ПРОДОЛЖЕНИЕ АНАЛИТИЧЕСКИХ МНОЖЕСТВ В ОКРЕСТНОСТЬ КЛИНА НЕОБЩЕГО ПОЛОЖЕНИЯ

Юрьева Е.В.,

научный руководитель д-р физ.-мат. наук проф. Цих А.К., Сибирский Федеральный Университет

Наряду с теоремой Гартогса, одним из важных примеров "принудительного" продолжения для голоморфных функций многих переменных является теорема "об острие клина", которая была получена Н. Н. Боголюбовым в 1956 году [1], [2], в связи с обоснованием дисперсионных соотношений в квантовой теории поля.

Она утверждает, что если функция f(z), голоморфная в трубчатой области основанием которой служит двусторонний $T=\mathbb{R}^n+i\Gamma$, световой $\Gamma: y_1^2 > y_2^2 + \ldots + y_n^2$, и непрерывная в ее замыкании \overline{T} , то она голоморфно *продолжается* в \mathbb{C}^n . Результат Н. Н. Боголюбова был обобщен в статье С. И. Пинчука [3], где вместо указанной трубчатой области над световым конусом рассматривался клин с острием на порождающем многообразии, ограниченный гладкими гиперповерхностями в общем положении. Условие общего положения автоматически накладывает ограничение о том, что обе стороны клина содержат полномерный телесный угол вблизи точек острия. В статье [4] был исследован вопрос голоморфного продолжения функций в окрестность острия двустороннего *п*-кругового клина необщего положения. В ней рассматривались клинья, образованные двумя пкруговыми областями $D_{\scriptscriptstyle +}$, замыкания которых пересекаются лишь по единичному остову $T^n = \{|z_1| = \ldots = |z_n| = 1\}$. При этом объединение $K = D_+ \cup T^n \cup D_-$ может не содержать вблизи острия T^n никакого полномерного телесного угла; в этом случае мы говорим, что K – клин необщего положения.

Проблема устранения особенностей аналитических множеств рассматривалась в работах Александера, Беккера, Б. Шиффмана и К. Фунахаси (формулировки, доказательства и литературные ссылки приведены в книге Е. М. Чирки [5]), и может быть сформулирована в следующем виде. Пусть E — замкнутое подмножество комплексного многообразия X и A - аналитическое подмножество в $X \setminus E$ чистой размерности. Ставится вопрос: npu каких условиях на E и A замыкание \bar{A} множества A в X будет аналитическим подмножеством в X. Наиболее общее достижение в этом направлении, обобщающее результаты Б. Шиффмана и К. Фунахаси, было получено Е. М. Чиркой ([5], Теорема 18.5).

В [5] отмечается, что при наличии у E богатой комплексной структуры, аналитическое подмножество в $X \setminus E$ может подходить к E, неконтролируемо "болтаясь". Поэтому для устранения таких особенностей нужны дополнительные условия. С другой стороны, если комплексная структура E бедная, скажем, если E – гладкое многообразие, не содержащие никаких максимально комплексных подмногообразий нужной размерности (кандидатов на край аналитического множества), то можно надеяться, что аналитическое подмножество A в $X \setminus E$ "не заметит" E, т. е. \bar{A} будет аналитическим. Это подтверждает упомянутый результат Б. Шиффмана о продолжении аналитических множеств размерности $p \ge 2$ через остов поликруга. К. Фунахаси показал, что в \mathbb{C}^n особенности вида $\mathbb{R}^m \times \mathbb{C}^{p-2}$ тоже устранимы. Теорема Е. М. Чирки [5] утверждает, что если E - C^l -подмногообразие в X, yкоторого почти в каждой точке ξ комплексная касательная плоскость $T_{\xi}^{c}E$ имеет

размерность < p-1, и A – чисто p-мерное аналитическое подмножество в $X \setminus E$, то \bar{A} – аналитическое подмножество в X.

Свой результат [3], применительно к продолжению голоморфных функций в клине, С. И. Пинчук проинтерпретировал в [6] для n-мерных аналитических множеств, определенных в клине из \mathbb{C}^{n+1} . Следуя этой идее, им в [6] получено обобщение теоремы Боголюбова для аналитических множеств, определенных в клине общего положения в \mathbb{C}^{n+m} . Основной результат настоящей работы состоит в распространении теоремы Пинчука на случай n-кругового клина необщего положения.

Введем необходимые обозначения. Пусть Ω - область в $\mathbb{C}^{n+m} = \mathbb{C}_z^n \times \mathbb{C}_w^m$ вида $\Omega = K \times \omega$, где $K = D_+ \cup T^n \cup D_-$ - клин в \mathbb{C}^n с острием T^n , содержащий "диагональ" $|z_1| = \ldots = |z_n|$, а ω - ограниченная область в \mathbb{C}^m . Пусть $A_\pm \subset D_\pm \times \omega$ - аналитические подмножества. Эти подмножества назовем *допустимыми*, если:

- 1. Замыкания \overline{A}_+ не пересекают $K \times \partial \omega$ (здесь $\partial \omega$ граница области ω).
- 2. $\overline{A_{\pm}}$ пересекают сдвинутые торы $T_{\epsilon}^{n} = \{z: |z_{1}| = 1, \cdots, |z_{n-1}| = 1, |z_{n}| = 1 \pm \epsilon\}$ по множеству с конечной (n+1)-мерой Хаусдорфа.
- множеству с конечной (n+1)-мероп жауждорум.

 3. Для любой формы $\varphi \in D^{n,0}(\Omega)$ существует предел $\lim_{\epsilon \to 0} \int_{T_\epsilon^n \cap A_\pm} \varphi$, который

определяет поток $\partial^0 A_+$ биразмерности (n,0) на Ω :

$$\left(\partial^0 A_{\!\scriptscriptstyle{\pm}}, \phi \right) \coloneqq \lim_{\varepsilon \to 0} \int\limits_{T_{\scriptscriptstyle{\varepsilon}}^n \cap A_{\!\scriptscriptstyle{\pm}}} \phi, \;\; \phi \in D^{n,0} \left(\Omega \right).$$

Этот поток будем называть *значением* A_{\pm} на T^n . В силу специального выбора ориентации совпадение значений A_{\pm} и A_{\pm} на T^n означает, что $\partial^0 A_{\pm} = \left(-1\right)^n \partial^0 A_{\pm}$.

Теорема Пусть клин $K = D_+ \cup T^n \cup D_-$ содержит "диагональ" $|z_1| = \ldots = |z_n|$ и A_\pm - допустимые чисто п-мерные аналитические множества в $D_\pm \times \omega$ с совпадающими значениями на острие $T^n \times \omega$: $\partial^0 A_- = (-1)^n \partial^0 A_+$. Тогда $A_+ \cup A_-$ продолжается до аналитического подмножества в $W = K \times \omega$.

ЛИТЕРАТУРА

- 1. Владимиров В. С. Методы теории функций многих комплексных переменных. М.: Наука, 1964.
- 2. Боголюбов Н. Н., Медведев Б. В., Поливанов М. К. Вопросы теории дисперсионных соотношений М.: Физматгиз, 1958.
- 3. Пинчук С. И. Теорема Боголюбова об "острие клина" для порождающих многообразий// Мат. сб. 1974. Т. 94 С. 468-482.
- 4. Юрьева Е. В. О голоморфном продолжении в окрестность острия клина необщего положения// Сиб. мат. журнал 2011. Т. 52, №3 С.713-719.
- 5. Чирка Е. М. Комплексные аналитические множества. М.: Наука, 1985.
- 6. Пинчук С.И. Теорема об острие клина для аналитических множеств//Доклады АН СССР 1985. Т.285 С. 563-566