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Introduction

Let C be the complex plane, D be the unit disk on C, H(D) be the set of all functions,
holomorphic in D. For all 0 < q < +∞ we define the Privalov class of function Πq as follows
(see [8]):

Πq =

{
f ∈ H(D) : sup

0<r<1

1

2π

∫ π

−π

(
ln+ |f(reiθ)|

)q
dθ < +∞

}
.

Note that the classes Πq were first considered by I. I. Privalov in [8]. In the case 1 6 q <+∞
the Privalov spaces were studied by M. Stoll, V. I. Gavrilov, A.V. Subbotin, D.A. Efimov,
R.Mestrovic, Z. Pavicevic, etc. The monograph [2] contains a brief overview of their results.
The case 0 < q < 1 has been little studied in the scientific literature. In this paper we obtain ex-
act estimates for the maximum modulus and the Taylor coefficients of functions from the classes
Πq (0 < q < 1) (Section 1), on this basis we describe coefficient multipliers from the Privalov
classes Πq (0 < q < 1) into the Hardy classes Hp (0 < p < +∞) (Section 2).

Notice that the problem of describing the Taylor coefficients for analytic functions of the
Nevanlinna class was first solved by S.N. Mergelyan in the early 20th century (see [9, p. 152]).
Later on these questions in the Hardy classes were investigated by G. Hardy and D. Littlewood,
A.A. Friedman (see [3]), in V. I. Smirnov’s classes by N. Yanagihara [20], in the Privalov classes
Πq (q > 1) by M. Stoll [18], in the plane Nevanlinna classes by S.V. Shvedenko [17], in the
weighted classes of analytic functions in a disk with restrictions on the Nevanlinna characteristic
by F. A. Shamoyan and E. N. Shubabko [14], and by the author of this paper (see [10]).

As the authors observe in [2, p. 148], the notion of a coefficient multiplier arises naturally in
the study of asymptotic properties of the Taylor coefficients for functions from certain classes.
In a simplified form, the problem is posed as follows: which factors the Taylor coefficients of
a function of a given class must be multiplied by for them to acquire special properties, for
example, being bounded or form an absolutely convergent series. Requiring that the resulting
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products be Taylor coefficients of functions from some other class, we arrive to definition of the
coefficient multiplier.

Let X and Y be some classes of functions analytic in the unit disk D.

Definition 1. The sequence of complex numbers Λ = {λk}+∞
k=1 is called a coefficient multiplier

from class X into class Y if for any function f ∈ X, f(z) =
+∞∑
k=0

akz
k, we have Λ(f)(z) =

=
+∞∑
k=0

λkakz
k ∈ Y . It is denoted by CM(X,Y ).

Numerous works are devoted to the description of multipliers in various classes of holomorphic
functions. We recall some of them: [1, 2, 4–6,11,13–16,19], and etc.

1. On maximal growth and the Taylor coefficients
for functions from the Privalov classes

The following statement is valid:

Theorem 1.1. If f ∈ Πq then

ln+ M(r, f) = o((1− r)−1/q), r → 1− 0, (1)

where M(r, f) = max
|z|=r

|f(z)|.

Remark. Throughout the paper we study the Privalov class Πq with the parameter 0 < q < 1.
Also, unless otherwise stated, we denote by c, c1, . . . , cn(α, β, . . . ) arbitrary positive constants
depending on α, β, . . . , whose specific values are immaterial.

Proof. We choose an arbitrary point z0 ∈ D and by definition put Kz0 = {ζ ∈ D : |ζ − z0| <
1

2
(1 − |z0|)}. Let dm2 be the planar Lebesgue measure. From the inequality (see [7, p. 144],

Theorem 9.1.1, equation(9.3)) which holds for all 0 < q < 1:

(ln+ |f(z0)|)q 6 cq
(1− |z0|)2

∫
Kz0

(ln+ |f(ζ)|)qdm2(ζ),

we obtain

(ln+ |f(z0)|)q 6 cq
(1− |z0|)2

|z0|+ 1−|z0|
2∫

|z0|− 1−|z0|
2

π∫
−π

(
ln+ |f(ρeiθ)|

)q
dθdρ,

whence we have:

(ln+ |f(z0)|)q 6 cq
(1− |z0|)

sup
|z0|− 1−|z0|

2 <ρ<|z0|+ 1−|z0|
2

∫ π

−π

(
ln+ |f(ρeiθ)|

)q
dθ 6

6 cq
(1− |z0|)

sup
0<ρ<1

∫ π

−π

(
ln+ |f(ρeiθ)|

)q
dθ.

Now the required estimate (1) follows.
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Theorem 1.2. If
+∞∑
k=0

akz
k is the Taylor series expansion for a function f ∈ Πq, then

ln+ |ak| = o
(
k

1
1+q

)
, k → +∞. (2)

Proof. We prove this theorem using the method of S. N.Mergelyan (see [9, p. 152]). From the
Cauchy inequality and the estimate (1) of Theorem 1.1 it follows that for any arbitrarily small
ε > 0 there exists rε ∈ (0, 1) such that

|ak| 6 r−k exp
{
ε(1− r)−

1
q

}
, rε < r < 1, n = 0, 1, . . . , (3)

which is equivalent to

ln+ |ak| 6 ε(1− r)−
1
q − k ln r, rε < r < 1, n = 0, 1, . . . . (4)

Introduce the function
ϕ(r) = ε(1− r)−

1
q − k ln r.

We investigate it to find its exact lower bound. Calculate the derivative:

ϕ′(r) =
ε

q
· 1

(1− r)
1
q+1

− k

r
.

We find the minimum of the function ϕ(r), solving the equation ϕ′(r) = 0:

ε

q
· r

(1− r)
1
q+1

= k. (5)

The solution of this equation exists and unique on the interval (0, 1).
For convenience, we introduce the following notation:

ck =
1

δ
√
rk

, sk =
1− rk
δ
√
rk

,

where δ > 1.
We can assume that sk < ck 6 1. Indeed, the inequality sk < ck is obvious.
Now, ck 6 1 is equivalent to

√
rk > 1

δ
, (6)

while sk < 1 is equivalent to
√
rk >

√
δ2 + 4− δ

2
, (7)

and (6) follows from (7).
In the new notation equation (5) takes the form:

ε

qδ2
· 1

s2k
·
(
ck
sk

) 1
q−1

= k

or
s

1
q+1

k

c
1
q−1

k

=
ε

kqδ2
.

Since ck 6 1, the last equality implies the estimate:

sk 6
(

ε

kqδ2

) q
q+1

. (8)

– 725 –



Eugenia G.Rodikova Coefficient Multipliers for the Privalov class in a Disk

From the same equation we obtain:(
ck
sk

) 1
q

=

(
ks2kqδ

2

ε

) 1
1−q

.

Taking into account the estimate (8), we have:(
ck
sk

) 1
q

6
(
qδ2

ε

) 1
1+q

· k
1

1+q . (9)

Using (8), (9), we estimate the value of the function ϕ(r) at the minimum point r = rk:

ϕ(rk) = ε(1− rk)
− 1

q − k ln rk.

The application of (9) yields:

ϕ(rk) 6 ε

(
qδ2

ε

) 1
1+q

· k
1

1+q − k ln rk.

To estimate the last term we note that

(rk)
− 1

2 − r
1
2

k

2
=

exp
(
− 1

2 ln rk
)
− exp

(
1
2 ln rk

)
2

= − sh

(
1

2
ln rk

)
= sh

(
−1

2
ln rk

)
=

skδ

2
,

whence
− ln rk = 2arcsh

skδ

2
6 2

skδ

2
,

−k ln rk 6 kskδ.

Thus we have:
ϕ(rk) 6 k

1
1+q ε

q
1+q
(
qδ2
) 1

1+q ·
(
1 +

1

qδ

)
. (10)

The required estimate (2) follows.

2. Description of the coefficient multipliers
from the Privalov classes into the Hardy classes

Theorem 2.1. Let 0 < p 6 +∞, Λ = {λk}+∞
k=1 ⊂ C. For Λ = CM(Πq, H

p) it is necessary and
sufficient to have

|λk| = O
(
exp

(
−c · k

1
q+1

))
, k → +∞, (11)

for some c > 0.

The proof of this theorem is based on auxiliary statements.

Lemma 2.2. (see [2, Lemma 9.7]) Let F and H be linear classes of holomorphic functions in
the unit disk D with metrics, convergence in which is not weaker than the uniform convergence
on compact subsets of D. Then each coefficient multiplier from class F into class H is a linear
and closed operator.

To formulate the next Lemma we introduce a metric on the class Πq:

ρ(f, g) = sup
0<r<1

1

2π

∫ π

−π

lnq
(
1 + |f(reiθ)− g(reiθ)|

)
dθ. (12)
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Lemma 2.3. The class Πq with respect to the metric (12) is an F -space.

Proof. The proof of this statement is equivalent to establishing the properties a)– d) of a metric
(see [12]):

a) ρ(f, g) = ρ(f − g, 0) is obvious.
b) Πq is a complete metric space.
Let {fn} be an arbitrary fundamental (Cauchy) sequence from the class Πq, i.e. ∀ε > 0

∃N(ε) > 0 : ∀n, m > N ⇒ ρ(fn, fm) < ε. We show that it converges to some function f ∈ Πq.
Note that functions ln(1 + |fn|) are subharmonic in D. In the same way as in the proof of
Theorem 1.1 we use the equation from Theorem 9.1.1 of [7, p. 144] to obtain:

lnq
(
1 + |fn(Reiφ)− fm(Reiφ)|

)
6 cq

(1−R)2
sup

0<r<1

∫ π

−π

lnq
(
1 + |fn(reiθ)− fm(reiθ)|

)
dθ,

lnq
(
1 + |fn(Reiφ)− fm(Reiφ)|

)
6 2πcq

(1−R)2
ρ(fn, fm),

whence we have
|fn(Reiφ)− fm(Reiφ)| → 0, n,m → +∞,

for all 0 < R < 1, φ ∈ [−π, π]. So the sequence {fn} converges uniformly in the unit disk for
some function f ∈ H(D). Now we prove that f ∈ Πq.

sup
0<r<1

1

2π

∫ π

−π

(
ln+ |f(reiθ)|

)q
dθ 6 sup

0<r<1

1

2π

∫ π

−π

ln
(
1 + |f(reiθ)|

)q
dθ 6

6 sup
0<r<1

1

2π

∫ π

−π

lnq
(
1 + |f(reiθ)− fn(re

iθ)|+ |fn(reiθ)|
)
dθ.

Since (a+ b)q 6 (aq + bq) for any a > 0, b > 0, 0 < q < 1, we have

sup
0<r<1

1

2π

∫ π

−π

(
ln+ |f(reiθ)|

)q
dθ 6

6 sup
0<r<1

1

2π

∫ π

−π

(
lnq
(
1 + |f(reiθ)− fn(re

iθ)|
)
+ lnq(1 + |fn(reiθ)|)

)
dθ 6 const.

We conclude that Πq is a complete metric space.
c) If f, fn ∈ Πq and ρ(fn, f) → 0, n → +∞, then for any β ∈ C we have ρ(βfn, βf) → 0,

n → +∞.
For |β| < 1 the property immediately follows. Assume that |β| > 1, without loss of generality

we may take β > 1. Since the sequence {fn} converges, it is fundamental (Cauchy). As stated
above, from that follows its uniform convergence inside D.

Since for any β > 1 and x > 0 the estimate (1 + βx) 6 (1 + x)β is valid, we have

ρ(βfn, βf) = sup
0<r<1

1

2π

∫ π

−π

lnq
(
1 + β|fn(reiθ)− f(reiθ)|

)
dθ 6

6 sup
0<r<1

βq

2π

∫ π

−π

lnq
(
1 + |fn(reiθ)− f(reiθ)|

)
dθ = βqρ(fn, f),

whence the property c) follows.
d) If βn, β ∈ C and βn → β, then we have ρ(βnf, βf) → 0, n → +∞ for any function f ∈ Πq.

The property immediately follows from the inequality

ln(1 + |βn − β||f |) 6 ln(1 + |f |) + ln(1 + |βn − β|).

Lemma 2.3 is proved.
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Lemma 2.4. Let the sequence of complex numbers {λk}+∞
k=1 satisfy the condition:

|λk| = O
(
exp

(
−ck · k

1
q+1

))
, k → +∞ (13)

for an arbitrary positive sequence {ck}+∞
k=1, ck ↓ 0, k → +∞. Then there exists c > 0 such that

for all k ∈ N the condition (11) is true.

The proof of Lemma 2.4 repeats the arguments of the article by N. Yanagihara [19] (see

Lemma 1) with the exponent
1

q + 1
.

Lemma 2.5. Let 0 < q < 1,

g(z) = exp
c

(1− z)
1
q

, z ∈ D, (14)

where 0 < c <
1

q
,

+∞∑
n=1

an(c)z
n be the Taylor series expansion for g. Then the following estimate

is valid:
|an(c)| > exp

(
c

q
q+1 · n

1
q+1
)
. (15)

The proof of Lemma 2.5 repeats the arguments presented in the author’s thesis (see [11,

p. 104], Lemma 2.7) with the exponent of
1

q
. The method goes back to Mergelyan S. N. (see [9]).

As stated above, from ρ(fn, f) → 0, n → +∞ it follows that the sequence fn(z) uniformly

converges to f(z) in D. Therefore if fn(z) =
+∞∑
k=0

a
(n)
k zk and f(z) =

+∞∑
k=0

akz
k, then a

(n)
k → ak,

n → +∞.
Let X be an F-space consisting of complex sequences {bk}k such that convergence of a

sequence β(n) = {b(n)k } to β = {bk}, n → +∞ implies coordinate-wise convergence b
(n)
k → bk,

n → +∞, k = 0, 1, 2, . . . .
Consider a coefficient multiplier Λ = CM(Πq, X). By Lemma 2.2, Λ is a closed operator,

therefore by the closed graph theorem (see [12]) Λ is a continuous operator and it maps bounded
sets in the class Πq into bounded sets in X.

Proof of Theorem 2.1. Let Λ = {λk}+∞
k=1 be a coefficient multiplier from the class Πq into the

class X. We prove that there exists c > 0 such that the estimate (11) is valid, i.e.

|λk| = O
(
exp

(
−c · k

1
q+1

))
, k → +∞.

According to Lemma 2.4, it is enough to show that Λ satisfies the estimate (13) for some positive
infinitesimal sequence {ck}.

We choose the sequence {ck} so that the following estimates are valid:

k−
1
2q 6 ck 6 1

2
. (16)

We consider in Πq the sequence of functions

fk(z) = g(rkz) = exp
ck

(1− rkz)
1
q

, k = 1, 2, . . . , 0 < rk < 1, (17)

satisfying the conditions of Lemma 2.5, and the double inequality√
1− π2

k − 1
6 rk 6

√
1− π2

Bk − 1
, Bk = π

(
γk
ck

)q

, Bk > 1, (18)
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where γk is a positive infinitesimal sequence such that
ck
γk

6 k−
1
q , k = 1, 2, . . . .

It is obvious that rk → 1− 0, k → +∞.
Let us show that fk ∈ Πq.

sup
0<r<1

1

2π

∫ π

−π

(
ln+ |fk(reiθ)|

)q
dθ = sup

0<r<1

1

2π

∫ π

−π

(
ln+

∣∣∣∣∣exp ck

(1− rkreiθ)
1
q

∣∣∣∣∣
)q

dθ 6

6 sup
0<r<1

1

2π

∫ π

−π

cqk
|1− rkreiθ|

dθ = sup
0<r<1

1

2π

∫ π

−π

cqk√
1− 2rkr cos θ + (rkr)2

dθ =

= sup
0<r<1

1

π

∫ π

0

cqk√
(1− rkr)2 + 4rkr sin

2 (θ/2)
dθ = sup

0<r<1

cqk
π

 1−rkr∫
0

. . .+

π∫
1−rkr

. . .

 6

6 sup
0<r<1

cqk
π

 1−rkr∫
0

1

(1− rkr)
dθ +

π∫
1−rkr

1√
(1− rkr)2

(
θ
π

)2
+ 4rkr

(
θ
π

)2 dθ
 =

= sup
0<r<1

cqk
π

1 +

π∫
1−rkr

dθ√
(1 + rkr)2

(
θ
π

)2
 = sup

0<r<1

cqk
π

(
1 +

π

(1 + rkr)
ln

π

1− rkr

)
.

Taking into account the evident inequality lnx < x, ∀x > 0, and the condition (18) we conclude

sup
0<r<1

1

2π

∫ π

−π

(
ln+ |fk(reiθ)|

)q
dθ 6 sup

0<r<1

cqk
π

(
1 +

π2

(1− (rkr)2)

)
=

cqk
π

(
1 +

π2

(1− r2k)

)
6 γq

k.

We prove that {fk} is a bounded sequence in the class Πq, i.e. we show that there exists a real
number 0 < λ < 1 such that for all natural numbers k the inequality ρ(λfk, 0) < ε is valid, where
ε is a fixed positive number (see [12, p. 31]). First, we prove that

ln(1 + |λ||g|) 6 (ln(1 + |λ|) + ln+ |g|). (19)

Indeed, if |g| 6 1 then |λ||g| 6 |λ|, and the estimate (19) follows immediately.
If |g| > 1 then ln(1 + |λ||g|) 6 ln(|g|+ |λ||g|) 6 ln(1 + |λ|) + ln+ |g|.
Now we prove the inequality ρ(λfk, 0) < ε. Since (a + b)q 6 (aq + bq) for any a > 0, b > 0,

0 < q < 1, using the estimate (19) we get

ρ(λfk, 0) = sup
0<r<1

1

2π

∫ π

−π

lnq
(
1 + |λfk(reiθ)|

)
dθ 6 lnq(1 + |λ|) + (γk)

q.

Since γk = o(1), k → +∞, ∀ε > 0∃k0 ∈ N : ∀k > k0 the following inequality holds: γk < q

√
ε

2
.

Choosing λk0 so that ln(1+ |λk0 |) < q

√
ε

2
, we see that starting from some number k0 all elements

of the sequence {fk} are contained in a ball of radius ε.
Since Πq is an F -space, for all numbers k < k0 there exists a positive number λk such

that ∀λ ∈ C, |λ| 6 λk the following inequality is valid: ρ(λfk, 0) < ε. Assuming λ0 =
= min(λ1, λ2, . . . , λk0

), we obtain that for all |λ| 6 λ0 the sequence {fk} is contained in a
ball of radius ε, i.e. ρ(λfk, 0) < ε.

Owing to arbitrariness of the choice of ε, we conclude that {fk} is a bounded sequence in the
class Πq.

Since the sequence {fk} is bounded in Πq, we get that the coefficient multiplier Λ(fk) is
bounded in X.
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Let X = Hp. We have
∥Λ(fk)∥Hp 6 C, C > 0.

Fix a number k ∈ N. If fk(z) =
+∞∑
n=0

a
(k)
n zn ∈ Πq, then Λ(fk)(z) =

+∞∑
n=0

λna
(k)
n zn ∈ X, therefore

(see [3, c. 98])
|λna

(k)
n | 6 cp∥Λ(fk)∥Hp · n

1
p−1, for 0 < p < 1,

|λna
(k)
n | 6 cp∥Λ(fk)∥Hp , for 1 6 p 6 ∞,

whence we have
|λna

(k)
n | 6 C · cp · n

1
p−1, for 0 < p < 1, (20)

|λna
(k)
n | 6 C · cp, for 1 6 p 6 ∞, (21)

where cp is a positive constant depending on p.
Since fk(z) = g(rkz), we have a

(k)
n = an(ck)r

n
k . According to Lemma 2.5,

|a(k)n | > rnk exp
(
c

q
q+1

k n
1

q+1

)
.

Using the inequality (18), we have:

|a(k)k | >
(
1− π2

k − 1

) k
2

exp
(
c

q
q+1

k k
1

q+1

)
. (22)

From (20), (22) we obtain the following estimate for 0 < p < 1:

|λk| 6 C · c′p ·
(
1− π2

k − 1

)− k
2

· k
1
p−1 · exp

(
−c

q
q+1

k k
1

q+1

)
and applying now the estimate (16) we have:

|λk| 6 C̃ exp
(
−c

q
q+1

k k
1

q+1

)
. (23)

From the inequality (23), applying Lemma 2.4, we conclude that the estimate (11) holds. Anal-
ogously, for 1 6 p < +∞ from (21) and (23) we obtain the required estimate.

We prove the converse statement of Theorem 2.1. Let a sequence Λ = {λk} satisfy the

condition (11) of Theorem 2.1 and f ∈ Πq, f(z) =
+∞∑
k=0

akz
k. From Theorem 1.2 it follows that

|ak| 6 C1 exp
(
εkk

1
q+1

)
, εk ↓ 0.

Choosing a number k0 such that εk <
c

2
for all k > k0, we obtain:

|λkak| 6 C2 exp
(
− c

2
k

1
q+1

)
.

Since the series
+∞∑
k=0

exp
(
− c

2
k

1
q+1

)
converges, Λ(f)(z) ∈ X for any specified choice of class X.

Theorem 2.1 is proved.
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Remark. Note that the method of the proof of Theorem 2.1 goes back to N.Yanagihara’s
work [19].

The immediate consequence of Theorem 2.1 is the statement that the estimates of Theo-
rems 1.2 and 1.1 are unimprovable. The proof of this statement goes in the same manner as in
the R.Meshtrovic’s article (see [2, p. 152], Consequences 9.24, 9.26).

The author thanks Professor F.A. Shamoyan for carefully reading of the manuscript and
helpful comments.
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Привалова в круге
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Россия

В статье получены точные оценки роста и коэффициентов разложения в ряд Тейлора функций
из классов И.И.Привалова, полностью описаны коэффициентные мультипликаторы из класса
Привалова в классы Харди.
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