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Abstract 

CaGd2(MoO4)4:Ho3+/Yb3+ phosphors doped by Ho3+ and Yb3+ (Ho3+ = 0 and 0.05, and Yb3+ = 0, 

0.35, 0.40, 0.45 and 0.50) were successfully synthesized by the microwave sol-gel method. The 

synthesized particles, being formed after heat-treatment at 900°C for 16 h, showed a well 

crystallized morphology. All compounds are (3 + 2)D incommensurately modulated with 

superspace group I41/a(α,β,0)00(-β,α,0)00. It was found that parameter (α2 + β2)1/2 is proportional to 

cell parameter a for all studied compositions and, therefore, modulation vector k is the same for all 

known CaRE2(MoO4)4 compounds. The modulation vector invariance is a specific and valuable 

feature of this type of the structure. Under the excitation at 980 nm, the UC doped particles 

exhibited the yellow emission composed of green (545-nm) and red (655-nm) emission bands. The 

pump power dependence and CIE chromaticity of the UC emission were evaluated. The shape of 

UC bands in CaGd2(MoO4)4:Ho3+/Yb3+ is dependent on the Yb content due to the influence of the 

crystal field affecting a holmium ion. 13 Raman-active modes of the CaGd2(MoO4)4 lattice were 

identified via a comparison of experimental Raman spectra and the lattice dynamics simulation 

results. Four additional Raman lines were found in the region of stretching vibrations and, at least, 

two additional modes are present in the bending mode region. These additional modes are ascribed 

to incommensurate crystal lattice modulation. Luminescence bands of Ho ions are severely 

broadened due to a statistical disorder in the CaGd2-xYby (MoO4)4 lattice. 
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Rare earth bearing oxide crystals are the basic luminescent materials in modern photonics and 

laser technology because of high emission efficiency, thermal and chemical stability, and different 

spectroscopic properties that can be tuned by composition [1-9]. One of the most interesting effects 

observed in rare-earth-doped photoluminescence materials is the frequency conversion from near 

infrared radiation of low photon energy to visible high photon energy radiation or upconversion 

(UC) [10-20]. The UC materials have shown potential applications in various fields including 

noncontact and nondestructive temperature sensing, biomedical imaging and optical frequency 

conversion in photocatalytic composites [14,15,20,21-24]. 

The double alkaline earth lanthanide molybdates, MRE2(MoO4)4 (M: alkaline-earth or bivalent 

rare-earth metal ion, RE: trivalent rare-earth or actinide ion), seem to be very promising host 

materials. Indeed, with a decrease of the alkaline-earth metal ion radii (RCa < RSr < RBa ; R = ionic 

radius), the structure of MB2(MoO4)4 could be transformed from the monoclinic structure to a 

highly disordered tetragonal scheelite-type structure [25]. As it was demonstrated for several 

crystals from this family, the disordered tetragonal-phase structure can accommodate doping RE3+ 

ions at high concentrations without structure disruption and defect generation that results in the 

excellent UC photoluminescence properties [18,25-32]. The incommensurate modulation was 

discovered in CaEu2(MoO4)4 and CaLa2(MoO4)4:Ho3+/Yb3+ solid solutions [18,30,31], but the 

structure modulation characteristics of other molybdates MB2(MoO4)4 remain unknown. In the 

present study, the CaGd2(MoO4)4:Ho3+/Yb3+ phosphors were synthesized by the microwave sol-gel 

method, and the crystal structure refinement, including modulation effects, as well as UC 

photoluminescence properties evaluation, were performed. Commonly, the Ho3+/Yb3+ combination 

in a host is suitable for the infrared to visible light conversion through the UC process due to proper 

electronic energy level configurations of Ho3+ and Yb3+ ions, where the Ho3+ and Yb3+ ions are 

activator and sensitizer, respectively. 

 Earlier, the rare-earth-bearing molybdates were prepared by different technological routes, 
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including solid-state reactions [26,28-30,32-37], co-precipitation [38-40], the sol-gel method [27], 

hydrothermal method [41,42], Pechini method [43,44] and the microwave-assisted hydrothermal 

method [45-47]. It is known that phosphor preparation by a solid-state method commonly requires 

high temperatures, long heating process and subsequent grinding, which may occasionally result in 

a particle surface damage. Comparatively, the sol-gel process possesses some advantages, including 

good particle homogeneity, low calcination temperature, small particle size and a narrow particle 

size distribution promising for good luminescent characteristics. The microwave synthesis has 

advantages as a very short reaction time, small-size particles, narrow particle size distribution and a 

high purity of the final polycrystalline products. Thus, the combined microwave sol-gel process is 

an optimal approach to the synthesis of high-quality luminescent materials for short time periods. In 

the present study, the CaGd2-x(MoO4)4:Yby/Hoz phosphors with the doping concentrations of Yb3+ 

and Ho3+ (y = 0, 0.35, 0.40, 0.45 and 0.50; z = 0, 0.05; x = y + z) were synthesized by the microwave 

sol-gel method, and the crystal structure refinement and UC photoluminescence properties 

evaluation were performed. To control the phase composition, the synthesized 

CaGd2(MoO4)4:Ho3+/Yb3+
 particles were characterized by X-ray diffraction (XRD), scanning 

electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The pump power 

dependence and Commission Internationale de L'Eclairage (CIE) chromaticity of the UC emission 

intensity were evaluated in detail. The spectroscopic properties were examined comparatively using 

photoluminescence (PL) emission and Raman spectroscopy. 

 

2. Experimental 

Appropriate stoichiometric amounts of Ca(NO3)2·4H2O (99%, Sigma-Aldrich, USA), 

Gd(NO3)3·6H2O (99%, Sigma-Aldrich, USA), (NH4)6Mo7O24·4H2O (99%, Alfa Aesar, USA), 

Ho(NO3)3·5H2O (99.9%, Sigma-Aldrich, USA), Yb(NO3)3·5H2O (99.9%, Sigma-Aldrich, USA), 

citric acid (99.5%, Daejung Chemicals, Korea), NH4OH (A.R.), ethylene glycol (A.R.) and distilled 
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water were used as initial reagents to prepare the CaGd2-x(MoO4)4:Yby/Hoz (y = 0, 0.35, 0.40, 0.45 

and 0.50; z = 0, 0.05; x = y + z) compositions. To prepare pure CaGd2(MoO4)4, 0.4 mol% 

Ca(NO3)2·4H2O and 0.229 mol% (NH4)6Mo7O24·4H2O were dissolved in 20 mL of ethylene glycol 

and 80 mL of 5M NH4OH under vigorous stirring and heating. Subsequently, 0.8 mol% 

Gd(NO3)3·6H2O and citric acid (with a molar ratio of citric acid to total metal ions of 2:1) were 

dissolved in 100 mL of distilled water under vigorous stirring and heating. Then, the solutions were 

mixed under vigorous stirring and heating at 80-100°C. At the end, highly transparent solutions 

were obtained and adjusted to pH = 7-8 by the addition of NH4OH or citric acid. To prepare 

CaGd1.6(MoO4)4:Yb0.35/Ho0.05, the mixture of 0.64 mol% Gd(NO3)3·6H2O, 0.14 mol% 

Yb(NO3)3·5H2O and 0.02 mol% Ho(NO3)3·5H2O was used for the creation of the rare-earth-

carrying solution. To prepare CaGd1.55(MoO4)4:Yb0.40/Ho0.05, the mixture of 0.62 mol% 

Gd(NO3)3·6H2O, 0.16 mol% Yb(NO3)3·5H2O and 0.02 mol% Ho(NO3)3·5H2O was employed for the 

creation of the rare-earth-carrying solution. To prepare CaGd1.50(MoO4)4:Yb0.45/Ho0.05, the mixture 

of 0.6 mol% Gd(NO3)3·6H2O, 0.18 mol% Yb(NO3)3·5H2O and 0.02 mol% Ho(NO3)3·5H2O was 

used for the creation of the rare-earth-carrying solution. To prepare CaGd1.45(MoO4)4:Yb0.50/Ho0.05, 

the rare-earth-containing solution was generated using 0.58 mol% Gd(NO3)3·6H2O, 0.2 mol% 

Yb(NO3)3·5H2O and 0.02 mol% Ho(NO3)3·5H2O. 

The transparent solutions were placed into a microwave oven operating at the frequency of 2.45 

GHz and the maximum output power of 1250 W for 30 min. The microwave reaction working cycle 

was controlled very precisely between 40 s on and 20 s off for 15 min followed by a further 

treatment of 30 s on and 30 s off for 15 min. Ethylene glycol was evaporated slowly at its boiling 

point. Ethylene glycol is a polar solvent with the boiling point of 197°C, and this solvent is a good 

medium for the microwave process. Respectively, if ethylene glycol is used as a solvent, the 

reactions proceed at the boiling point temperature. When microwave radiation is supplied to the 

ethylene-glycol-based solution, the components dissolved in the ethylene glycol can couple. The 
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charged particles vibrate in the electric field interdependently when a large amount of microwave 

radiation is supplied to ethylene glycol. Each sample was being treated with ultrasonic radiation for 

10 min to produce a light yellow transparent sol. After this stage, the light yellow sols were dried at 

120°C in a dry oven to obtain black dried gels. The black dried gels were being ground and heat-

treated at 900°C for 16 h in the air with a 100°C interval between 600-900°C. Finally, the white and 

pink particles were obtained for pure CaGd2(MoO4)4 and the doped compositions, respectively. 

The powder diffraction data of the synthesized particles for Rietveld analysis were collected 

over the range of 2θ = 5-110° at room temperature with a D/MAX 2200 (Rigaku, Japan) 

diffractometer (Cu-Kα radiation, θ-2θ geometry). The step size of 2θ was 0.02°, and the counting 

time was 5 s per step. The microstructure and surface morphology were observed using SEM/EDS 

(JSM-5600, JEOL, Japan). The PL spectra were recorded using a spectrophotometer (Perkin Elmer 

LS55, UK) at room temperature. Raman spectra measurements were performed using a LabRam 

Aramis (Horiba Jobin-Yvon, France) with the spectral resolution of 2 cm-1. The 514.5-nm line of an 

Ar ion laser was used as an excitation source; to avoid sample decomposition, the samples were 

exposed to a power level that was maintained at 0.5 mW. 

 
3. Results and discussion 

The XRD patterns recorded from the synthesized molybdates are shown in Fig. 1 and Figs. 1S-

5S. In general, the patterns of solutions CaGd2-x(MoO4)4:Yby/Hoz (y = 0, 0.35, 0.40, 0.45 and 0.50; z 

= 0, 0.05) are similar. The difference profile plot of CaGd2(MoO4)4 is shown in Fig. 1. The 

difference profile plots of CaGd2(MoO4)4:Yby/Hoz are very similar to that of CaGd2(MoO4)4 and 

they are not shown. Earlier, it was obtained that, within the CaGd2(1-x)Eu2x(MoO4)4 series, all 

compounds are (3 + 2)D incommensurately modulated with superspace group I41/a(α,β,0)00(-

β,α,0)00 and parameters  and  were determined for CaEu2(MoO4)4 [30,33]. The crystals under 

investigation are related to this family and, first of all, the Le Bail decomposition was applied using 

the JANA2006 software [48]. The refinements were stable and gave low R-factors, as shown in 
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Table 1. All peaks in each pattern were accounted by one phase in superstructure space group 

I41/a(α,β,0)00(-β,α,0)00 that proves high purity of all samples.  

It is known that the wavevector of incommensurate modulation k in a reciprocal space can be 

expressed with the help of fractional components α, β, γ and three reciprocal lattice vectors a*, b* 

and c*: k = αa* + βb* + γc* [49,50]. In our case for the tetragonal crystal, the relations |a*| = |b*| = 

1/a, where a – cell parameter, and |k| = |αa* + βb*| = (α2 + β2)1/2|a*| = (α2 + β2)1/2/a are valid. From 

the curve shown in Fig. 2, relation |k| = (α2 + β2)1/2/a = const is evident.  Thus, it can be reasonably 

concluded that modulation vector k is the same for all CaRE2(MoO4)4 compounds independently 

from RE selection. Supposedly, this rule can be generalized for different M2+ ions in 

MRE2(MoO4)4, which structure features are unknown up to now [26,27,29,31,32,51]. 

To consider the modulation mechanism in the molybdate crystals, let us imagine the system of 

four 1D node chains with the following periods: 1) a = 12/12 Å = 1 Å; 2) a = 12/11 Å ≈ 1.091 Å; 3) 

a = 12/10 Å = 1.2 Å; 4) a = 12/9 Å ≈ 1.333 Å. The chain period increases with a chain number. It 

can be supposed that the chains are modulated with vector k = 0.25 Å-1. The value is the same for 

all the chains similar to the case of CaGd2(MoO4)4:Yby/Hoz crystals. Then, relation  is 

valid because . In this case, for the node chains, there is 1) α = 1Å×0.25Å-1=0.25=1/4=3/12; 

2) α = 12/11Å×0.25Å-1=3/11; 3) α = 12/10Å×0.25Å-1=3/10; 4) α = 12/9Å×0.25Å-1=3/9. Thus, three 

vectors k-1 with magnitude Å are equal to 12, 11, 10 and 9 periods of chains 1, 2, 3 and 4, 

respectively. Visually, it can be imagined as shown in Fig. 3, where the nodes of all chains are 

modulated by color from white to black. Each color gradation can be considered as a  characteristic 

of the node related to a shift or atom settlement. From Fig. 3, it is evident that, if we take the node 

with a definite number being the same for all chains, the state (color) of the node is strongly 

different from chain to chain. Alternatively, if one considers the nodes positioned at a definite and 

equal distance from the first node of each chain, the state (color) of the nodes is the same. This 

effect appeared due to the persistent modulation vector which is independent from the cell 
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dimension.  

Earlier, in Ref. 30, it was stated that incommensurately modulated structures in MRE2(MoO4)4 

compounds are generated by ordering the M cations and vacancies. Then, in accordance with the 

results of Ref. 30 and the present study, the distance between M-cations and vacancies is 

independent from ionic radii and, respectively, from the unit cell parameters of crystals 

MRE2(MoO4)4. However, the distribution of M-cations/vacancies over the lattice nodes will be 

different in different MRE2(MoO4)4 molybdates. The modulation vector invariance is a specific and 

valuable feature of this type of the structure. The distance-dependent Coulomb interaction seems to 

be the source of the vacancy/cation distribution in reference to distance instead of reference to 

angles. The energy minimum related to the structure stabilization is reached at the characteristic 

distances between the vacancy/cations. The distances may be not equal to cell parameters and, then, 

the incommensurate modulation appears. Thus, the dependence shown in Fig. 2 opens a possibility 

to predict the parameter (2 + 2)1/2 in other, presently unstudied, MRE2(MoO4)4 molybdates. 

As far as the calculation of Raman spectra from a modulated crystal structure is much more 

time-consuming, we have found and refined an averaged crystal structure without modulation of all 

compounds under investigation. Rietveld refinement was performed using TOPAS 4.2 [52]. As 

shown in Fig. 4, the crystal structure has one site occupied by Ca/Gd/Yb/Ho ions with partial 

occupations according to chemical formula, one site of Mo and one site of O ions. The refinements 

were stable and gave low R-factors (Table 2, Figures 1S-5S). The atom coordinates and main bond 

lengths are depicted in Table 2S and Table 3S, respectively. The linear dependence of the cell 

volume per averaged ionic radii of Gd/Yb/Ho atoms, as shown in Figure 5, proves the suggested 

general chemical formula of CaGd2-x(MoO4)4:Yby/Hoz solutions.  

The SEM image of the synthesized CaGd2(MoO4)4 particles is shown in Fig. 6. The particle 

morphology of other samples is similar (not shown) to that of CaGd2(MoO4)4. From Fig. 6, it is 

seen that the as-synthesized sample contain particles with a fine and homogeneous morphology and 
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the characteristic particle size is 2-5 μm. The particles are partly coalesced into agglomerates and 

this is induced by interdiffusions among the grains at 600-900°C. Previously, similar morphology 

was demonstrated for different oxide products, including molybdates, formed by solid state reaction 

an appropriate temperatures [20,27,31,34,47,53,54]. Thus, the coalescent particle morphology may 

be considered as an universal indicator of high chemical homogeneity and structural quality of 

powder products. The recorded EDS patterns and quantitative compositions of the synthesized (a) 

CaGd1.6(MoO4)4:Yb0.35/Ho00.5 and (b) CaGd1.5(MoO4)4:Yb0.45/Ho0.05 samples are shown in Fig. 6S. 

Only constituent elements are found in the samples and the quantitative compositions are in good 

relation to nominal ones. This result confirms the persistence of the designed chemical composition 

during the cyclic microwave-modified sol-gel synthesis. It must be emphasized that the microwave 

sol-gel process provides the energy uniformly to the bulk of the material so that the fine particles 

with controlled morphology can be fabricated for a short time. Besides, the method is a cost-

effective way to provide homogeneous double molybdate products with an easy scale-up potential, 

and it is a viable alternative for the rapid synthesis of UC particles. The post heat-treatment at 

900°C in the air plays an important role in the formation of a well-defined microparticle 

morphology and oxygen deficiency compensation. 

The Raman spectra recorded from CaGd2(MoO4)4:Ho3+/Yb3+
 are shown in Fig. 7. The 

vibrational representation for the tetragonal phase at Brillouin zone center for CaGd2(MoO4)4 

averaged structure is: 

vibr = 3Ag + 6Bg + 6Eg + 6Au + 3Bu +6Eu, 

The Raman and infrared active modes are raman = 3Ag + 6Bg + 6Eg and infrared = 5Au +5Eu, 

correspondingly. The vibrational representation for the tetragonal phase at the Brillouin zone center 

for all rare-earth doped average structures is: 

vibr = 3Ag + 8Bg + 8Eg + 8Au + 3Bu +8Eu 

The Raman and infrared active modes are raman = 3Ag + 8Bg + 8Eg and infrared = 7Au +7Eu, 
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correspondingly. 

Comparison of lattice dynamics simulation for CaGd2(MoO4)4 and CaGd2(MoO4)4:Ho3+/Yb3+ 

averaged crystal structures shows that the difference between CaGd2(MoO4)4 and 

CaGd2(MoO4)4:Ho3+/Yb3+ Raman spectra should be observed in the region below 100 cm-1, no 

noticeable changes in other parts of the spectra should appear regardless of the rare-earth ion 

concentration. As can be seen from Fig. 7, the number of lines and shape of the observed Raman 

spectra in the region of 270-450 cm–1 are almost identical for all samples of both CaGd2(MoO4)4 

and CaGd2(MoO4)4:Ho3+/Yb3+. The bands corresponding to the ν2 and ν4 bending modes of the 

MoO4 groups are dominant in this wavenumber range. Two spectral lines in the vicinity of 400 cm-1 

correspond to asymmetric bending modes ν4 of MoO4, and two strong peaks in the range of 300-370 

cm-1 are symmetric bending modes ν2. However, for a more precise deconvolution of Raman bands 

in this area, we should add two additional lines at 320 and 350 cm-1. According to the lattice 

dynamics simulation, a Raman spectrum above 700 cm-1 should contain only three active Raman 

lines: symmetric stretching mode (A1g symmetry) ν1, and antisymmetric stretching modes ν3 (Bg and 

Eg symmetry) for CaGd2(MoO4)4 and all CaGd2(MoO4)4:Ho3+/Yb3+. Taking into account that, with 

the exception of incommensurate modulation effects, almost all XRD peaks were indexed by a 

tetragonal unit cell (space group I41/a) with the parameters close to the CaMoO4 scheelite-type 

structure, the number of Raman-active lines and their intensities distribution for scheelite-type 

structure compounds [55], CaMoO4 [56,57] and CaGd2(MoO4)4 in the range above 700 cm-1 should 

be the same. In our measurements, however, the Raman spectrum of CaGd2(MoO4)4 contains 

additional lines in this range, as evident from Fig. 7. The comparison of Raman modes observed in 

CaGd2(MoO4)4, with the modes earlier found in scheelite-type structure compounds, is presented in 

Table 3. 

The presence of additional lines in the regions of stretching and bending vibrational modes of 

MoO4 can be described as tetrahedron disordering [58]. However, no indications of the tetrahedron 
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disorder were found by XRD analysis. Thus, we can conclude that the appearance of additional 

Raman bands is connected with incommensurate modulation within the CaGd2(MoO4)4 crystal 

structure [51]. Above 700 cm-1, the spectra of undoped CaGd2(MoO4)4, from one side, and those of 

the samples doped with Ho and Yb, from other side, are markedly different. A more detailed 

analysis of doped samples' emission will be presented below. However, the active line 

corresponding to the full symmetric stretching of MoO4 tetrahedron is still dominating in all 

recorded spectra. 

The UC photoluminescence emission spectra of the as-prepared (a) 

CaGd1.6(MoO4)4:Yb0.35/Ho0.05, (b) CaGd1.55(MoO4)4:Yb0.40/Ho0.05, (c) CaGd1.5(MoO4)4:Yb0.45/Ho0.05, 

and (d) CaGd1.45(MoO4)4:Yb0.50/Ho0.05 particles excited by 980 nm at 24C are shown in Fig. 8. The 

samples exhibited yellow emissions based on the combination of strong emission bands at 545 and 

655 nm in green and red spectral regions, respectively. The strong 545 nm emission band in the 

green region corresponds to the 5S2/
5F4 → 

5I8  transition in Ho3+ ions, while the strong emission 655 

nm band in the red region appears due to the 5F5 → 
5I8 transition in Ho3+ ions. The Ho3+ ion activator 

is the luminescence center for these UC particles, and the Yb3+ ions, as a sensitizer, enhances the 

UC luminescence efficiency. As it is evident from Fig. 8, the UC intensity is dependent on the 

Yb3+:Ho3+ ratio in samples (a) 7:1, (b) 8:1, (c) 9:1 and (d) 10:1. When the Yb3+:Ho3+ ratio is 9:1, the 

UC intensity of (c) CaLa1.5(MoO4)4:Yb0.45/Ho0.05 particles is the highest for different bands. 

 The logarithmic scale dependence of the UC emission intensities at 545 and 655 nm on the 

working pump power over the range from 20 to 110 mW in the CaGd1.55(MoO4)4:Yb0.45/Ho0.05 

sample is shown in Fig. 9. In an ideal UC process, UC emission intensity I is proportional to the n-

th power of irradiation pumping power P, where n is the number of pumping photons required to 

produce UC emission or, in another words, to excite the upper emitting energy level [59]:  

     I  ∝ Pn                                               
     LnI  ∝ nLnP                            .  

 
The experimental dependencies in Fig. 9 show the slopes of n = 1.72 and 1.86 for green emission at 
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545 nm and red emission at 655 nm, respectively. This result provides that the UC mechanism of 

the green and red emissions can be explained by a two-photon UC process in Ho3+/Yb3+ co-doped 

phosphors.  

Based on the results of pump power dependence, the known schematic energy level diagrams of 

Ho3+ (activator) and Yb3+ (sensitizer) ions in the as-prepared CaGd2-x(MoO4)4:Yby/Hoz samples and 

the UC mechanisms, accounting for the green and red emissions during 980 nm laser excitation, are 

depicted in Fig. 10. The UC emissions are generated by the two-photon process of energy transfer 

(ET) and excited state absorption (ESA). Initially, the Yb3+ ion sensitizer is excited from the 2F7/2 

level to the 2F5/2 level under excitation by 980 nm light; the Yb3+ ion sensitizer transfers its energy 

to the Ho3+ ions. Then, the Ho3+ ions are populated from the 5I8 ground state to the 5I6 excited state. 

This is a phonon-assisted energy transfer process because of the energy mismatch between the 2F5/2 

level of Yb3+ and the 5I6 level of Ho3+. Then, the Ho3+ in the 5I6 level is excited to the 5S2 or 5F4 

levels by the next energy transfer from Yb3+. In addition, the 5S2 /
5F4 level of Ho3+ can be populated 

through the excited state absorption. Finally, the green emission at around 545 nm, corresponding to 

the 5S2/
5F4 → 

5I8 transition, takes place. For the red emission, the population of the 5F5 level can be 

created by two different channels. One channel is the nonradiative relaxation of Ho3+ from the 

5S2/
5F4 level to the 5F5 level. The other channel is closely related to the 5I7 level populated by non-

radiative relaxation from the 5I6 excited state. The Ho3+ in the 5I7 level is excited to the 5F5 level by 

the energy transfer from Yb3+ and, then, relaxes to the 5F5 level. Therefore, the red emission around 

655 nm corresponds to the 5F5 → 
5I8 transition. 

The CIE chromaticity diagram showing the color coordinates of the CaGd2-x(MoO4)4:Yby/Hoz 

phosphors is shown in Fig. 11. Here, the points related to emission from the samples with 

compositions (a) CaGd1.6(MoO4)4:Yb0.35/Ho0.05, (b) CaGd1.55(MoO4)4:Yb0.40/Ho0.05, (c) 

CaGd1.5(MoO4)4:Yb0.45/Ho0.05, and (d) CaGd1.45(MoO4)4:Yb0.50/Ho0.05 are inserted. The yellow 

emission color coordinates of the samples are well matched with the standard equal energy point. 
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This result indicates the attractive yellow UC emissions acceptable for the potential active 

components in new optoelectronic devices and luminescent devices. 

The shape of UC bands in CaGd2(MoO4)4 is found to be dependent on the Yb ions content, as 

can be seen in more detail in Figs. 7S and 8S. For the luminescence from 5S2/
5F4,  the manifold 

variation of the band shape becomes well-pronounced only at the highest Yb content, while, for the 

luminescence from 5F5 manifold, severe variation is observable even at the Yb content equal to 0.45. 

In case of previously studied CaLa2(MoO4)4:Ho,Yb, the band shape variation on the Yb content was 

not detected. The presence of this effect in CaGd2(MoO4)4:Ho,Yb might be ascribed to the 

incommensurate modulation within the CaGd2(MoO4)4 crystal structure; however, this suggestion 

must be ruled out since similar modulation in CaLa2(MoO4)4 is expected to give a similar influence. 

Therefore, this effect, evidently, is due to the influence of the crystal field on the Ho ion. The Gd 

ion radius and, especially, the Yb ion radius are smaller than that of the La ion, and that leads to a 

closer position of the ligands surrounding the Ho dopant ion in the substituting Gd (or Yb) ion in 

the CaGd2(MoO4)4 lattice than in a CaLa2(MoO4)4 one. This difference is very modest, but, due to a 

strong dependence of the crystal field on the distance, it leads to band shape variation in the case of 

CaGd2(MoO4)4.  

The emission spectra of the Ho,Yb-codoped samples of CaGd1.6(MoO4)4:Yb0.35/Ho0.05, 

CaGd1.55(MoO4)4:Yb0.40/Ho0.05, CaGd1.5(MoO4)4:Yb0.45/Ho0.05, and CaGd1.45(MoO4)4:Yb0.50/Ho0.05  

are shown in Fig. 12. The excitation wavelength and power on the sample were 514.5-nm (Ar ion 

laser) and 0.5 mW, respectively. The emission spectrum of the pure CaGd2(MoO4)4 sample contains 

predominantly the intense Raman lines analyzed above within this article. However, the shape of 

the emission spectra recorded from the samples doped with Ho and Yb noticeably differ from that 

of the undoped sample. This difference is negligible in the spectral region where a lower-energy 

part of Raman spectrum of undoped CaGd2(MoO4)4 is found, while the spectral region of a higher-

energy part of the Raman spectra is strongly modified. At the same time, the shapes of the spectra of 
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all Ho,Yb-containing samples are very similar to each other and weakly vary with the dopants' 

content. The wavelength region of a higher-energy part of the Raman spectra fairly coincides with 

the UC luminescence observed for codoped samples using the excitation at 980 nm, as well as with 

the well-known holmium luminescence in many other hosts (see, e.g. [60]). Thus, it can be 

concluded that the spectra shown in the right part of Fig. 12 are not Raman and relate to emission 

due to electron transitions at Ho3+ levels. This conclusion is supported by Fig. 9S presenting the 

difference spectra between codoped and undoped CaGd2(MoO4)4 samples in comparison with the 

HoAl3(BO3)4 luminescence spectrum from [60]. Compliance of the spectral regions occupied by 

difference spectra with the spectral region of Ho luminescence is evident, while a different shape of 

subbands is understandable with respect to a different local environment of Ho in CaGd2(MoO4)4 

(distorted square antiprism) and HoAl3(BO3)4 (distorted trigonal prism). Another spectral feature 

can be deduced from a comparison of luminescence spectrum of the holmium ion taken at LabRam 

Aramis with the resolution 2 cm-1 (Fig. 12, wavelength region above 534 nm, and Fig. 9S) and the 

reference spectrum of HoAl3(BO3)4 crystal. Evidently, while the reference spectrum clearly presents 

the result of splitting the excited and ground states by the crystal field as a number of intraband 

peaks, the luminescence band of Ho in the CaGd2-x(MoO4)4:Yby/Hoz lattice exhibits a strong 

broadening that almost completely washes out the interband substructure. This broadening is the 

result of a statistical disorder of Ho local environment inside the CaGd2-xYby(MoO4)4 lattice.  

 

4. Conclusions 

In the present study, the CaGd2(MoO4)4:Ho3+/Yb3+ phosphors with the doping concentrations of 

Ho3+ and Yb3+ (x = Ho3+ + Yb3+, Ho3+ = 0 and 0.05, and Yb3+ = 0, 0.35, 0.40, 0.45 and 0.50) have 

been successfully synthesized by the microwave sol-gel method, and the structural and 

upconversion photoluminescence properties have been investigated. The synthesized particles, 

being formed after heat-treatment at 900°C for 16 h, showed a well crystallized morphology. All 
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compounds are (3 + 2)D incommensurately modulated with superspace group I41/a(α,β,0)00(-

β,α,0)00 which is consistent with all the previously studied tetragonal molybdates MRE2(MoO4)4. It 

was found that the (α2 + β2)1/2 parameter linearly increases with an increasing cell parameter a for 

all studied compounds and, therefore, modulation vector k is the same for all CaRE2(MoO4)4 

compounds. The modulation vector invariance is a specific and valuable feature of this structural 

type and the distance-dependent Coulomb interaction seems to be the source of the ordered 

vacancy/cation distribution. It could be reasonably supposed that similar behavior of the (α2 + β2)1/2 

parameter may be found in other MRE2(MoO4)4 and MRE2(WO4)4 crystals. 

Under the excitation at 980 nm, the particles doped with upconverting ions exhibited excellent 

yellow emissions based on a strong 545-nm emission band in the green region and a very strong 

655-nm emission band in the red region. The pump power dependence and Commission 

Internationale de L'Eclairage chromaticity of the UC emission were evaluated. The shape of UC 

bands in CGM is found to be dependent on the Yb ion content due to the influence of the crystal 

field affecting the holmium ion. Thirteen Raman-active modes of the CaGd2(MoO4)4 lattice were 

identified via a comparison of the experimental Raman spectra and the results of lattice dynamics 

simulations. Four additional Raman lines were found in the region of stretching vibrations, while at 

least two additional modes are present in the bending mode region. These additional modes are 

ascribed to the incommensurate modulation of crystal lattice, while no effect of incommensurate 

modulation on luminescence was detected. The luminescence bands of Ho ions are severely 

broadened due to a statistical disorder of Yb and Gd ions in the CaGd2-xYby (MoO4)4 lattice. 
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Table 1. Main parameters and processing of Le Bail fitting of the CaGd2(MoO4)4:xYb,yHo   

samples by using (3+1)D modulation 

Compound CaGd2(MoO4)4

CaGd1.6(MoO4)4 

:0.35Yb,0.05Ho 

CaGd1.55(MoO4)4 

:0.4Yb,0.05Ho 

CaGd1.5(MoO4)4 

:0.45Yb,0.05Ho 

CaGd1.45(MoO4)4 

:0.5Yb,0.05Ho 

Sp.Gr. I41/a(α,β,0)00 

(-β,α,0)00 

I41/a(α,β,0)00 

(-β,α,0)00 

I41/a(α,β,0)00 

(-β,α,0)00 

I41/a(α,β,0)00 

(-β,α,0)00 

I41/a(α,β,0)00 

(-β,α,0)00 

q-vector [0.53756(9), 

0.81639(7), 0] 

[0.5361(1),  

0.81642(8), 0] 

[0.5363(1),  

0.81664(9), 0] 

[0.5361(1),  

0.81666(8), 0] 

[0.5409(1),  

0.8192(1), 0] 

a, Å 5.22267(5) 5.20976(6) 5.20882(6) 5.20901(6) 5.32059(6) 

c, Å 11.5056(2) 11.4660(2) 11.4619(2) 11.4640(2) 11.4687(2) 

V, Å3 313.830(6) 311.207(7) 310.982(7) 311.062(8) 311.367(8) 

2θ-range, º 5-110 5-110 5-110 5-110 5-110 

Rwp, % 12.90 13.93 13.62 13.50 13.10 

Rp, % 9.26 10.21 9.87 9.65 9.14 

Rexp, % 9.99 11.30 11.16 10.24 9.80 

χ2 1.29 1.23 1.22 1.32 1.34 
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Table 2. Main parameters of processing and Rietveld refinement the CaGd2(MoO4)4:xYb,yHo   

samples by using average crystal structure 

Compound CaGd2(MoO4)4

CaGd1.6(MoO4)4 

:0.35Yb,0.05Ho 

CaGd1.55(MoO4)4 

:0.4Yb,0.05Ho 

CaGd1.5(MoO4)4 

:0.45Yb,0.05Ho 

CaGd1.45(MoO4)4 

:0.5Yb,0.05Ho 

Sp.Gr. I41/a I41/a I41/a I41/a I41/a 

a, Å 5.22070(7) 5.20931(6) 5.20879(7) 5.20846(8) 5.20865(9) 

c, Å 11.5027(2) 11.4683(2) 11.4652(2) 11.4661(1) 11.4653(3) 

V, Å3 313.51(1) 311.215(9) 311.07(1) 311.05(1) 311.05(1) 

2θ-range, º 5-110 5-110 5-110 5-110 5-110 

No. of 
reflections 

104 104 104 104 104 

No. of 
refined 

parameters 

7 7 7 7 7 

Rwp, % 14.71 16.54 17.08 17.41 18.56 

Rp, % 9.84 11.55 12.01 11.76 12.12 

Rexp, % 9.97 11.28 11.14 10.22 9.79 

χ2 1.48 1.47 1.53 1.70 1.90 

RB, % 1.18 2.90 2.83 2.49 1.78 
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Table 3. Analysis of Raman spectra of CaGd2(MoO4)4 and related compounds 

Symmetry 

type 

 Observed Raman modes, cm-1 

[55] [56] [57] CGM (exp) 

    
939.6* 

921.4* 

Ag 871 877 877 903.4 

    880.8* 

Bg 771 845.5 845 830.8 

    801.2* 

Eg 748 792 792 770.3 

Eg 354 402.5 402 415 

Bg 350 391 391 395 

Bg 

Ag 

323 

323 

327.5 

321.5 

328 

322 

352* 

340 

323 

320* 

Eg 193 267  275 

Bg 171 214  211 

Ag 107 204.5 205  

Eg 78 189.5 143  

Eg 71 143 112  

Bg 65 111.5 86  

*Additional lines arising from spectra deconvolution but absent in lattice dynamics simulation. 
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Captions 

 

Fig. 1. The difference profile plot of CaGd2(MoO4)4. Red dots - experimental pattern (Yobs), black 

line - calculated pattern (Ycalc), grey line - difference (Yobs–Ycalc), green sticks - main Bragg 

peaks, purple - modulated peaks. A zoomed part of the difference plot at low angles is 

shown in the insert, and the reflection indices in notation (3+2)D are shown with numbers in 

brackets. 

 

Fig. 2. The modulation parameters dependence on the a cell parameter in the MRE2(MoO4)4 

molybdates. 

 

Fig. 3. Four chains with a period increasing from 1 to 1.333 Å, where nodes and/or atoms are 

depicted with circles. The modulation with the period of k-1 = 4 Å is superimposed as a 

gray field with the intensity variation. The circle brightness indicates the node state. The 

ninth circle of each chain is depicted by yellow color for the clarity of comparison.  

 

Fig. 4. The averaged crystal structure of CaGd2-x(MoO4)4:yYb,zHo crystals in space group I41/a. 

The unit cell is outlined.  

 

Fig. 5. The unit cell volume dependence on the averaged ionic radii of rare earth cations in CaGd2-

x(MoO4)4:yYb,zHo crystals.   

 

Fig. 6. A scanning electron microscopy image of the synthesized CaGd2(MoO4)4 particles.  

 

Fig. 7. The Raman spectra of CaGd2(MoO4)4:xYb,yHo: (a) – undoped, (b) – 0.35Yb,0.05Ho, (c) – 
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0.4Yb,0.05Ho, (d) – 0.45Yb,0.05Ho, (e) – 0.5Yb,0.05Ho. 

 

Fig. 8. The upconversion photoluminescence emission spectra of (a) CaGd1.6(MoO4)4:Yb0.35/Ho0.05, 

(b) CaGd1.55(MoO4)4:Yb0.40/Ho0.05, (c) CaGd1.5(MoO4)4:Yb0.45/Ho0.05 and (d) 

CaGd1.45(MoO4)4:Yb0.50/Ho0.05 particles excited by 980 nm and recorded at room 

temperature. 

 

Fig. 9. The logarithmic scale dependence of the upconversion emission intensity on the pump power 

in the range from 20 to 110 mW at 545 and 655 nm in the CaGd2-x(MoO4)4:yYb,zHo system. 

 

Fig. 10. The schematic energy level diagrams of Yb3+ (sensitizer) and Ho3+ ions (activator) ions in 

the CaGd2-x(MoO4)4:yYb,zHo system and the upconversion mechanisms of the green and 

red emissions under 980 nm laser excitation. 

 

Fig. 11. The CIE chromaticity diagram showing the color coordinates of the CaGd2-

x(MoO4)4:yYb,zHo phosphors. The yellow emission for samples (a) 

CaGd1.6(MoO4)4:Yb0.35/Ho0.05, (b) CaGd1.55(MoO4)4:Yb0.40/Ho0.05, (c) 

CaGd1.5(MoO4)4:Yb0.45/Ho0.05, and (d) CaGd1.55(MoO4)4:Yb0.50Ho0.05 is shown in the insert. 

 

Fig. 12. The emission spectra of undoped CaGd2(MoO4)4  (dotted) and Ho,Yb-codoped 

CaGd2(MoO4)4. The undoped CaGd2(MoO4)4 emission is predominantly due to Raman 

contribution (see also Fig. 7). The doped CaGd2(MoO4)4 emission has the Ho luminescence 

contribution above 534 nm. 

 



30 

 

 

 

 

 

 

 

 

Fig.1. 
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Fig. 2 
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Fig. 3.  
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig.7. 
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Fig.9. 
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Fig.10. 
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