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Existence and Uniqueness of the Solution
for Volterra-Fredholm Integro-Differential Equations
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In this article, modified Adomian decomposition method is successfully applies to find the approximate so-
lutions of Volterra-Fredholm integro-differential equations. Moreover, we prove the existence and unique-
ness results and convergence of the solutions. Finally, an example is included to demonstrate the validity

and applicability of the proposed technique.
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Introduction

In this paper, our study focuses on a class of Volterra-Fredholm integro-differential equations
of the type:

k

T b
> G@u @) = fa) + 0 [ KOG (u)dt +de [ KaloOGaut)at (1)

=0
with the initial conditions
ua) =b,, 7=0,1,2,...,(k—1), (2)

where u()(z) is the j'" derivative of the unknown function u(x) that will be determined,
K;(z,t),i = 1,2 are the kernels of the equation, f(z) and &;(x) are an analytic function, Gy
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and G5 are nonlinear functions of u and a,b, A1, A2, and b, are real finite constants. In re-
cent years, many authors focus on the development of numerical and analytical techniques for
integro-differential equations. For instance, we can remember the following works. Abbasbandy
and Elyas [2] studied some applications on variational iteration method for solving system of
nonlinear volterra integro-differential equations, Alao et al. [4] used Adomian decomposition and
variational iteration methods for solving integro-differential equations, Yang and Hou [20] ap-
plied the Laplace decomposition method to solve the fractional integro-differential equations,
Mittal and Nigam [14] applied the Adomian decomposition method to approximate solutions
for fractional integro-differential equations, and Behzadi et al. [6] solved some class of nonlin-
ear Volterra-Fredholm integro-differential equations by homotopy analysis method. Moreover,
several authors have applied the Adomian decomposition method and the variational iteration
method to find the approximate solutions of various types of integro-differential equations, among
these works, see [8-13,15,18].

The main objective of the present paper is to study the behavior of the solution that can
be formally determined by semi-analytical approximated methods as the Adomian decomposi-
tion method and modified Adomian decomposition method. Moreover, we prove the existence,
uniqueness results and convergence of the solutions of the Volterra-Fredholm integro-differential
equations (1).

1. Description of the methods
Some powerful methods have been focusing on the development of more advanced and
efficient methods for integro-differential equations such as the Adomian decomposition

method [1, 3,5, 7, 14] and modified Adomian decomposition method [5, 11, 16,19]. We will
describe all these methods in this section:

1.1. Adomian decomposition method (ADM)

Now, we can rewrite Eq.(1) in the form

k—1 x b
gu@t (@) + 3 & (@)l (@) = f(2) + M / Ky (2, )G (u())dt + Ao / Ka(a,t)Ga(u(t))dt. (3)
§j=0 a a

Then
Y (CO NN A <1CY) P KA ) g S i
Ha = gyt T G+ [ LB G ) 2 am”

To obtain the approximate solution, we integrating (k)-times in the interval [a, x] with respect
to & we obtain,

u(z) = L1 ( /() ) + ki %(m —a)"b, + N\ L7t ( ’ Kl(x’t)Gl(u(t))dt) +
il

k() o Sk(T)
Ny =g,
Rt <a E(x) Gl(u<t))dt> ;L <§k(x)u” (m))’ W
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where L' is the multiple integration operator given as follows:

-1 ):/;/:.../j(.)dxdm...dx (k-times).

=3 vy Galu(o) = 3 B (5)

where A,,, B,; n > 0 are the Adomian polynomlals determlned formally as follows:

Now we apply ADM

oY IR 0 0 |
The Adomian polynomials were introduced in [16,17,20] as:
Ao = Gi(ug),
A = wG(u),
Ay = uxGi(ug) + %u%G;(uo),
As = u3Gy(ug) + uruaGy (ug) + 3'u1G/1” (ug), -
and
By = Ga(ug),
Bi = wGs(up),
By = UQG/Q(UO) 21,U1G2 (o),
By = u3Gylug) + urusGy (ug) + 3'u1G/2” (ug), -

The standard decomposition technique represents the solution of u as the following series:

=0

By substituting (5) and (7) in Eq. (4) we have

3 . = - f(x) kill x—a)" S -1 ¢ Kl(‘rat) i
Lue = <5k<x>>+§r!( Fhet it ([ e aow) +

r=0 =0
00 b oo k—1
- Ks(z,1) . (f'(fﬂ) )
+A Y L7t B;(t)dt | — L™ 222w (2) ).
22 ( Glw) i) ) 22 g @
The components ug, u1, us, - -+ are usually determined recursively by
k—1
1
uy = L1<f(x))+ —(x —a)"b,,
0 &k (x) ; r!( )
T b
w = ML7! ( Kl( D 4ot (t)dt ) + AL KZ(x’t)Bo(t)dt -
a ) o Er(z)

e
S (Ewe),

Jj=
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- %( 1) [ Ka(a) B
Up = )\1L ( ; ) A ()dt) +)\2L ( . fk(.r) Bnl(t)dt>

&l
k:L1< ; (sc)) n> 1.

J

n
Then, u(x) = Y u; as the approximate solution.
i=0

1.2. Modified adomian decomposition method (M ADM)

The modified decomposition method was introduced by Wazwaz [16]. This method is based
on the assumption that the function f(x) can be divided into two parts, namely f;(x) and fa(x).
Under this assumption we set

f(z) = fi(z) + f2(). (8)
We apply this decomposition when the function f consists of several parts and can be decomposed
into two different parts. In this case, f is usually a summation of a polynomial and trigonometric
or transcendental functions. A proper choice for the part fi(x) is important. For the method to
be more efficient, we select fi(z) as one term of f or at least a number of terms if possible and
f2(x) consists of the remaining terms of f. By using the MADM, from (8), we can write Eq. (3)
in the form

k—1 @ b
Ex(z)uk () +Z£j(x)uj(x) = fi(x)+ fa(x) +)\1/ Ki(z,t)Gy(u(t))dt + Ao | Ka(z,t)Ga(u(t))dt.
=0 a a
Then
uF(z) = fi(z x RRSICR) u istC ) 1 (z)
(@) = hi@) + 2@+ [ EEDe o)+, [ FHE Z -

To obtain the approximate solution, we integrating (k)-times in the interval [a, z] with respect
to x we obtain,

u(z) = L (fl(x)) +L? (fQ(x)> +kz_:1:!(x—a)rbr+/\1L1 ( i RESICRIP ))dt) +

&) &) L &)
b k—1
- Ko (, t) 1 (5'(56) j
+ ALt Gi(u(t))dt | — L D229 () )
: ( . Gl ) 21 (g @
The components wug, u1, us, ... are usually determined recursively by

k—1

o = 2 (G e
)

(
w = L7 (fQ(x > F AL ( K@) Ao(t)dt) FApL! ( " Ka(z 1) Bo(t)dt> -

k() k() k()

S (gee)
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_ [T Kz, t) [P Ka(x,t) B
Up = )\1L < . é_k(x) Anl(t)dt> +)\2L ( ; é_k(x) Bnl(t)dt>

k—1
_ZL—l (fj(m) u(j)1<x)) n>1.
=0 Srlx) "
n
Then, u(xz) = > u; as the approximate solution.
i=0
2.  Main results

In this section, we shall give an existence and uniqueness results of Eq. (1), with the initial
condition (2) and prove it.
We can be written Eq. (1) in the form of:

o= [ L8] 5

W / 7 Ko DGa(un(0 )] —L‘l{gmu(j)(m] ()

o+ 2L /fk Kl(xt)Gl(un())dt}—k

Such that,
1 1 B x (Z‘ t)k
L / &@(iﬂ (@, )G (un(t ))dt] _/a K&k () W () K@ DG (un(t))dt (10)
k—1 k—1 z k 1
&) ,60) Lﬁj()um
< OL [ .’L‘ } ]20/‘1 _ 1'5]@( ) (t)dt. (11)
We set,

f (:1;)>]

o) = Lil[ék(

Before starting and proving the main results, we introduce the following hypotheses:

(H1) There exist two constants o, 8 and ~; > 0,5 = 0,1,...,k such that, for any uj,us €
C(J,R)
|G1(w1)) = G1(u2))| < afur — g,

|Ga(u1) — Ga(uz)| < Blur — ug]

and
|DJ(U1) - DJ(U2)| <y ur —ual,
) J
we suppose that the nonlinear terms Gp(u(x))), Ga(u(x))) and D?(u) = (%)u(m) =
x

=5 Vi (D7 is a derivative operator), j = 0,1,...,k, are Lipschitz continuous.

(H2) We suppose that for alla <t <z <b,and j =0,1,...,k:

)\1((E — t)kKl((E t

y ) Al(x—t)kKl(x,t)
HiEn (@) ’< o ‘

k!

‘<927
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z — t)k-1g, v — -1,
‘)\ng[K;k((m )t)H < s, ‘x\zL*l{Kg(x,t)” < 6.

(H3) There exist three functions 63,05, and ~+* € C(D,R"), the set of all positive function
continuous on D = {(z,t) e Rx R:0 < ¢ < z < 1} such that:

03 = max|6s|, 6 =max|6s], and 7" = max|y;]|.
(H4) ¥(z) is bounded function for all z in J = [a, b].
Theorem 2.1. Assume that (H1)-(H4) hold. If
0 <= (aby + BOs +ky"03)(b—a) <1, (12)
Then there exists a unique solution u(x) € C(J) to IVB (1)-(2).

Proof. Let uq and ug be two different solutions of IVB (1)—(2 ), then

’u1—u2‘ = ‘/ Mz — 1) klz,l(m 1) [Gl(u1)—G1(u2)}dt+

/ ML~ {KQ x)t)}[Gg(ul)—Gg(uQ)]dt—

— k-1 :
Z/ S t) 5])(t) [DJ(Ul) DJ(UJQ)}dt‘ <

§ /a /\1 Z‘ Skt()k)K1( ) )’ ‘Gl(ul) _ Gl(UZ) dt +
e [IZ((”"”;)’ ’Gg(ul)—Gg(ug) dt —
(z _t - 151( )

DY (uy) — DY (ug)|dt <

Z/ 1y
< (o + 665 + k’y*93)(b —a)|u; — usl,

we get (1 —4))|us — ua| < 0. Since 0 < ¢ < 1, so |us — uz| = 0. Therefore, u; = ug and the proof
is completed. O

Theorem 2.2. Suppose that (H1)-(H4), and If 0 < <1, hold, the series solution u(x) =
= > um(z) and ||urllec < 00 obtained by the m-order deformation is convergent, then it con-

m=0

verges to the exact solution of the Volterra-Fredholm integro-differential equation (1)-(2).

Proof.  Denote as (C[0,1],].||) the Banach space of all continuous functions on J, with
lui ()| < oo for all z in J.
Frist we define the sequence of partial sums s, let s,, and s,, be arbitrary partial sums with

n
n > m. We are going to prove that s,, = > u;(x) is a Cauchy sequence in this Banach space:

i=0
n m
[$n — Smllcoc = énax [$r — Sm| = glg)} ‘ z;uz(x) — zguz(z) ‘ =
1= 1=
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n

= wy| 2wl =

1=m-+1
/\1 a: — t Kl (l‘ t)
ma | > / HE (2 1df +
i=m-+1

+Z%:+1/ Ao L™ )) i_1dt — / 31 —xl_'ft @ L(z’—l)Jdt‘ —
= may Al(xka:let (ZA)dt+/ [Kth](;nB)dt
fz / &( _xf'gi (Z Lisdt)|.

From (6), we have

ZAZ = Gl(snfl) Gl Sm 1 ZB G2 Sn 1) GQ(Smfl)ﬂ

ZL =D'(sp,_1) — D’ (5_1).

So,
_ )\1 I*t Kl(x t)
Iso = smlle = x| [* 201G 5, 0) = Galom )t +
Ko(a,t
+/ /\2L71[ e )}[G2(5n—1)*G2(5m—1)]dt*
a gk( )
GO -t i
— — <
z e D e - D] <
)\1 .13 —t kKl .T t
<
S \922’5/ ‘ KlEx (z HGl sn-1) = Gi(sm-1 ‘dt
Ka(z,t)
+/ Ao L™t [ 2(2, ”‘G2 Sn—1) — G2(Sm—1 ’dt-&-
a gk
x—t .
J J
_1 TR HD Sn-1) = D (s 1) dt

Let n = m + 1, then

157 — Smlloo < ¥[[8m — Sm—1lloc < 77212”371171 = Sm—2lloo < ... <Y1 — 50|00,

S0,
Hsn *Smnoo < ||5m+1 *5m||oo+ Hsm-&-Q *57n+1||oo+"'+ ||5n75n—1||oo g
< WM™+ s = solleo <
< w’"[l + 9%+ T [ls1 = solleo <
,L/}n m
< W - v oo-
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Since 0 < ¢ < 1, we have (1 —¢"~™) < 1, then

m

[sn = smlloo < 1_ wnulnoc
But |u1(z)| < oo, so, as m — 0o, then [|sp, — sm|lcc — 0.

We conclude that s, is a Cauchy sequence in C[0, 1], therefore u = lim wuy,.
n—oo

Then, the series is convergence and the proof is complete. a

3. Illustrative example

In this section, we present the semi-analytical techniques based on ADM and MADM to solve
Volterra-Fredholm integro-differential equations.
Example 1. Consider the following Volterra-Fredholm integro-differential equation.

2 0.97 v 0-9
o' (2) + zu(z) = 22 + 23 — = Tx —|—/ u?(t)dt —i—/ wu(t)dt, (13)
0 0
with the initial conditions
u(0) =0, ' (0) =0, (14)

and the exact solution is u(z) = 22. The numerical results of Example 1 are given in Tab. 1.

Table 1. Numerical results of the Example 1

X Exact solution MADM ADM

0.1 0.010000 0.016377 0.010397
0.2 0.040000 0.046990 0.043354
0.3 0.090000 0.094713  0.097463
0.4 0.160000 0.148751 0.148954
0.5 0.250000 0.236624 0.240548
0.6 0.360000 0.342563 0.348973
0.7 0.490000 0.478846 0.473681
0.8 0.640000 0.635372  0.627596
0.9 0.810000 0.790145 0.764797

Conclusion

We discussed different methods for solving nonlinear Volterra-Fredholm integro-differential
equations, namely, Adomian decomposition method and modified decomposition method. To
assess the accuracy of each method, the test example with known exact solution is used. The
study outlines important features of these methods as well as sheds some light on advantages of
one method over the other. In this work, the above methods have been successfully employed to
obtain the approximate solution of a nonlinear Volterra-Fredholm integro-differential equation.
The results show that these methods are very efficient, convenient and can be adapted to fit a
larger class of problems, MADM is the easiest, the most efficient and convenient.
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CyiiecTBoBaHEe U €IMHCTBEHHOCTDh PeIleHUs
JJig MHTerpaJabHo-InddepeHnnajIbHbIX ypaBHEHUM
Boabreppa-®Ppearoapma

Axmen A.Xamoy
KupruyuanT II. I'xaamn

Kadenpa maremarukn

JIp. Babacaxe6 AGuebkap MapaT3Bajia yHUBEPCUTET
Aypanraban-431 004 (M.C.)

India

B smoti cmambve npumeHsemcs Moouduuyuposartuili Memod pasaodscerus Adomuana drs Haroscdenus
NPUBAUNCEHHDIT PEUWEHUT UHME2PANbHO-JuPPeperyuarvrur ypaskernut Boavmeppa- Ppedzosvma. Mot
doka3vieaem cywecmeaosanue i eOUHCMEEHHOCTD PE3YALMAMOE U CLo0UMOCMb peweruti. Haxoney, npu-
geder npumep 0AA JEMOHCMPAUUY 000CHOBAHHOCTNY U NPUMEHUMOCTIU NPEIAA2AEMO20 MEMOOA.

Karouesvie caosa: unmeepasoro-duddeperyuanvroe ypashenue Boavmeppa- Ppedzorvma, moduduuupo-
68aHHbIT Memod padaoccerus, Adomuara, PE3yALMaAMbL, CYULLCMBOBAHUA U eOUHCTNEERHOCTU, NPUOAU-
orceHHOE peueHue.
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