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intensity of phonon oscillations grows with the particle
temperature that increases the frequency of scattering of
electrons at phonons. This results in an increased elec-
tron relaxation constant (above the Debye temperature,
the electron relaxation grows in proportion to the first
power of the temperature) [14]. Gradual destruction of
the periodic structure in a melting crystal leads to scat-
tering of the conduction electrons at the lattice defects
up to complete amorphization. Melting is accompanied
by an abrupt increase in the relaxation constants. Apart
from phonons, contribution to the electron relaxation of
metal is determined by electron scattering at point de-
fects, dislocations, grain boundaries [14].

2.1 The heating of nanoparticles and the kinetics of
their thermodynamic characteristics

As mentioned above, heating of nanoparticles when ex-
posed to laser radiation is an important factor causing
changes in optical characteristics of the particles. The
absorbed power of laser radiation (Wi) in the dipole ap-
proximation is described by the equation [15]:

Wi =
ω|di|2

2ε0
Im

(
1

αi∗

)
, (1)

where ω is the frequency of laser radiation, di is the
vector of the dipole moment of a particle and will be
determined below in eq. (19), αi is the dipole polariz-
ability of the i-th particle (see eq. 15), symbol * denotes
complex conjugation, ε0 is the electric constant.

The absorption of laser radiation leads primarily to
heating of conduction electrons in nanoparticles and their
ion subsystem (crystal lattice). The temperature change
in the electron subsystem due to absorption of the elec-
tromagnetic wave energy and heat exchange with the ion
subsystem is described by the equation [16,17]

(Ce)i
d(Te)i
dt

= −g [(Te)i − (Ti)i] +
Wi

Vi
. (2)

Here (Ce)i is the volumetric heat capacity of electron
subsystems [11]: (Ce)i = 68 (Ti)i J·m−3K−1, (Ti)e and
(Ti)i are the temperatures of the electron and ion subsys-
tem, Vi is the particle volume, g = 4·1016 J·m−3K−1s−1 is
the temperature independent rate of energy exchange
between the electron and ion subsystems above the De-
bye temperature [18–20].

The temperature of the ion subsystem of a particle
(Ti)i changes under heat exchange between the electron
subsystem and the environment. To take into account
the “solid-liquid” phase transition in particles we use,
for convenience, the equation for the thermal energy of
the lattice (Qi)i rather than the equation for Ti:

d(Qi)i
dt

= gVi [(Te)i − (Ti)i] + (ql)iVi, (3)

where (ql)i is the heat flux per unit volume describing
thermal losses [16]:

(ql)i = − 3

2Ri
(χmcm0ρm)

1/2 · [(Ti)i − T0] · t−1/2, (4)

χm is the thermal conductivity of the interparticle medium,
cm0 is its heat capacity, and ρm is the density, t is the
time since the beginning of a pulse, T0 is the temperature
of the interparticle medium.

The temperature of the ion subsystem taking into
account the melting process, is expressed via (Qi)i:

(Ti)i =
(Qi)i
CiVi

H ((Q1)i − (Qi)i) +

(Qi)i − (Q2)i
CiVi

H ((Qi)i − (Q2)i) +

Tm(Ri)H ((Qi)i − (Q1)i) ,

(5)

where (Q1)i and (Q2)i are the particle thermal energies,
at the beginning and the end of melting, respectively,
Ci is the volumetric heat capacity of the ion subsystem
of particles, Tm (Ri) is the melting point, which depends
on the particle size [21], Ri is the particle radius, H(x) is
the Heaviside function.

2.2 Manifestation of relaxation processes in plasmonic
nanoparticles during their heating and melting

Relaxation processes in nanoparticles determine the spec-
tral width of SPR. In this section we employ different
approaches to estimate the equilibrium magnitude of
the relaxation constant of conduction electrons for the
nanoparticle material (Γ ) and to analyze the reasons for
its variations in different publications. In addition, we
determine the values of the Drude approximation pa-
rameters to describe adequately the experimental spec-
tral dependence of dielectric constants.

In the case of a single particle, as follows from eq. (1),
the absorbed radiation power (W ) depends on the dielec-
tric constant ε = ε′ + iε′′ of the nanoparticle material
and the surrounding medium. Extracting and omitting
from eq. (1) all terms except the frequency-dependent
ones taking into account eq. (15) and (16) for homoge-
neous particles (solid or liquid) we define this part of the
function F (ω) as

W ∝ F (ω) = ε3/2
m

ωε′′

(ε′ + 2εm)
2

+ ε′′2
, (6)

where εm is permittivity of the medium. A particle ab-
sorbing radiation is heated up to a complete melting.
If the temperature and the state of aggregation change,
the dielectric constant of the material changes as well
[22–24]. This affects the radiation absorption [25, 26],
which should be taken into account when studying the
interaction with laser radiation. One of the main reasons
for the change of a dielectric constant is an increase in
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the relaxation constant of the electron subsystem (tak-
ing into account the size a a particle and the finite size
effect):

Γe−ph,d(T,R) = Γe−ph,d(T ) +A
vf
R
, (7)

where Γe−ph,d(T ) is the relaxation constant correspond-
ing to the frequency of scattering of conduction electrons
at phonons and lattice defects, vf is the Fermi velocity,
R is the particle radius, and A is the constant assumed
to be equal to 1 in most of the optical calculations. Note
that the term temperature hereinafter refers to the crys-
tal lattice temperature.

If we have the dependence Γe−ph,d(T ) we can express
the dielectric constant in the Drude approximation of the
particle material taking into consideration the particle
radius:

ε(ω, T,R) = ε′(ω, T,R) + iε′′(ω, T,R)

= ε0(ω)−
ω2

p

ω2+iωΓe−ph,d(T,R)
.

(8)

Here ε0(ω) is the factor that takes into account the con-
tribution of interband transitions to the dielectric con-
stant, ωp is the plasma frequency of the metal. Using the
available experimental and theoretical data for a bulk
(Γe−ph,d(T,R) → Γe−ph,d(T ) according to eq. (7)) we
find Γe−ph,d(T ) for Ag and Au.

Consider the case of silver. The dielectric constants
ε′ and ε′′ at room temperature Tr = 273÷300 K were ob-
tained for Ag films in a number of papers (e. g. [22,28,29],
and those for liquid metal at the melting point can be
found in [23]. Unfortunately, the temperature depen-
dences of the dielectric constants obtained in [23] are
outside the spectral range of SPR for silver and there-
fore cannot be used for Ag nanoparticles.

In the Drude approximation, based on the results
from [22,28,29] we have Γe−ph,d (Tr) ' (1÷ 3) · 1014 s−1

(ignoring relaxation at the lattice defects at Tr). At the
same time, the specific resistance for silver gives the
value Γe−ph,d (Tr) ' 2.6·1013 s−1 (see [30,31]) Nearly the
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Fig. 2 Dependence of the relative absorption of Ag particle
Φ(λ) vs wavelength for 1 — T = 1233 K (liquid), 2 — ac-
cording to the experimental results [23], 3 — T = 1233 K
(solid), 4 — T = 273 K (this curve is shown as Φ(λ)/5).

same values were obtained in [28,31,32] in the Drude ap-
proximation for the infrared frequency range Γe−ph,d (Tr)
' (2.8÷ 4) · 1013 s−1. Such a significant difference, in
our opinion, may be attributed to the additional con-
tribution to the relaxation constant of solid metal bulk
such factors as the surface roughness and polycrystalline
structure [33,34]. To take into consideration these factors
(including the electron-phonon scattering), the papers
above introduce the notion of an effective relaxation con-
stant Γeff , which can significantly exceed Γe−ph,d (Tr).
For example, it is shown in Ref. [33] that the surface
roughness increases the relaxation constant up to Γeff '
1.6 · 1014 s−1, which well agrees with the data experi-
mentally obtained in [28]. However in the case of smaller
particles (R ≤ 30 nm) and liquid films most of the fac-
tors listed above can be ignored and the scattering of
electrons at phonons and lattice defects is dominant fac-
tor in the relaxation constant (in addition to the finite
size effect). Therefore, we will use the results from [23],
with the corresponding selected parameters of the Drude
approximation for liquid silver (denoted l) at melting

temperature Tm: ωp = 1.33 · 1016 s−1, Γ
(l)
e−ph,d (Tr) =

4.4 · 1014 s−1, ε0 = 3.65. Here, due to the interband
absorption wing being separated from the SPR band in
the absorption spectra the term ε0(ω) can be taken con-
stant. Considering that Γe−ph,d(R, T ) is proportional to
the specific electrical resistivity ρ and abruptly increases
by 2.1 times for silver during melting [27] (Fig. 1) we
can assume that the relaxation constant for a solid sam-
ple (denoted as “s”) will be equal to Γ

(s)
e−ph,d(Tm) =

4.4 · 1014/2.1 ≈ 2.1 · 1014 s−1.
At temperatures below Tm Γe−ph,d(T ) ∼ T (see [35]).

To find this temperature dependence we use the follow-
ing equation [24,35]:

Γe−ph,d(T ) = K0T
5

θ/T∫
0

z4dz

ez − 1
, (9)
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Fig. 3 The spectral dependence of the interband absorption
factor in dielectric constant averaged over temperatures: 1 —
ε̄′0, 2 — ε̄′′0 .

where θ = 225 K is the Debye temperature for silver.
The coefficient K0 can be found using eq. (4) for al-

ready determined Γ
(s)
e−ph,d(Tm). Eq. (1) nearly perfectly

describes the linear dependence in the temperature range
(273÷ 1233 K):

Γe−ph,d(T ) = AAg · T +BAg,

AAg = 1.81 · 1011 K−1 · s−1,

BAg = 1.45 · 1013 s−1.

(10)

In particular, it implies that at room temperature
(273 ÷ 300 K), the relaxation constants are equal to
Γe−ph,d(T = 273 K) = 3.5 · 1013 s−1 and Γe−ph,d(T =
300 K) = 4.0·1013 s−1, which is in agreement with the es-
timates from other publications [28,31,32]. Fig. 2 shows
the relative absorption (eq. (1)) vs wavelength, for dif-
ferent temperatures and different states of aggregation
of Ag nanoparticles (Φ(λ) corresponds to F (ω) taking
into account substitution of ω by λ: F (ω) = F (2πc/λ)).
Note, that a further temperature growth (T > 1233 K)
is accompanied by spectral changes. As we can see from
this figure, the absorption of radiation by a nanoparticle
during its heating and subsequent melting significantly
drops in comparison with room temperature.

Consider the case of gold. Here we deal with a some-
what different situation. Firstly, the SPR band is not
separated from the interband absorption band, these two
bands partially overlap with each other. Secondly, there
are experimental results available in [22] with the tem-
perature dependence of optical constants for the wave-
length range (460–650 nm) covering the SPR band.

Therefore, using eq. (8) for ε0(ω), we assume that the
interband absorption depends on the radiation frequency
and is described by the expression (for a bulk)

ε0(ω) = ε(ω, T ) +
ω2

p

ω2+iωΓe−ph,d(T )
. (11)

Eq. (11) includes the Drude addition containing the
function Γe−ph,d(T ) that we need to find. To that end
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Fig. 4 Spectral dependences of dielectric constants —
real (a) and imaginary parts (b): experimental (top in (a)
and lines in (b)) [22] and calculated ones (bottom for (a) and
scatter plot in (b)) at different temperatures (see the legend).

we will use eq. (9), which requires data on the value of
Γe−ph,d(T ) at any temperature and we will start from
T = 283 K [22]. According to estimates from [28,34] the
relaxation constant at room temperature equals Γe−ph,d

≈ 9 · 1013 s−1. At the same time the specific resistance
for gold [31] provides us with the value Γe−ph,d = 3.65 ·
1013 s−1. Therefore, based on the same arguments as
in the case of silver regarding the influence of various
factors on the relaxation constant measured in films (in-
cluding interband absorption), we choose Γe−ph,d(T =
283 K) = 6 · 1013 s−1. Note, that in this case, we again
assume that the scattering of electrons at phonons and
lattice defects is the dominant relaxation mechanism in
nanoparticles. Substituting the selected value in the for-
mula (9), we obtain the dependence which is well de-
scribed by a linear function below the melting point:

Γe−ph,d(T ) = AAu · T +BAu,

AAu = 2.68 · 1011 K−1 · s−1,

BAu = 1.6 · 1013 s−1.

(12)
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Fig. 5 The relative absorption spectra of Au nanoparticles
at different temperatures (see legend): top — calculated using
the experimental data on dielectric constants [22]; bottom —
obtained by approximating eq. (8) for a bulk: (a) — εm = 1,
(b) — εm = 2.2.

Upon melting, the specific resistance of gold exhibits
a 2.4 times jump (Fig. 1) resulting in the change of the
relaxation constant

Γ
(l)
e−ph,d(Tm) = 2.4 · Γ (s)

e−ph,d(Tm). (13)

Assuming that ε0(ω) is independent of temperature,
we choose the value ε̄0(ω) = 〈ε0(ω)〉T averaged over tem-
peratures. As follows from eq. (11), the value of ε0 de-
pends on ωp which is unknown. To find it we varied the
value ωp so that ε̄0 was as close as possible to ε0(ω). In
this way we can determine ωp and ε0(ω). The obtained
plasma frequency is equal to ωp = 1.44 · 1016s−1. Fig. 3
shows the spectral dependences of the real (ε̄′0) and the
imaginary (ε̄′′0) parts of the dielectric constant taking
into account the contribution from the interband absorp-
tion. Note that ε̄′0 is nearly frequency independent and
slightly varies with respect to its mean value 10.2. The
authors of [36, 37] proposed the value 9.5. The depen-
dence of the imaginary part ε̄′′0 in Fig. 3 is monotonically
decreasing. Fig. 4 shows experimental and calculated de-
pendences ε′(ω), ε′′(ω) at different temperatures.

Having found ε(ω, T ), we can now find Φ(λ) for gold.
Fig. 5 shows Φ(λ) obtained with calculated (top) and
experimental (bottom) [22] values of ε(ω, T ) under the
same conditions as in Fig. 4.

We can see that Fig. 5 demonstrates satisfactory qual-
itative agreement between the theoretical and experi-
mental absorption. Despite a rather low value of Γe−ph,d(T )
= 6·1013 s−1 at room temperature T = 283 K, the width
of the SPR peak is fairly large, which is an indication of
a significant influence of the interband absorption.

2.3 Variation of resonant properties of plasmonic
nanoparticles and their aggregates during phase
transition

Now we have information on the material characteristics
and their behavior in different conditions and we can
consider interaction of a plane electromagnetic wave

E(r) = E0 exp (ik · r) (14)

with a single spherical nanoparticle or an aggregate of
spherical nanoparticles interacting with each other and
with the optical radiation via fields produced by light-
induced dipole moments of other particles. The particle
sizes are assumed to be much smaller than the radiation
wavelength.

In this model, we consider the case when the core
of a metal nanoparticle of radius Ri − hi is solid and
covered by a liquid metal nanoshell having the thickness
hi [38]. This model includes the special cases of a fully
solid (hi = 0) and fully liquid particle (hi = Ri). Tak-
ing into account the radiation reaction correction the
polarizability of a particle (αi) is described by the equa-
tion [39]

αi =

(
[α

(0)
i ]−1 − 2

3
i|k|3

)−1

, (15)

α
(0)
i = 4πR3

i×(
ε

(l)
i − εm

)(
ε

(s)
i + 2ε

(l)
i

)
+ fi

(
ε

(s)
i − ε

(l)
i

)(
εm + 2ε

(l)
i

)
(
ε

(l)
i + 2εm

)(
ε

(s)
i + 2ε

(l)
i

)
+ 2fi

(
ε

(s)
i − ε

(l)
i

)(
ε

(l)
i − εm

) ,
(16)

where k is the wave vector of laser radiation, ε
(s)
i and

ε
(l)
i are the dielectric constants of the solid and liquid

fractions of a particle, εm is a permittivity of surrounding
medium, fi is the mass fraction of solid material in the
particle (see eq. (21) in [40]). The dielectric constant
of metal particles depends on the size of a particle and
varies as in eq. (8).

For the extinction (absorption) efficiency of a particle
ensemble surrounded by other particles we have the for-
mula [41] (for a single particle, averaging over ensemble
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is omitted):

Qe =
σe

N∑
i=1

πR2
i

. (17)

Here the extinction cross section is given by the equation

σe = 4π |k| Im
N∑
i=1

(di ·E∗(ri))
|E0|2

. (18)

For the i-th particle in an aggregate, the light in-
duced dipole moment di is modified due to the contri-
bution from other particles to the local field:

diα = ε0αi

(E0)α exp(ikri) +

N∑
j 6=i

3∑
β=1

Gαβ(r′ij)djβ

 ,
α, β = x, y, z,

(19)

di is the dipole moment of the i-th particle in an aggre-
gate interacting with an external optical field and the
fields produced by other (j-th) particles and obeys the
coupled-dipole equations, r′ij is the vector connecting the
centers of the particles, adjusted for the renormalization
coefficient [13, 41]; Gαβ is the interparticle interaction
tensor [41].

3 Results and discussion

In this Section we consider how plasmonic absorption
spectra of nanoparticles change with variation of the di-
electric constant of the particle material and when the
melting temperature is reached. The spectral range is
limited by the experimental data on the optical con-
stants of liquid metals.

Note that for silver, the Q-factor of a surface plas-
mon resonance for spherical nanoparticles can be esti-
mated from the ratio Qi(ω) ∼ |ε′|/ε′′ [3], which deter-
mines the efficiency of interaction of single and bound
particles with optical radiation and with each other in
an optical field near the resonant frequency.

Such variations of the relaxation constant lead to a
change of the optical properties of particles.

Fig. 6 shows the response of the plasmonic absorp-
tion of Ag nanoparticle to the change of a thickness of
the liquid shell. The dielectric constant for silver is cal-
culated by means of eq. (8) taking into account changes
of the relaxation constant.

Fig. 7 shows the temperature kinetics of a Ag nanopar-
ticle exposed to picosecond laser radiation. One can see
that the thermal energy transferred from laser radiation
to the particle is quickly stored in the electron subsys-
tem of the metal and gradually transmitted to the ion
subsystem even after the pulse is over. Fig. 7 clearly
demonstrates the process of melting and crystallization
of the particle (two horizontal fragments of the curve).
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Fig. 6 Surface plasmon absorption spectra of Ag nanoparti-
cle with R = 20 nm at room temperature and different thick-
nesses of the liquid metal shell (here and below in Figs 7–11
dielectric constant of the environment εm = 1.78).)
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Fig. 7 The kinetics of ion and electron subsystem of Ag
particle with radius 20 nm when exposed to pulsed laser
radiation with duration τ = 20 ps, and the intensity I =
1.663 · 108 W · cm−2.

It shows that the particle turns into a solid state within
300 ps.

Fig. 8 illustrates the effect of melting of a Au nanopar-
ticle on its SPR (changes of the relaxation constants for
Au have been taken into account).

A comparison of variations of the plasmonic absorp-
tion spectra of Au and Ag nanoparticles in solid and liq-
uid states in Fig. 6 and Fig. 8 reveals the same tendency,
but compared to silver SPR of liquid gold is suppressed
stronger.

Figs. 9–11 illustrate variations in the plasmonic ab-
sorption spectra of simple Ag nanoparticle aggregates
(dimers, trimers and multiparticle aggregates) when the
particles melt under applied pulsed laser radiation. Fig. 9
shows the absorption spectra of a polydisperse Ag dimer
calculated by the coupled dipole method. The smaller
nanoparticle in a polydisperse dimer melts first, so the
high frequency maximum is sufficiently suppressed. Note
that despite the larger particle staying solid, its tempera-
ture significantly increases, which affects its optical prop-
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Fig. 8 Plasmonic absorption spectra of Au particle (R =
20 nm) with the spectral maximum at 507 nm at room tem-
perature and during melting up to (T = 1233 K) for different
thicknesses of the liquid metal shell.
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Fig. 9 Absorption spectra of a dimer consisting of Ag nano-
particles with the radiuses 10 and 30 nm (in Fig. 9 and Fig. 10
the interparticle gap is 4 nm). The vector connecting the par-
ticle centers is collinear to the radiation polarization. 1 — two
particles in a solid state, 2 — the smaller particle in a liquid
state, 3 — both particles in a liquid state.

erties. If heated further a larger particle will also melt,
causing changes in the absorption spectrum (Fig. 9 (3)).

Fig. 10 shows similar spectra of a monodisperse Ag
trimer. In this trimer, the central particle melts first.
As we can see in Fig. 10a (2), this leads to a signifi-
cant suppression of the resonant property of the trimer.
A further heating of the trimer and melting of the side
particles (Fig. 10a (3)) leads only to an insignificant sup-
pression of the resonant properties. This is due to the
interaction of side particles with the central particle be-
ing much stronger than the interaction between the side
particles. Therefore, changes in the dielectric properties
of the side particles material do not greatly affect the
resonant characteristics of the trimer.

The spectral changes of the polydisperse trimer differ
from those of the dimer (Fig. 10). In a highly polydis-
perse trimer the side (smaller) particles melt first. How-

400 500
0

5

10

15

, nm

 1
 2
 3

Qe

(a)

400 500
0

5

10

15

, nm

 1
 2
 3

Qe

(b)

Fig. 10 (a) — extinction spectra of a trimer consisting of
identical Ag nanoparticles with the radius 20 nm. 1 — all
particles in a solid state, 2 — the central particle in a liquid
state, 3 — all particles in a liquid state; (b) — extinction
spectra of a trimer, consisting of two particles with the radius
10 nm (lateral particles) and the central particle with the
radius 30 nm; 1 — all particles in a solid state, 2 — side
particles is in the liquid state; 3 — all particles in a liquid
state. The radiation polarization vector is collinear to the
trimer axis.

ever, their melting has little effect on the spectrum of
the trimer (Fig. 10b (2)). There is only a small shift of
the spectral maximum to shorter wavelengths. Maximal
changes in the spectrum occur when the central (larger)
particle melts (Figure 10 (3)), since it is the central par-
ticle makes the largest contribution to the absorption
of radiation by the trimer and determines its resonant
properties.

In this section we have employed the optodynamic
model described in [13] to study the effect of pulsed laser
radiation on multiparticle Ag aggregates with random
disordered structure similar to natural ones. This effect
is of the following nature: depending on the laser ra-
diation wavelength only a small fraction of particles in
an aggregate will undergo melting. These particles be-
long to resonant domains and their resonant frequency is
close to the laser radiation frequency. Under these con-
ditions, understanding the processes responsible for the
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Fig. 11 Changes in the extinction spectrum of disordered
nanoparticle aggregates composed of 50 Ag nanoparticles
with radiuses 10 nm (averaged over 300 aggregates): (1) —
the initial spectrum and the spectra after picosecond laser
pulse (τ = 20 ps), λ = 600 nm with the intensity: (2) —
I = 1.064 · 108 W · cm−2; (3) — I = 1.663 · 108 W · cm−2;
(4) — I = 2.395·108 W · cm−2; the corresponding differential
spectra are shown at the bottom.

Fig. 12 1 — light source (250 W halogen lamp), 2 — quartz
tube furnace, 3 — highspeed-spectrometer, 4 — K-type ther-
mocouple, 5 — sample (quarz substrate with Au nanoparti-
cles).

influence of radiation on the simplest particle config-
urations (dimer and trimer) allows one to predict the
processes occurring in resonant domains of multiparticle
aggregates. Fig. 11 shows dynamic changes in the ex-
tinction spectra of Ag multiparticle aggregates occurring
under the action of picosecond laser pulses due to melt-
ing of a small fraction of particles in the domains. These
changes are localized in resonant domains and manifest
themselves as a spectral dip of limited spectral width
(≤ 100 nm) in the plasmonic inhomogeneously broad-
ened absorption spectrum which reproduces the experi-
mental results [42,43].

4 Experimental

To verify our calculations predicting suppression of the
resonant properties of liquid plasmonic nanoparticles upon
melting, we carried out an experiment with a sample
containing Au nanoparticles resistant to oxidation in
contrast to silver, copper and other plasmonic nanopar-
ticles. Particles of 11 nm diameter were first deposited
from monodisperse Au hydrosol onto a quartz substrate

1 um

Fig. 13 SEM image of gold nanoparticles on a quartz sub-
strate after heating in a furnace.
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Fig. 14 Evolution of the absorption spectra of Au nano-
particles at room temperature (solid line) and at different
temperatures up to 1120 ◦C (see the legend).

in arbitrary positions, with a small fraction of quazi-
ordered small particle aggregates assembled during evap-
oration of water under the action of capillary and the van
der Waals forces. The choice of Au colloids with this par-
ticular particle size was random and the initial size was
not critical: the particles could be larger or smaller than
this size to ensure the formation of particles of larger size
(about 50 nm) in the process of annealing. Fig. 12 shows
the experimental setup with a tube furnace to heat the
sample.

After the sample had been heated to 1100 ◦C and
then annealed, the scanning electron microscopy (SEM)
technique was applied to examine the sample structure,
see Fig. 13. Our observations revealed that closely spaced
initial gold nanoparticles in small aggregates were merged,
forming larger polydisperse particles with an average di-
ameter of 56 nm in random positions. These nanopar-
ticles remain stable during several heating and anneal-
ing cycles. At the final stage the absorption spectrum of
the sample was studied at different temperatures in the
range 20–1120 ◦C.

Fig. 14 shows the evolution of the absorption spec-
trum of Au nanoparticles on the substrate as the tem-
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Fig. 15 Temperature dependences of the SPR peak ampli-
tude of Au nanoparticles: comparison of experimental and
computational results (obtained with approximation data for
dielectric constant of gold from Section 2.2).

perature grows from room temperature and beyond the
melting point up to 1120 ◦C.

One can see that the amplitude of the plasmon ab-
sorption peak gradually decreases with the growing tem-
perature of the sample to result eventually in a complete
suppression of SPR. The observed effect was reproduced
in several heating cycles. The heating of nanoparticles
is accompanied by a gradual shift of the maximum to
longer wavelengths (within 50 nm) and a simultaneous
broadening of the absorption band. Fig. 15 shows the
temperature dependence of the SPR amplitude in the ex-
tinction spectrum of the sample. At temperatures higher
than 1010 ◦C there is significant and rapid downturn of
this curve, which can be explained by an approach to the
melting temperature for the nanoparticles (≈ 1064 ◦C).
The theoretical approximation was performed using con-
ventional equations of the Mie theory (see [39]) with the
dependence of scattered and inner fields on the radius of
a particle and relative dielectric constants of its material
obtained in Section 2.2. In a recent paper [25] Au nano-
particles were heated to temperatures below the melt-
ing point which resulted in the broadening of SPR and
decrise of its amplitude. In [44] the same effect was ob-
served at the melting point of Au nanoparticles with
radii 2, 8 and 15 nm when finite size effect plays an
important role. Note that with these radii a significant
contribution of this effect can obscure the contribution
of heating. In our experiments we reached the tempera-
ture when SPR in Au nanoparticles was completely sup-
pressed when contribution of the finite size effect was
negligible.

5 Conclusion

To summarize the obtained results, we showed that strong
heating of nanoparticles consisting of basic plasmonic
materials (Ag and Au) is one of the key factors to be con-
sidered when building correct models in plasmonics. We
would like to emphasize here that this factor has never

been taken into account in optical calculations. Earlier
we draw an attention to the fact that resonant proper-
ties of Ag nanoparticles at the SPR frequency abruptly
deteriorate when their state of aggregation changes from
solid to liquid. Moreover, an increase of the temperature
beyond the melting point leads to a further reduction
in the SPR amplitude, which indicates the development
of additional processes that contribute to the growth of
the relaxation constant. In paper [13] we showed how
this effect can produce optical nonlinearity of nanopar-
ticle aggregates and composite media containing them.
Apart from obtaining experimental facts, we proposed
an interpretation of the observed effects and compared
them with theoretical calculations.

Obviously, the same pattern is expected to be ob-
served during heating and melting of other plasmonic
nanoparticles. We believe that the factor of nanoparti-
cle melting under interaction with high-intensity optical
radiation is critically important and covers a wide range
of phenomena, including nonlinear optical processes oc-
curring in interaction of nanoparticles with pulsed laser
radiation.

This work was performed within the State contract of
the RF Ministry of Education and Science for Siberian
Federal University for scientific research in 2017-2019.
The numerical calculations were performed using the
MVS-1000 M cluster at the Institute of Computational
Modeling, Siberian Branch, Russian Academy of Sci-
ences.
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wege, K. Schäfer, and E. Schmidt, Landolt-Börnstein:
Zahlenwerte und Funktionen, 6 ed. (Springer-Verlag,
Berlin, 1957), Vol. 4.

28. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370
(1972).

29. E. A. Taft and H. R. Philipp, Phys. Rev. 121, 1100
(1961).

30. G. S. Arnold, Appl. Opt. 23, 1434 (1984).
31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R.

Bell, R. W. Alexander, and C. A. Ward, Appl. Opt. 22,
1099 (1983).

32. N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Saunders College, Philadelphia, 1976).

33. M. Bass and L. Liou, Journal of Applied Physics 56, 184
(1984).

34. S. R. Nagel and S. E. Schnatterly, Phys. Rev. B 9, 1299
(1974).

35. J. M. Ziman, Electrons and Phonons (Oxford University
Press, Oxford, 1960).

36. C. Oubre and P. Nordlander, The Journal of Physical
Chemistry B 108, 17740 (2004).

37. S. Underwood and P. Mulvaney, Langmuir 10, 3427
(1994).

38. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, The Jour-
nal of Physical Chemistry B 109, 3104 (2005), pMID:
16851329.

39. C. F. Bohren and D. R. Huffman, Absorption and Scat-
tering of Light by Small Particles (John Wiley & Sons,
New York, 1998).

40. V. S. Gerasimov, A. E. Ershov, S. V. Karpov, A. P.
Gavrilyuk, V. I. Zakomirnyi, I. L. Rasskazov, H. Ågren,
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