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In this paper, we construct Szegd and Poisson kernels in convex domains in C" and study their properties.
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This paper contains some results related to the construction of Szeg and Poisson kernels in
convex domains which are of significant importance for integral representations in such domains.

1. Construction the Szegé kernel

Let D be a bounded domain in C™ with a smooth boundary. Let H(D) be the space of
holomorphic functions in D with the topology of uniform convergence on compact subsets of D,
and H (D) be the space of holomorphic functions in a neighborhood of D with the corresponding
topology. The space H(D) is the subspace in £2(0D) with respect to the measure du on 9D,
where du = g(¢)do, g(¢) € CY(dD), g(¢) > 0, and do is the Lebesgue measure on dD. By the
Maximum Modulus Theorem the mapping H(D) — £2(dD) is injective. By H? = H?*(0D) we
denote the closure of H(D) in L.

Consider a restriction mapping r : H(D) — H(D). The mapping r continues until continu-
ous from H? in H(D).

Lemma 1 (Lemma 4.1. [1]). The restriction mapping v : H(D) — H(D) is continuous, if
H(D) is considered with topology induced by the space L.

Therefore, the mapping r continues until a continuous map i : ’H% — H(D). In this case, we
say that for functions f € H? there is a holomorphic continuation f = i(f) in D. Further, this
continuation will be denoted by the same symbol f.

In [1] ther was considered the Lebesgue measure do on the boundary of the domain, in our
case for the measure dy = ¢g({)do the proof is similar.

Since the space H? is a Hilbert separable space, there exists an orthonormal basis

{er}its (1)

in the metric £2. Therefore, any function f € H? expands in a Fourier series:

F0 =3 (@) @
k=1
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with respect to the basis (1), which converges in the topology of £2, where c;, = (f, p1) =
— | F(u)@(u) da(u). Then
oD

©O=3([ swamawa©) = [ 13 oo b,

k=1 k=1

Denote K((,u) Zgok ) and K (¢, %) € H(D) on ¢ € D for a fixed u € D.

Lemma 2. We can choose an orthonormal basis {¢}72, in H?, which consists of functions oy,

in H(D).

Lemma 3. If D is a bounded strictly convex domain with a smooth boundary, then we can choose
a polynomials basis {pr}72 ;.

Further on, we assume that the basis is chosen in accordance with Theorem 5.1 [1]. According
to this theorem the continuation of the kernel K (¢, ) has the property:

i(f)z)= | fOK(z)du(C), z€D,
oD

where K(z,¢) = Z (oK) (2)i(@k)(¢) and the series converges uniformly on compact subsets of

k=1
D x D. This kernel we call the Szegd kernel. Then
f(z) = an(C)K(Z,f) du(Q), 3)

where f(z) is identified with f(z) = i(f)(z) and f € H2.
We define the Poisson kernel

Pz0) = K(z,2) o K(z,2) - K(z,2) ]
and K(z,z2) Zgok ):Z|cpk(z)\2>0
k=1

Lemma 4. The kernel K(z,z) > 0 for any z € D.

Lemma 5. A function f € H(D) satisfies the integral representation

f(z) = an(OP(Z’O (<), (4)
forze D.

Corollary 1. If the space H(D) is dense in the space H(D)NC(OD) = A(D), then a function
f € A(D) satisfies the integral representation (4).

Suppose that the domain D satisfies the condition (A): for any point ¢ € 9D and any
neighborhood U (C) the Szego kernel K(z, () is uniformly bounded in z € D and z ¢ U({). Further
on, we assume that the domain D satisfies the condition (A).

Theorem 1. Let D be a strictly convex domain in C™ and the kernel K (z,() satisfies the Holder

1
condition with exponent 3 <a<1 for¢e€dD and a fired z € D. Then the domain D and the
kernel K (z,C) satisfy the condition (A).
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Consider the restriction of the form

7\ > ney O dC[E] A dC

L(z,(, () = n
(2.6:0) (6, (G = 21) + o4, (G = 20)]
to 0D, it is
L(2,¢,¢) =
_ ¥(¢,¢) da(¢) _ v(¢, 5) (C) _
[plgl (Cl - Zl) + .+ p/(n (Cn - Zn)]n g(C) [Pél (Cl - Zl) +. 472’ (Cn - Zn)]n

¥1(¢,¢) du(€)

B n:EZ, 7_ d .
[plfl(gl721)+"'+Plgn(Cn*zn)] (2,¢, Q) du(S)

The proof of Theorem 1 shows that

for ¢ € OD.
Lemma 6. The function K(z,() is unbounded as z — ¢ and ¢ € 0D, z € D.

2. The Poisson kernel and its properties

For a function f € C(0D) we define the Poisson integral:
Pfl(z) = F(z) = - F(OP(z, ) du(C).

In strictly convex domain that satisfy the condition (A), from Equality (5) and the form of the
kernel P(z, (), it follows that this kernel is a continuous function for z € D and then the function
F(z) is continuous in D.

Theorem 2. Let D be a bounded strictly convex domain in C™ satisfying the condition (A4), and
f €C(OD), then the function F(z) continuously extends onto D and F(z ’8[) f(z

Consider the differential form
w—cZ )E~1 Gk dCTR] A dC,
(n—1)!

2mi
D={z€C": p(z) <0}. Then by Lemma 3.5 [5], we get

ap do
3G, |eradp|

where ¢ = Find the restriction of this form to 9D for the domain D of the form

S

dc[ ]/\dc ( )k 12'IL 1, i

Therefore, the restriction of w to 9D is equal to

We denote




Simona G. Myslivets Construction of Szegé and Poisson Kernels in Convex Domains

Proposition 1. If D is a strictly convex circular domain, then g(¢) is a real-valued function
that does not vanish on 0D.

Therefore, we can assume that g(¢) > 0 on dD. Therefore, du = gdo is a measure and for it
all previous constructions are true.

Proposition 2. Let D be a strictly convez (p1,...,pn)-circular domain, i.e.

p(Cly. e Cn) = p(Cre®l . Ce?), 0< 0 < 2m,

where pi,...,pn are positive rational numbers. Then the function
(oo}
_ p
> b
= 0k
is real-valued and not zero.
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ITocTpoenne saep Ceré u Ilyaccona B BBIMYKJIBIX 00/1aCTIX
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Cubupckuii deiepaibHbIil yHUBEPCUTET
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Poccus

B amoti cmamwe cmposamesa adpa Ceze u Ilyaccona 6 svinykavz obaacmaxr npocmparncmea C* w usywa-
OMCA UL ceotucmsa.

Karoueswie caosa: evnyravie obaacmu, adpa Cezé u Ilyaccona.
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