coefficients C[3].
We use functions of discrete variable and operations on them (see [24,26]).
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First we consider some statements that are used in the proofs of main results.
The following theorem is devoted to representation of the Euler-Frobenius polynomial.

Theorem 3.1 (Lemma 3 of [17]). Polynomial

k+1 A10k+1

Qu(z) = (z — k+1z

x—l

is the Buler-Frobenius polynomial of degree k, i.e., Qi (z) = Ex(x) where A% = > (=1)"~!CHk,
=1

We need the discrete analogue D,,,(h3) of the operator d>™ /dx?™ which satisfies the following
equation
Dy (hB) * G (hB) = 6(hB), (3.1)

h 2m—1
where G,,,(h3) = (ilzl) 0(hp) is equal to 0 when 8 # 0, and it is equal to 1 when 8 = 0,

i.e., d(hp) is the discrete delta-function.
It should be noted that the operator D,,(h3) was firstly introduced and investigated by
S.L.Sobolev [24].

The discrete analogue D,, (hf3) of the differential operator d?™ /dxz?™ which satisfies equation
(3.1) was constructed and the following theorem was proved [19].

Theorem 3.2. The discrete analogue of the differential operator d*™ /dx®™ has the form

m— 1 2m+1 Iﬂl
B or |B] =2
— QkE2m 1 Qk) f A
m—1
(2m —1)! (1 — qp)?m*t
Dy, (hB) = 1+ or =1, 3.2
m(hB) = o ; Fon (0 for 18] (3:2)
m—1
B 1— qk)27rL+1
227n 1+ ( or :07
; qxEom—1(qx) f P

where Eom—_1(q) is the FEuler-Frobenius polynomial of degree 2m — 1, qi are roots of the Euler-
Frobenius polynomial Eam—2(q), |qx| < 1, h is a small positive parameter.

Several properties of function D,,(h8) were proved [19]. Here we consider the following
property of function D,,(hf3).

Theorem 3.3. Function D,,(hB3) and monomials (hB)* are related to each other as follows

> DuhB) (1B =

0 when 0<k<2m—1, (3.3)
P (2m)! when k=2m, '
o 0 when 2m+1<k<4m —1,
k _ 2m !
Z Drn(hB)(h6) 7" (4m)} Bom when k= 4m.
p=—c0 (2m)!

Then taking into account (3.1) and using (2.2), Theorems 3.2, 3.3, we have the following
theorem for optimal coefficients C[f].
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Theorem 3.4. Coefficients C[B], B =1,2,...,N — 1 of the optimal quadrature formulas (1) in
the space Lém)(O7 1), m > 6, have the following form

m—1
Cl8] = h <1+ > (i +pkq,iv_5>> . B=1,2,...,N -1, (3.4)

k=1
where di, pr are unknowns, qi are given in Theorem 3.2.

Theorem 3.4 is proved similarly as Theorem 5.3 [23].
Furthermore we need the following lemmas for the proof of the main results.

Lemma 1. The following relation is taken place [23]

. qu’f+pkq11cv+i(_1)i+l ina a+1 quk +pqu ( 1)1 ina
z; R A0 = Z Ao oy A%, (3.5)

here o and N are natural numbers, di, and py are constants, A0 is given in Theorem 8.1, qp
are given in Theorem 3.2.

Lemma 2. The following relations are valid

m— 1 ] 1 2m—2— ]B i B h] ]
2m—j— z
j=1 ]—1 ; 7,'(2m ]—Z Z ;Z' 2m_1—j—2)+
2m—2 : 2m—2—j .
Bl _1)
+ Y Y GBI |
j=m+1 — il (2m—-1-j—i)!
and
Rt wng, Rz Ry
A=, G- &t 2m—1— =i
where »
drgy '+ pear(=1)"
Z (1= qp)i Tt A 07 (3.6)
k=1 i=0 ar)

The proof of Lemma 2 is obtained with the use of expansion of the left hand sides of given
above relations in powers of h.

Finally we give the main results of the paper.

The following theorem is valid for the coefficients of the optimal quadrature formulas (1.1).

Theorem 3.5. Among quadrature formulas (1.1) with error functional (1.2) in the space

Lgm) (0,1), m > 6 there exists the unique optimal formula which coefficients
N
9. — 4k
+ d 3.7
( Z e ) (3.7)
<1+§ i (af +a~ ﬁ)) B=TN-1, (3.8)

'C_)‘o
=
|

Qe
A=
Il
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CIN] = < +Zd 1__%) (3.9)

. hnBQn 2m m—12n—1 qk+qN+1( 1)i+1 -
Ao = ot Ty o 2 AT =123 (310)
' k=1 i=1 -

where dy, satisfy the following system of m — 1 linear equations

m—1 j N+i i+1
1 . B  Swwa—
szka‘f‘q (z+1) XY :.]7"'17 j=6,m—1 (3.11)
k=1 i= 9k — 1) J + !
m—12m—2j N+i i+1
1 ) )
dk qr + qk (H—l) AIQ2Zm—27 — 0, j=1,2,3, (3.12)
k=1 1= 1)
m—1 2j N+ i+1
1 L
ds a +q, " "(=1) A0¥ =0, j=1,2. (3.13)
i+1
k=1 i=0 (gr —1)

Here B, are Bernoulli numbers, A'yJ is the finite difference of 47 of order i, A'07 is given in
Theorem 3.1, qy are given in Theorem 3.2.

For square of the norm of error functional (1.2) of optimal quadrature formulas (1.1) we give
the following result without proof. The proof is given in Theorem 5.5 [23].

Theorem 3.6. For square of the norm of error functional (1.2) of the optimal quadrature for-
mula (1.1) in the space Lém)(O, 1), m > 6 the following relation holds

: 2 Boy,h2™ 2h2m+1m1 = + sULEIN
(m)* _ m+1 2m dk in2m
Jin0.0]] = e [ Ft 2o A

where dy, are determined from system (3.11)-(3.13), Bay, are Bernoulli numbers, A'0?*™ is given
in Theorem 3.1, qi are given in Theorem 3.2.

In the proof of Theorem 3.5 we use the following relations [6]

ngk Z <1 - q> o - Xk: <q>i Aiv’“L:n, (3.14)

1—qi:0 1—¢q

where A’y* is the finite difference of v* of order i, ¢ is the ratio of a geometric progression.
Let us consider the following well known relation [5]

k+1
k'Bk+1 —J j
_ 3.15
z =L 3.15)
where By11_; are Bernoulli numbers
A%z = CPA“OPz" ", (3.16)
p=0

Proof of Theorem 3.5. Let us consider the first sum of equation (2.2). For this sum we have
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hﬂ*h 2m—1
S:ZCM' 2(2m7—|1)! N

2m—1 s m—1 m—1

(2m —1)! . (2m— 1 2(2m —1)!
Let us introduce
B 2m—1 N 2m—1
_ (hB — hv) _ (hB — hy)
y=1 v=0
Using (3.4) and (3.14), (3.15), for S; we have
m—1
hB —h 2m—1
Sy = Zh <1+ > (quk + PRy ”)) (5(27”;)’)1)' =
y=1 ’
m 2m—1 2m—1 —-p 2m—1 _
Gm 1) [Zv +Z (ququ K +Prgy ;}q” )] =
h2m. (2m 1 'BQm ] ] Qk 2m—1 AiOQm_l
= — — =3} d —
(2m —1)! ; - (2m —j)! v Z ke qr—1 ; (gx — 1)°

1-8 2m—1 i n2m—1 2m—1 7

45 A'p -8 1 ( dk ) in2m—1
— - > +Dp q A*0 -

k—liz_;(%—l)l} Fik 1—(]kz qr—1

i=0
qﬂ 2m—1 q i
_ k k Aiﬂmel
L—ak 2 (Qk - 1) }

=0

Taking into account that g is the root of the Euler-Frobenius polynomial Fs,,_2(q) and using
Theorem 3.1, relation (3.16), the expression for S is reduced to the following form

(hB)>™  (hB)*™ o
= L B m _22moi iy
51 et T am ot ; (2m g)ﬁ
2m—1 1 m—1 J ;
527” 1=J dek +pkq GV
p2m k- NG 1

Now we consider S3. Using equations (2.4)—(2.7), we rewrite the expression for Sy in powers
of h3

2m—1
S, = ZO hﬁ h) _

2(2m —1)!
2 2k+1 hﬁ)Qm 1— ]( 1) 1
_kzo]z;k -3 \j+1 233—1 (j—2n+2)A, | +
m—1 (hﬁ)Qm_l_j( 1)] 1 3 (318)
T2 5Gm 1)) (j+1*;J’U—1>~-~U—2n+2)An>+
2m— (h3) 2m 1— j
Z 2m717]|‘7| ZC (hy)!

j=m =0
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Let us substitute (2.8) and S into equation (2.2). Then using (3.17), (3.18) and equating
coefficients of the same powers of h3 we have

m—1 m—1 j j 3 j
. (hpB)] —1)
Ai(hB) = 5(9m — 9 — )
; i(h6) JZ::O 4! 2m— ! Zl 2m 2n — j)!
h2m_] m—12m—1— dek +pqu+z( 1)i+1 . .
o AQPm1d 4 3.19
(2m —1—j)! = ZZ::O (qr — 1)+t (319
. N m—1 j j
(_1)2777,—1—] 1 Bg»m—jh?m_](hﬁ)j
+ o7 ) Chl(hy)*" 17| — - a0
Q(Qm—l—])!; 1(hy) ; J1(2m — j)!
m—1 j N+i i+1
d 1 . . B —
Z kqk + Prqy | (—1) Al = = J+1’ j=6,m—1, (3.20)
k=1 i=0 (ge — 1)+ g+1
m—1 2 N+i i+1
d 1 ;
Rk + e (D G 0, (3.21)
k=1 i=0 (g5 =)™
m—1 4 N+i i+1
d 1 ;
k9K erkq ( ) A104 _ O, (322)
k=1 i=0 (gx — 1)1
m—1
1 N —d
clol— (2 . W) | (3.23)
1 dk
h?" By, A duan +quk DT o
An = (2n)!  (2n—1)! Z Z — 1)t A0, n=1,2,3. (3.24)
k=1 i=1

Taking into account (3.23) and (3.4), when o = 0 we obtain from (2.4)

CIN] < Z L digl) pqu> _ (3.25)

1 —qr
Substituting A; from (3.19) into (2.3), we obtain the following equations for unknowns dj,
and py

m—12m—2 m—12m—2

dal, + pray (=D s digp 4 preage(—1)" oo
% ez 53l N2, (3
_ i+1 _ 1+1 ?
k=1 =0 (1~ ar) = (1—ax)
m—1j—1 i 3
> ]Z D " e g0 B j=Tm (3.27)
— = (1 —qr)*! J
m—1 3 N+i i+ m—1 3 i+1
drar + peqy, T (—1)"" 3 deay 7+ prae(—1)° in3
‘ LAt A3, (3.28)
22 -0 “hL w
m—1 5 N+i it m—1 5 i1
drar + prg;, T (—1)"F 5 drgh + Prqr(—1) .
> : NO =y )y =k AP (3.29)
—1)i+1 i+1 ’
k=1 i=0 (qr — 1) k=1 i=0 ~ )
m—1 2 i i
Z Z qu,i\”r +pkqg(—1)z+1 Ai02 = 0 (3.30)
k=1 i=0 (1= q)*! ’
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m—1 4

deapy T+ prae(—1)7
Z Z A0 =0 (3.31)
g )it ’
— = (1—qp)t
1 m—1
N e+ oeay R deay T+ pran (3.32)
—~  (—1) —  (I-a)
m—12m—4 ; m—12m—4 .
diqy, —I—pqu YD) 4 quk C pegr (1) oy
S5 dk el DD s SRR O sy

k=1 =0 k=1 =0

m—12m—6

d 1 i+1 m—12m— Gd 1i+1 )
Z Z qu +pqu ( ) AiQ2m—6 — Z Z k:qk +kak( ) Ai(g2m—6 (3.34)

_ i+1 _ 7+1
k=1 i=0 (1 —ax) = = (1 —qr)
Thus, from (3.20)—(3.21), (3.22) and (3.26)—(3.34) we obtain
m—1 2m—2j N4+i it+1
1 ) .
(dy, — pr) Z Ok + 9y 1( z+1) A2 =0, j=1,2,3, (3.35)
k=1 i=0 (ax —1)
m—1 N+i i+1
- )it _
(dy — pr ) Q ( e — 1()Z+1) AIQY =0, j=1,2, (3.36)
k=1 i=0 el
m—1 N+i i+1
+ 1 . ,
(di _pk) o ( G 1()1+1) A =0, j=6m_1. (3.37)
k=1 i=0 k

Taking into account uniqueness of the optimal coefficients, we conclude that homogeneous system
of linear equations (3.35)—(3.37) has trivial solution. This means that

dk:pka k:1,2,...,m—1. (338)

Then using (3.38), from (3.35)—(3.37) we obtain (3.11)—(3.13), and from (3.4), (3.23)—(3.24),
(3.25) we obtain (3.7)—(3.10).
Theorem 3.5 is proved. O

Remark 1. It should be noted that in the cases m = 6 and m = 7 we obtain from Theorems 3.5
and 8.5 the classical Euler—Maclaurin quadrature formula.
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OnTtumanbibie (POPMYJITbI YUCJI€HHOTO MHTEIPUPOBAHUS
C Mpom3BOAHBIMEU B nmpocTpaHcTBe CoboJsieBa

Xouamar M. ITlagumerosB
®apxox A. Hypasuesn

WNucruryr maremarnku umenu B. V. Pomanosckoro
Axagemun Hayk Pecnybiuku Y30eKucTaH

Mupzo Yayr6eka, 81, Tarmkent, 100041
VY3bekucran

B nacmoswetl cmamve paccmompena npobaema nocmpoeHus, ONMUMALbHOE K8a0pamypHulr Gopmys 6
cmviene Capda 6 npocmparncmee Lgm)(O, 1). 3decv K6adpamypras cymma cocmoum u3 3naserudi nodvit-
mezpasvHolti PYHKUUYU 6 Y3A06bLT MOUKAT U 3Ha%eHUl nepeot, mpemvel u NAMOT NPOU3BOOHHLT NObIH-
mezpavHoti PYHKUUY 6 KOHUESLIT TOYKAT UHMEPEasa uneepuposanus. Hatidenv, xoapduyuenmor on-
MUMAALHBT KEAOPAMYPHOT HOPMYA U BBIYUCAEHA HOPMA ONMUMAALHO20 HYHKUUOHAAA NOZPEUHOCTU
daa 106020 wamypasvrozo N u daa ar0b6o2o m > 6 ¢ ucnoavsosaruem memoda Coboaesa, ocho8aHHOM
na duckpemmnom ananoze Juddepenyuarvriozo onepamopa d*™/dz*™. B wacmnocmu, oas m = 6,7 on-
MUMAABHOCTD KAGCCUYECKoU Keadpamyprot dopmyav, Jisepa-Maxsoperna dokazana. Havunas c m = 8
NOAYUEHDL HOBBLE ONTNUMANDHBIE KEAIPATNYPHVLE BOPMYAbL.

Knouesvie cao6a: onmumansnas K6a0pamypran Gopmyaa, GYrKGUoHaL noepeusnocmu, IKCmMpemMasoHnas
Pyrruua, onmumasvrvie KosPPuyuermo.
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