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We consider a complex hypersurface V given by an algebraic equation in k unknowns, where the set
A ⊂ Zk of monomial exponents is fixed, and all the coefficients are variable. In other words, we consider
a family of hypersurfaces in (C \ 0)k parametrized by its coefficients a = (aα)α∈A ∈ CA. We prove that
when A generates the lattice Zk as a group, then over the set of regular points a in the A-discriminantal
set, the singular points of V admit a rational expression in a.

Keywords: singular point, A-discriminant, logarithmic Gauss map.
DOI: 10.17516/1997-1397-2018-11-6-670-679.

Introduction

By the general algebraic hypersurface (or the A-hypersurface) we mean the algebraic set V

defined by the equation in k unknowns y = (y1, . . . , yk) ∈ (C \ 0)k:

f(y1, . . . , yk) :=
∑

α=(α1,...,αk)∈A

aαy
α1
1 . . . yαk

k = 0. (1)

Here A ⊂ Zk is a fixed finite set while all coefficients aα are treated as independent variables.
We assume that the set A generates the lattice Zk as a group. The set of polynomials (1) is
identified with the space CA of sequences a = (aα)α∈A of dimension N := #A. We can think
about V as a family of hypersurfaces Va in (C \ 0)k parametrized by coefficients a ∈ CA.

The aim of the present paper is to obtain explicit formulas for almost all singular points of
the hypersurface V . Recall that a point y ∈ V is said to be singular if the polynomial f in (1)
and all its partial derivatives f ′

y1
, . . . , f ′

yk
vanish at y. In the classical case, when k = 1, the

following formulas were given in [1, Ch.1, Th.1.5]: if the equation

f(y) := ady
d + . . .+ a1y + a0 = 0 (2)
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has a unique multiple root y = y(a) = y(a0, . . . , ad), and its multiplicity equals two, then y is
given by rational expressions

y =
∆1(a)

∆0(a)
=

∆2(a)

∆1(a)
= . . . =

∆d(a)

∆d−1(a)
,

where ∆j =
∂∆

∂aj
are derivatives of the discriminant ∆(a) of the polynomial f(y) in (2). Analogous

formulas for a unique root of multiplicity ν > 2 are given in [5], where instead of using the
discriminant ∆, the resultant of f and its derivative f (ν−1) (with respect to y) of order ν − 1 is
used.

We prove that almost all singular points y(a) (actually, those that correspond to a belonging
to the regular part of the discriminantal set) admit a rational representation (Theorem 3). In the
last section we consider an example with comments how the type of a singular point y(a) ∈ V

depends of the singular type of a ∈ ∇A.

1. A-discriminant and the reduced equation

Definition 1 ([1]). Let ∇◦ denote the set of all (aα) ∈ CA such that the equation (1) has critical
roots y ∈ (C \ 0)k, i.e. roots at which the gradient of f vanishes:

f(y) =
∂f

∂y1
(y) = . . . =

∂f

∂yk
(y) = 0.

The closure ∇◦ =: ∇A in CA is said to be the A-discriminantal set.

In the set ∇A is a hypersurface in CA, then by the A-discriminant one means an irreducible
integral polynomial ∆A in coefficients a of f ∈ CA which vanishes on ∇A.

The solution y = y(a) to the equation (1) is (k+1)-homogeneous (it satisfies k+1 homogeneity
conditions), and the A-discriminant inherits this property. To see this, we consider the following
action on the space CA of polynomials (1). For λ = (λ0, λ1, . . . , λk) ∈ (C \ 0)k+1 we define it as
follows

λ : f(y1, . . . , yk) → λ0f(λ1y1, . . . , λkyk).

Observe that the set ∇A is invariant under the λ–action. In terms of coefficients (aα) of the
polynomial f this action can be written in the following form:

aα → λ0λ
α1
1 . . . λαk

k aα, α ∈ A.

Here α1, . . . , αk are the coordinates of α. In the toric part (C \ 0)A ⊂ CA the orbits of this
action are the equivalence classes with respect to the (k+1)-parametric subgroup defined by the
immersion

(λ0, λ1, . . . , λk) ↪→ λ0λ
α1
1 . . . λαk

k , α ∈ A.

Its injectivity follows from the fact that A generates Zk. Renumerating the elements of A as
α1, . . . , αN we represent this immersion in the form

(aα) = λA,
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where A is the matrix

A =


1 1 . . . 1

α11 α21 . . . αN1

...
...

. . .
...

α1k α2k . . . αNk

 , (3)

and
λA = (λa1

, . . . , λaN

) = (λ0λ
α11
1 . . . λα1k

k , . . . , λ0λ
αN1
1 . . . λαNk

k )

with aj being the columns of this matrix. Remark that we keep the notation A (which was used
for the set of exponents α in (1)) for this extended matrix. Thus, an equivalence class can be
written in the form λA · g with the coordinate-wise multiplication. In order to parameterize all
equivalence classes we represent them in the form of an m–parametric subgroup

g = zC , z ∈ (C \ 0)m,

where C is an m×N -matrix with m = N − k − 1. Choosing the matrix C in such a way that
the N ×N -matrix

Â =
(A
C

)
(4)

is unimodular (with determinant ±1), we conclude that the transform

Â : (λ, z) → λA · zC

is an automorphism of the complex torus (C \ 0)A. Thus, for such C the m-parametric subgroup
g = zC parametrizes all equivalence classes modulo the subgroup λA. Denoting by cα the column
of the matrix C indexed by an element α ∈ A, we arrive at the following reduced equation for (1):

f(y) =
∑
α∈A

zc
α

yα = 0, (5)

where the coefficients zc
α

= z
cα1
1 . . . z

cαm
m , α ∈ A, run over the m–parametric subgroup zC in

(C \ 0)A. The discriminantal set of the equation (5) we denote by ∇′
A and call it the reduced

discriminantal set. The defining polynomial of ∇′
A is obtained from the A–discriminantal poly-

nomial ∆A. It is called the reduced discriminant.
By Kapranov’s theorem [6] the reduced discriminantal set is birationally equivalent to the

projective space CPm−1. Moreover, there is an explicit formula

z = (Bs)B , s ∈ CPm−1, (6)

parametrizing ∇′
A. Clearly, then we get a parametrization of ∇A as

a = (aα)α∈A = λA · (Bs)BC .

2. Parametrization of singular points

The matrix C, extending A in (4) defines a special matrix B, the so called Gale transform
of A (see [1, P. 225]). Namely, the inverse of the matrix Â can be represented in the following
block form: (

Â
)−1

= (D|B),
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where D and B are blocks with k + 1 and m columns, respectively. They satisfy the relations

A ·B = 0, A ·D = Ek+1.

Remark that we can use columns α of A to index the rows for B writing them as bα. With the
help of B and D we can formulate the theorem on singular points of the reduced hypersurface (5).

The most convenient reductions of the equation (1) are associated with matrices C which
contain k + 1 zero columns at that the other m columns form the unit matrix. Such matrices
can be used for extension of A to be unimodular if A has k + 1 columns, say α0, α1 . . . , αk, for
which the columns

α1 − α0, . . . , αk − α0

form a unimodular k × k-matrix δ. In this case the reduction of (1) is just a fixation of the
coefficients: aα0 = aα1 = . . . = aαk = 1. We can use such a reduction when δ is nondegenerate
as well as in the case when δ is unimodular.

After dividing by yα
0

and denoting αj − α0 by αj , j = 1, . . . , N − 1 we can assume that the
reduction has the following form

f(y1, . . . , yk) = 1 +
k∑

i=1

yαi1
1 . . . yαik

k +
m∑
i=1

ziy
αk+i,1

1 . . . y
αk+i,k

k = 0, (7)

where the matrix δ = (αij), i, j = 1, . . . , k is nondegenerate. Let b0,b1, . . . ,bk be the first k+1
rows of the matrix B. In this case we have the following statement.

Theorem 1. The vector-function y(s) = (y1(s), . . . , yk(s)) with the coordinates

yj(s) =
k∏

ν=1

(
⟨bν , s⟩
⟨b0, s⟩

)χjν

, j = 1, 2, . . . , k,

where χjν are the entries of the matrix δ−1, parameterizes the set of singular points of the reduced
hypersurface (7).

Proof. Firstly, we consider the case when δ is the unit matrix, i.e. when f is of the type

f(y1, . . . , yk) := 1 + y1 + . . .+ yk +
m∑
i=1

ziy
αk+i,1

1 . . . y
αk+i,k

k = 0 (8)

with an associated matrix

A =


1 1 1 . . . 1 1 1 . . . 1
0 1 0 . . . 0 αk+1,1 αk+2,1 . . . αN−1,1

0 0 1 . . . 0 αk+1,2 αk+2,2 . . . αN−1,2

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 αk+1,k αk+2,k . . . αN−1,k

 . (9)

Choose the dual matrix

B =


b0
b1
...
bk
Em

 ,
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where

b0 =
(
− 1 +

k∑
j=1

αk+1,j ;−1 +
k∑

j=1

αk+2,j ; . . . ;−1 +
k∑

j=1

αN−1,j

)
b1 =

(
− αk+1,1;−αk+2,1; . . . ;−αN−1,1

)
. . .

bk =
(
− αk+1,k;−αk+2,k; . . . ;−αN−1,k

)
.

Due to the Horn-Kapranov formula (6) the discriminantal set of the equation (8) is given by the
following parametrization

zi = si⟨b0, s⟩
−1+

k∑
j=1

αk+i,j

⟨b1, s⟩−αk+i,1 . . . ⟨bk, s⟩−αk+i,k , i = 1, 2 . . . ,m,

where s = (s1, . . . , sm).

Lemma 1. The vector-function y(s) = (y1(s), . . . yk(s)) with coordinates

y1(s) =
⟨b1, s⟩
⟨b0, s⟩

, . . . , yk(s) =
⟨bk, s⟩
⟨b0, s⟩

satisfies the system of equations

f(y1, . . . , yk) =
∂f(y1, . . . , yk)

∂y1
= . . . =

∂f(y1, . . . , yk)

∂yk
= 0. (10)

Proof. Let us substitute y = y(s) into the equation (8) with the coefficients z = = (Bs)B . We
get the following expression

1 +
⟨b1, s⟩
⟨b0, s⟩

+ . . .+
⟨bk, s⟩
⟨b0, s⟩

+

+

m∑
i=1

(
si⟨b0, s⟩

−1+
k∑

j=1
αk+i,j

⟨b1, s⟩−αk+i,1 . . . ⟨bk, s⟩−αk+i,k

)(
⟨b1, s⟩
⟨b0, s⟩

)αk+i,1

. . .

(
⟨bk, s⟩
⟨b0, s⟩

)αk+i,k

=

=
⟨b0, s⟩+ ⟨b1, s⟩+ . . .+ ⟨bk, s⟩

⟨b0, s⟩
+

s1 + . . .+ sm
⟨b0, s⟩

.

The last sum vanishes, since

⟨b0, s⟩+ ⟨b1, s⟩+ . . .+ ⟨bk, s⟩ = −(s1 + . . .+ sm).

Recall that the sum of all rows of the matrix B is equal to zero, and B consists of rows b0, . . . , bk
supplemented by the unit m×m–matrix. So, y(s) annihilates f(y) when z = (Bs)B .

Similarly for the derivatives, one has as follows

∂g(y1(s), . . . yk(s))

∂yj
= 1 +

1

⟨b0, s⟩

m∑
i=1

αk+i,jsi =
1

⟨bj , s⟩

(
⟨bj , s⟩+

m∑
i=1

αk+i,jsi

)
= 0.

The last expression vanishes due to the property of vectors bj . So, the proof of Lemma 1 is
completed.

In order to continue the proof of Theorem 1 let us turn to the equation (7). We introduce
the monomial change

xi = yαi1
1 . . . yαik

k , i = 1, 2, . . . , k,
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which can be rewritten in the matrix form as x = yδ. Since δ is nondegenerate, one has

y = xδ−1

.

Let us write the matrix A = (αij) in the block form A = (δ, δ′). Then after the substitution
y = xδ−1

in (7) we get

1 +

k∑
i=1

xi +

m∑
i=1

zi(x
δ−1δ′)i = 0, (11)

where (xδ−1δ′)i is the i-th coordinate of the vector xδ−1δ′ . The exponents in equation (11) form
the k×N -matrix (Ek, δ

−1δ′). This matrix supplemented by the row of units looks like (9) where
the block δ′ is changed by δ−1δ′:

A =


1 1 . . . 1 | 1 . . . 1
0 |
... Ek | δ−1δ′

0 |

 .

The computation shows that the dual matrix to A is the matrix

B =


b0

b1

...
bk

Em

 .

Further applying Lemma 1 we complete the proof of Theorem 1.

3. Rational expression for singular points

As it follows from the definition of the A-discriminantal set, the singular points of the hyper-
surface which we consider coincide with the restrictions of solutions to the equation (1) on the
A-discriminantal set, i.e. with y(a)

∣∣
∇A

. For the reduced equation (7) the singular points y(z)

are given by
y(z(s)) = y((Bs)B).

However, according to Kapranov’s theorem [6] the parametrization z = (Bs)B is the inverse
of the logarithmic Gauss map

γ : ∇′
A → CPm−1

of a reduced A-discriminantal set ∇′
A. At the regular points z ∈ reg∇′

A this mapping can be
written explicitly (see [8])

γ : z → (z1(∆
′)z1 : . . . : zm(∆′)zm) = (s1 : . . . : sm),

where for simplicity we write ∆′ instead of ∆′
A. Therefore, by Theorem 1 we get the following

statement.

Theorem 2. The singular points of the reduced hypersurface (7) over the set reg∇′
A

admit in global coordinates z the following radical representation:

yj(z) =
k∏

ν=1

(
⟨bν , γ(z)⟩
⟨b0, γ(z)⟩

)χjν

, j = 1, 2, . . . , k, (12)
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where χjν are the entries of the matrix δ−1.

Now we can formulate the main result.

Theorem 3. Let the set A in (1) generate Zk as a group. The singular points y(a) of the
hypersurface (1) over the set reg∇A admit a rational representation.

Proof. We consider an arbitrary reduction of the type (7) with fixed coefficients aαj0 = . . . =
=aαjk = 1. Let BJ ′ be the submatrix of the dual matrix B consisting of rows bαj1 , . . . , bαjk .
Then by Theorem 2 the singular points of the reduced hypersurface can be found in the following
way:

y(z) =

(
⟨BJ′ , γ(z)⟩
⟨bj0 , γ(z)⟩

)α−1
J

.

Consider all subsets J = {j0, j1, . . . , jk} ⊂ {1, . . . , N} for which the corresponding matrices δJ
are nondegenerate. Then there exist integer numbers qJ such that∑

J

qJδJ = Ek.

Consequently, we have

y(a) = yEk = y

∑
J

qJδJ
=
∏
J

(
⟨BJ′ , γ(z)⟩
⟨bj0 , γ(z)⟩

)δ−1
J qJδJ

=
∏
J

(
⟨BJ ′ , γ(z)⟩
⟨bj0 , γ(z)⟩

)qJ

.

The last term is a rational expression in variables z. Since by Kapranov’s theorem γ is a birational
map we get rationality of y(a) in variables a.

4. Example

Let us consider the following polynomial equation

a00 + a10y1 + a01y2 + a31y
3
1y2 + a63y

6
1y

3
2 = 0.

It is associated with the matrix

A =

 1 1 1 1 1

0 1 0 3 6

0 0 1 1 3

 ,

which has the right annulator

B =


3 8

−3 −6

−1 −3

1 0

0 1

 .

The reduced equation looks as follows:

f = 1 + y1 + y2 + z1y
3
1y2 + z2y

6
1y

3
2 = 0. (13)
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According to (6) the parametrization of the reduced A-discriminantal set ∇′ = ∇′
A for f is

z1 = s1(3s1 + 8s2)
3(−3s1 − 6s2)

−3(−s1 − 3s2)
−1 =

(3 + 8s)3

(3 + 6s)3(1 + 3s)
, (14)

z2 = s2(3s1 + 8s2)
8(−3s1 − 6s2)

−6(−s1 − 3s2)
−3 = − s(3 + 8s)8

(3 + 6s)6(1 + 3s)3
, (15)

where s :=
s2
s1

is an affine coordinate in CP1. After elimination of the parameter s in the

system (14)–(15) we get the reduced A-discriminant ∆′ = ∆′
A:

∆′ = −262144z32 +331776z1z
3
2 +331776z31z

2
2 − 61236z61z2 − 61236z21z

3
2 − 19683z42 − 398034z41z

2
2+

+59049z71z2 + 19683z31z
3
2 + 59049z51z

2
2 − 19683z81 + 19683z91 .

The matrix δ for the equation (12) is the unit matrix, therefore by (12) we get the following
formulas for singular points:

y1 =
−3z1(∆

′)z1 − 6z2(∆
′)z2

3z1(∆′)z1 + 8z2(∆′)z2
, y2 =

−z1(∆
′)z1 − 3z2(∆

′)z2
3z1(∆′)z1 + 8z2(∆′)z2

.

The derivatives

dz1
ds

= − (3 + 8s)2(4s+ 1)2

9(1 + 2s)4(1 + 3s)2
,

dz2
ds

= − (3 + 8s)7(4s+ 1)2

243(1 + 2s)7(1 + 3s)4

vanish when s = −1

4
and s = −3

8
. It means that ∇A has two singular points

z
(
− 1

4

)
=
(32
27

,
1024

729

)
and z

(
− 3

8

)
= (0, 0).

Elimination of the parameter s in the system (14)–(15) leads us to the A-discriminant
∆′ = ∆′

A:

∆′ = −262144z32 +331776z1z
3
2 +331776z31z

2
2 − 61236z61z2 − 61236z21z

3
2 − 19683z42 − 398034z41z

2
2+

+59049z71z2 + 19683z31z
3
2 + 59049z51z

2
2 − 19683z81 + 19683z91 .

Consider the Taylor decomposition of ∆′ at the point z(−1
4 ), i.e. by powers of p = z1 −

32

27
and

q = z2 −
1024

729
:

∆′ =
68719476736

19683
p3 − 536870912

243
p2q +

4194304

9
pq2 − 32768q3 +

486539264

81
p4 + r(p, q),

where r(p, q) is a sum of monomials of degree > 4 except the monomial p4. Here the initial
homogeneous cubic form is a cube power of an affine polynomial

32768

14348907
(1152z1 − 243z2 − 1024)3.

Consequently, in coordinates m = 1152z1 − 243z2 − 1024 and l = z1 −
32

27
the discriminant has

the form
∆′ = am3 + bl4 + . . . , a ̸= 0, b ̸= 0,
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It means that z = (32/27, 1024/729) is a cuspidal point of the type (4, 3) for the discriminant ∆′.
Now we have to study singular types of singular points of the complex curve (13) which are

given by Theorem 2:

y1(s) =
−3− 6s

3 + 8s
, y2(s) =

−1− 3s

3 + 8s
.

At the singular points y(s) we have the following expression for the Hessian of f :

∂2f

∂y21

∂2f

∂y22
−
( ∂2f

∂y1∂y2

)2
= − (3 + 8s)2(1 + 4s)2

(1 + 2s)2(1 + 3s)2
.

Therefore, only y(−1
4 ) = (− 3

2 ,−
1
4 ) is not a Morse point.

Consider the expression of the polynomial (13) at the point y(−1
4 ):

f = −12(y2 + 1/4)2 − 4(y1 + 3/2)(y2 + 1/4)− 1

3
(y1 + 3/2)2 + 16(y2 + 1/4)3+

+48(y1+3/2)(y2+1/4)2+
44

3
(y1+3/2)2(y2+1/4)+32/27(y1+3/2)3− 448

27
(y1+3/2)3(y2+1/4)−

−64(y1+3/2)(y2+1/4)3−80(y1+3/2)2(y2+1/4)2− 20

27
(y1+3/2)4+

320

3
(y1+3/2)2(y2+1/4)3+

+
640

9
(y1 + 3/2)3(y2 + 1/4)2 +

16

81
(y1 + 3/2)5 +

80

9
(y1 + 3/2)4(y2 + 1/4) + . . . .

After the change of variables

y1 +
3

2
= − u

15
+

v

30
, y2 +

1

4
=

8u

45
− v

180

we get

f =
1

3
u2 +

1

8201250
v4 + r(u, v),

where r(u, v) consists of monomials of weighted degree > 4 with respect to the weight (2, 1).
This means that y(− 1

4 ) is a self-intersection point for the curve (13) with a common tangent
line.
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Россия

Рассматривается комплексная гиперповерхность V , заданная алгебраическим уравнением с k

неизвестными и с переменными коэффициентами, причем множество A ⊂ Zk показателей мо-
номов уравнения произвольное, но фиксированное. Таким образом, мы рассматриваем семейство
гиперповерхностей, параметризованных наборами коэффициентов a = (aα)α∈A ∈ CA. Доказыва-
ется, что если A порождает решетку Zk как группу, то над множеством регулярных точек
A-дискриминантного множества сингулярные точки гиперповерхности V рационально выража-
ются через коэффициенты a.

Ключевые слова: особая точка, A-дискриминант, логарифмическое отображение Гаусса.
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