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Abstract

The study of heat capacity, thermal dilatation, permittivity, dielectric loops and 

susceptibility to hydrostatic pressure was carried out on the quasi-ceramic samples of 

NH4HSO4 obtained from an aqueous solution as well as the melt. The main parameters 

of the successive P21/c (T1) ↔ Pc (T2) ↔ P1 phase transitions do not depend on the 

method of preparation of samples and close to those determined in previous studies on 

single crystal and powder except the sign and magnitude of the baric coefficient for T2. 
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Direct measurements of pressure effect on permittivity and thermal properties showed 

dT2/dp = - 123 K∙GPa-1 which is consistent well in magnitude and sign with the baric 

coefficient evaluated using dilatometric and calorimetric data in the framework of the 

Clausius-Clapeyron equation. Thus, the temperature region of the ferroelectric Pc phase

existence extends under pressure. Strong decrease in the entropy jump at the Pc ↔ P1 

transformation with pressure increase as well as linear dependence of T2 against 

pressure lead one to conclude that pressure shifts this phase transition towards the 

tricritical point on T - p phase diagram. Significant barocaloric effect was found in the 

region of the Pc ↔ P1 phase transition.

Keywords Ferroelectric, Phase transition, Thermal and dielectric properties, Entropy, 

Phase diagram

1. Introduction

In spite the fact, that ferroelectric properties in ammonium hydrogen sulfate, 

NH4HSO4, were found many years ago [1] and actively studied, this compound remains 

still in the interests of investigators. The most important peculiarities of NH4HSO4 are 

associated, first, with the existence of spontaneous polarization in the restricted 

temperature range between T1 = 270 K and T2 = 154 K [1], second, with piezoelectric 

properties existed below T1 and T2 at least down to 77 K [1], third, with a possibility to 

be grown from the melt as well as an aqueous solution [2], fourth, with T-p phase 

diagram rich of pressure induced phases [3-5]. The crystal structure and mechanism of 

structural distortions in ammonium hydrogen sulfate were repeatedly discussed using 

the results of X-ray, neutron, NMR and Raman scattering investigations [1, 5-9]. The 
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main conclusions of these studies can be formulated as follows. Successive phase 

transitions in NH4HSO4 are associated with the symmetry lowering P21/c (T1) ↔ Pc (T2)

↔ P1 (in all phases Z = 8) upon cooling and belong to the order-disorder 

transformations. At temperature above T1, there are two kinds of crystallographically 

nonequivalent HSO4
- ions of which one is orientationally disordered between two sites 

and other is ordered. Below T1 as well as T2 all the sulfate groups are completely 

ordered. Thus, the entropy change associated with the P21/c ↔ Pc transformation can be

presented as ΔS1 = R ½ ln 2 = 2.9 J∙(mol∙K)-1, which is comparable with the 

experimental values ΔS1 = (1.7 – 2.2) J (mol∙K)-1 [1, 10, 11]. Structural distortion at T2 is

driven by the tilting of the tetrahedra NH4
+ as well as the large changes in S – O 

stretching and bending vibrational modes [8, 9]. Such a solely qualitative 

characterization of the mechanism of the symmetry change does not allow one to 

calculate simply the entropy change at the Pc ↔ P1 phase transition. However, the large

value ΔS2 = (6.7 – 8.8) J (mol∙K)-1 found in calorimetric experiments [1, 10] suggests 

the strong structural changes. 

Effect of internal chemical and external pressure on the phase transition 

temperatures T1 and T2 were examined by Rb → NH4 cationic substitution [12, 13] and 

by studies of dielectric properties under hydrostatic pressure [4, 14]. In the former case, 

the study of the (NH4)1-xRbxHSO4 solid solutions revealed a strong decrease in T2 with 

increase of the rubidium concentration [13]. Compounds with x ≥ 0.33 undergo only 

one transformation P21/c ↔ Pc at temperature which is rather close to T1 in NH4HSO4. 

An increase of the hydrostatic pressure induces thinning of the intermediate ferroelectric

phase because of strong difference between baric coefficients dT1/dp = 140 K/GPa and 
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dT2/dp = 765 K/GPa [4, 14]. At room temperature and p > 0.15 GPa the crystal structure

of NH4HSO4 was supposed as triclinic P1. 

Since the ionic radius of the rubidium atom exceeds that of ammonium group in 

spite of coordination number, one could suppose that the Rb → NH4 substitution should 

increase the unit cell volume Vcell in P21/c phase. It is interesting and even strange but 

there are no strong evidences about the effect of the Rb → NH4 cationic substitution on 

the Vcell value in the initial paraelectric P21/c phase. According to different data, the unit 

cell volume of NH4HSO4 (Vcell = (840.6 – 847.6) Å3) [1, 6, 7, 9]) was determined either 

less or more than that in RbHSO4 ((838.7 – 844.5) Å3) [12, 15-17]). 

Moreover, since the Rb → NH4 substitution is accompanied by the strong 

different relative change in the unit cell parameters: Δa/a = - 1.1 %, Δb/b = + 1.7 %, 

Δc/c = - 0.6 % [1, 12], the change of internal chemical pressure is not isotropic. Thus, 

the absence of the Pc ↔ P1 phase transition in RbHSO4 is most likely associated not 

with the chemical pressure decrease but with the absence of ammonium ion which plays

a significant role in the mechanism of related structural distortions in NH4HSO4 [8, 9].

We would like also to pay attention on the ratio between the values of Vcell at 

different temperatures in three phases of NH4HSO4 [1, 9] (Fig. 1). According to the data 

on the volume coefficient of the thermal dilatation β measured between T2 and room 

temperature [18], the β value changes only a few in this temperature range and the β 

anomaly at T1 is rather small. Thus, to a first raw approximation, one can suppose that 

the Vcell(T) dependence is close to the linear behaviour between room temperature and T2

as it is shown in Fig. 1. 
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Fig. 1. The ratio between the unit cell volumes Vcell in three phases of NH4HSO4.
1 - [1], 2 - [9].

The average β values obtained from Fig. 1 (~ 2.5∙10-4 K-1) and experimentally 

determined in [18] (2∙10-4 K-1) are close to each other. Far below phase transition Pc ↔ 

P1 (T2 – 30 K), the experimentally found Vcell remains close to the value at 200 K [1, 9] 

and exceeds Vcell at T2 obtained by the linear extrapolation of the Vcell(T) dependence 

from Pc phase. Anyway Fig. 1 clearly shows that at T2 the volume of NH4HSO4 should 

decrease upon heating from the P1 phase to Pc one. Below T2 the character of the Vcell 

change with temperature was chosen as the same for T > T2. Since the entropy increases 

with temperature increase SPc > SP1 at the P1 ↔ Pc phase transition, the baric coefficient

in accordance with the Clausius-Clapeyron equation, dT2/dp = δV/δS, should be 

negative. It means that the hydrostatic pressure stabilizes ferroelectric phase Pc leading 

to the expansion of the temperature interval of its existence. It is very strange but the 

authors [4, 14] did not pay attention to the contradiction between this fact and positive 

sign of dT2/dp presented in their papers. 

Because we are intended to explore in the future the effect of restricted geometry

on the properties of NH4HSO4 embedded from the melt into nanoporous boron-silicate 

glass matrices, it was necessary to have the reliable information on the properties 
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including the susceptibility to hydrostatic pressure of “free” bulk ferroelectric sample. 

On the one hand, embedding from the melt allows one to obtain high filling degree, on 

the other, as far as we know, all previous studies of ammonium hydrosulfate were 

performed mainly on the samples prepared from an aqueous solution. Therefore, in this 

work, two types of the polycrystalline NH4HSO4 samples were examined: first was 

crystallized from an aqueous solution and second was obtained after melting the first 

sample. Hereinafter the samples will be labeled as AHS Sol and AHS Melt, respectively.

2. Experimental

Small single crystals of AHS Sol were obtained by slow evaporation at 45°C 

from aqueous solution containing equimolar quantities of (NH4)2SO4 and H2SO4. The 

AHS Melt sample was prepared by melting at about 160°C the compound synthesized 

from a water solution. 

The quality of both samples used for the experiments was checked at room 

temperature by XRD which revealed a monoclinic symmetry (sp. gr. P21/c, Z = 8), 

consistent with suggested in [1, 6, 7, 9]. No additional phases were observed in the 

samples. Fig. 2 shows the results of Rietveld refinement for the sample AHS Melt. 
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Fig. 2. Difference Rietveld plot of AHS Melt. 

The unit cell parameters in this sample (a =  14.3954(7) Å, b =  4.5938(2) Å, 

c = 14.8343(8) Å, β = 120.883(2) grad) agree with those determined in [1, 9].

All measurements were performed on the same samples prepared as quasi-

ceramic disk-shaped pellets of 8 mm diameter and 1.3 mm thickness using uniaxial 

pressing powdered AHS Sol and AHS Melt without heat treatments because of the 

presence of ammonium ions. For dielectric measurements, silver electrodes were 

painted onto the pellet’s surface.

On the first stage, thermal dilatation was studied in a temperature range from 

100 to 350 K with a heating rate of 3 K/min using a NETZSCH model DIL-402C 

pushrod dilatometer. Measurements were performed in a dry He flux. Own thermal 

expansion of the system was taken into account using the results of calibration carried 

out with quartz as the standard reference. The uncertainty in thermal expansion 

measurements was about 5 %.

The temperature evolution of the heat capacity Cp(T) of both samples was 

recorded in a wide temperature range of 80 - 290 K by means of a homemade adiabatic 

calorimeter with the uncertainty in Cp determination less than 0.5–1.0% [19]. 

Continuous as well as discrete heating was used for measuring the heat capacity of the 

"sample + heater + contact grease" system. In the former case, the system was heated at 

rates of dT/dt ≈ 0.15–0.30 K/min and in the latter case, the calorimetric step was varied 

from 1.5 to 3.0 K. The heat capacities of the heater and contact grease were measured in

individual experiments.
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The dielectric measurements were also carried out in adiabatic calorimeter 

parallel with heat capacity experiments. The permittivity ε was studied using an E7-20 

immittance meter at frequencies from 250 Hz up to 106 Hz upon heating at a rate of 

about 0.5 K/min. The dielectric hysteresis (P – E loops) was examined by an aixACCT 

EASY CHECK 300 technique. The driving-field profile was a triangular wave of 

amplitude Emax=3 kV/cm. A frequency of measuring electric field was 250 Hz. 

The investigations of the susceptibility of the phase transition temperatures in 

NH4HSO4 to hydrostatic pressure were carried out in a piston-cylinder type vessel 

associated with a pressure multiplier. Pressure up to 0.25 GPa was generated using 

pentane as the pressure-transmitting medium. Pressure and temperature were measured 

with manganin gauge and a copper-constantan thermocouple with accuracies of about ± 

10-3 GPa and ± 0.3 K, respectively.

Because the phase transition at T2 is of a first order accompanied by large 

entropy change and reliably detected stepwise change in permittivity [1, 10], we 

determined the baric coefficient dT2/dp by measuring both permittivity and differential 

thermal analysis (DTA) signal. In the latter case, a sample was glued onto one of two 

junctions of germanium-copper thermocouple characterized by high sensitivity to the 

temperature change. Quartz sample cemented to the other junction was used as a 

reference substance. To ensure the reliability of the results, the measurements were 

performed for both increasing and decreasing pressure cycles.

High temperature transformation is of a typical second order with rather small 

change of heat capacity at T1 [1, 10]. Therefore measurements of dT1/dp were performed

mainly by the detecting the shift of large anomaly in permittivity under pressure. 
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Error bars on all experimental and calculated data were determined taking into 

account the uncertainty in the basic quantities (temperature, pressure, heat capacity, 

thermal expansion) measurement.

3. Results and discussion

The results of dilatometric studies presented in Fig. 3 show that the temperature 

evolution of the linear strain ΔL/L0 is the same for AHS Sol and AHS Melt.

Fig. 3. Temperature dependence of the linear strain in AHS Sol (1) and AHS Melt (2).

Second order phase transition at T1 = 273 ± 2 K was detected as a small 

deviation from monotonous increase of ΔL/L0 with temperature elevating. In accordance

with the first order P1 ↔ Pc transformation, strong anomalous behaviour in the linear 

strain was observed in the narrow temperature range around T2. The values of both 

temperature T2 = 165.5 ± 1 K and negative strain jump δ(ΔL/ L0)T=T2 = - (0.50 ± 0.02) % 

were found the same for both samples. The volume strain change for quasi-ceramic 

samples was determined as δ(ΔV/V0) T=T2 = 3δ(ΔL/ L0) T=T2 = - (1.50 ± 0.07) %. This 

value gives the dominant contribution to the total change in the volume strain 

δ(ΔV/V0)T=T2/Δ(ΔV/V0)  = 0.87 ± 0.05 clearly indicating that the P1 ↔ Pc phase 
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transition is far from the tricritical point where δ(ΔV/V0) → 0. The results obtained 

agree well with those presented in [1, 9] and Fig. 1 showing that the volume of 

NH4HSO4 decreases upon heating through the P1 ↔ Pc transformation. This means that

in accordance with the Clausius-Clapeyron equation, hydrostatic pressure should 

decrease the temperature T2 contrary to its increase associated with the large positive 

baric coefficient dT2/dp proposed in previous experiments [4, 14]. It is interesting to 

point out that the negative change upon heating was also found in the linear strain along 

ferroelectric c axis of the NH4HSO4 single crystal [10].

The data obtained by adiabatic calorimeter are shown in Fig. 4a. Two heat 

capacity anomalies were observed at temperatures T1 = 270.5 ± 0.5 K and T2 = 159 ± 

0.5 K which are a little bit lower than those determined in dilatometric measurements 

because in the latter case the rate of the temperature variation was higher. On the other 

hand, both phase transition temperatures agree well with determined in heat capacity 

measurements on single crystal of NH4HSO4 [10].

Fig. 4. (a) Temperature dependences of the molar heat capacity of AHS Sol (1) and AHS
Melt (Curve 2 is shifted down at 12 J(mol K)-1. Dashed line is the lattice heat capacity. 
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(b) Temperature dependences of the excess entropy associated with the P21/c ↔ Pc ↔ 
P1 phase transitions.

As it was observed in dilatometric measurements, calorimetric experiments also 

revealed a small stepwise anomaly at T1 characteristic for the second order transition 

and very large peak of the heat capacity at T2 associated mainly with the enthalpy 

(entropy) jump at a strong first order phase transformation. 

In order to get information on integral thermodynamic characteristics of phase 

transitions such as enthalpy and entropy changes, separation of the lattice, Clat, and 

anomalous, Cp, parts of the total heat capacity, Cp, was performed by fitting the 

experimental data taken far from the transitions points (T < 145 K and T > 272 K) using 

equation Clat = a + bT + cT2 + dT3 + eT-2. The average deviation of the experimental data

from the smoothed curves does not exceed 0.5 %. The lattice contribution is shown as a 

dashed line in Fig. 4a. It is seen that at T1 the smearing of Cp associated with ceramic 

nature of the samples was observed only in a narrow temperature interval T1 + 3 K. In 

the Pc phase anomalous contribution Cp exists far below T1 in accordance with the 

behaviour of polarization ΔCp ~ (∂ΔS/∂T)p ~ (∂P2/∂T)p [1, 10]. 

By integration of the Cp(T) function the enthalpy of phase transitions were 

determined: AHS Sol - ΔH1 = 195 ± 20 J∙mol-1 and Δ H2 = 1280 ± 130 J∙mol-1; AHS 

Melt - ΔH1 = 270 ± 40 J∙mol-1 and Δ H2 = 1050 ± 100 J∙mol-1 .

Figure 4b shows the temperature behaviour of excess entropy associated with the

successive phase transitions in both AHS Sol and AHS Melt, which was calculated by 

integration of the area below the Cp/T versus T curves. It seen that there is a difference 

between two curves. However, taking into account the uncertainty of heat capacity 

measurements as well as choosing Clat, the values of entropy changes are close to each 
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other (AHS Sol - S1 = 0.85  0.08 J∙(mol∙K)-1, S2 = 8.0  1.0 J∙(mol∙K)-1; AHS Melt - 

S1 = 1.19  0.15 J∙(mol∙K)-1, S2 = 6.5  0.7 J∙(mol∙K)-1,) and comparable with 

entropies determined for single crystal of NH4HSO4 (S1 = 1.66  0.20 J∙(mol∙K)-1, S2 

= 6.7  0.7 J∙(mol∙K)-1) [10]. The ratio between the jump δS2 (AHS Sol – 7.5  0.5 

J∙(mol∙K)-1; AHS Melt – 6.0  0.5 J∙(mol∙K)-1) and the total change in the entropy 

δS2/ΔS2 ≈ 0.93 is close to δ(ΔV/V0) T=T2/Δ(ΔV/V0) value shown above and can be 

considered as an additional evidence for significant distance of the first order Pc ↔ P1 

phase transition from the tricritical point. 

The permittivity in the quasi-ceramic sample AHS Melt (Fig. 5a, b) exhibits 

specific features identical to those observed in the ε(T) dependence for the single-crystal

sample [1, 20]: a jump at T2 = 161± 1 K and a pronounced peak at T1 = 271.4 ± 0.5 K. 

At low frequency f = 250 Hz , a strong increase of ε was observed above ~ 190 K from 

13 up to 250 at 290 K, which was diminished with the increase in f up to 1 MHz. 
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Fig. 5. (a, b) Dependences of permittivity on temperature for AHS Melt at different 
frequencies. (c, d, e, f) Dielectric hysteresis loops at the corresponding temperatures.

The behaviour of the ε peak at T1 and stepwise change at T2 was also changed 

but to significantly lesser extent. The temperatures of both phase transitions were not 

affected by the frequency variation and agree well with those found in calorimetric 

measurements.

We performed also examination of the P – E loops in three phases. As example, 

the results on AHS Melt are shown in Fig. 5c, d, e, f, which confirm that the 

polarization is not the best property to study the effect of hydrostatic pressure on the 

temperature T2, as it was also demonstrated on single crystal of NH4HSO4 in [14]. First, 

it was found that there is rather strong relaxation in the appearance of P in the Pc phase:

almost linear dependence of polarization versus electric field exists far above T2 (Fig. 

5c, d). Second, the “non-classic” shaped dielectric loops does not allows one the correct 

determination of polarization. The latter circumstance can be associated with the low 

density of the quasi-ceramic samples prepared without heat treatments as well as the 

high electrical conductivity observed in [21]. Both factors can contribute for the quasi-

ceramic sample; however, the main role is most likely played by the last factor. 

The results of the hydrostatic pressure effect on the permittivity of both 

NH4HSO4 samples at the phase transitions P21/c ↔ Pc ↔ P1 were found similar. The 

experimental data for AHS Melt are presented in Fig. 6. 
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Fig. 6. Temperature dependence of permittivity for AHS Melt measured upon heating at 
different pressures around P21/c ↔ Pc (a) and Pc ↔ P1 (b) phase transitions.

The temperature behaviour of permittivity in the region of T1 is similar to that 

observed in [4, 14]: the permittivity peak shifts under pressure to higher temperature 

and decreases in the maximum value (Fig. 6a). The corresponding baric coefficient 

dT1/dp = 90 ± 15 K∙GPa-1 is close to measured in [4, 14] and calculated in [18].

As to the ε(T, p) data around Pc ↔ P1 transformation (Fig. 6b), they showed the 

decrease in T2 accompanied by the smearing and diminishing step-wise permittivity 

anomaly. The observed negative sign of dT2/dp is in contradiction to increase T2 with 

pressure proposed by earlier experiments also studied dielectric properties [4, 14]. 

Since heat capacity of NH4HSO4 demonstrated very large anomaly at low 

temperature transformation (Fig. 4), we were able to investigate the pressure effect on 

the DTA signal associated with the heat effect at T2. These experiments revealed in both 

AHS Sol and AHS Melt, first, a strong shift in T2 to lower temperatures and, second, a 

suppression of the square under DTA(T) curves with pressure increase (Fig. 7a, b). 
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Fig. 7. (a, b) Anomalous component of the DTA signal near T2 at different pressures in 
AHS Sol and AHS Melt, respectively. (c, d) Entropy jump δS2 for the first-order 
transition in AHS Sol and AHS Melt, respectively, Lines in c and d represent linear fits.

Thus, thermal and dielectric properties of NH4HSO4 demonstrate similar 

behaviour at T2 under pressure characterized by the negative baric coefficient.

As usual, the DTA measurements allow one to detect the heat effect associated 

with the latent heat or in other words with enthalpy δH or entropy δS = δH/TPT jump at 

the phase transition point TPT. Because the total entropy (as well as enthalpy) change 

takes place in both samples under study in a very narrow temperature range near T2, one

can suppose that the DTA experiments above show the decrease of δS2. This process is 

accompanied at the same time by the appearance of the temperature and pressure 

dependent part of the excess entropy ΔS2
*(T, p) in a certain temperature range, 

expanding with the pressure. Thus, the total entropy change ΔS2 = δS2(p) + ΔS2
*(T, p) 

remains constant in NH4HSO4 at least up to p ≤ 0.23 GPa realized in our measurements 

(Fig. 7b). This assumption is a realistic because it is difficult to imagine that such a low 
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pressure can change a degree of disorder of structural elements. Thus, a more 

reasonable and plausible hypothesis is that the pressure induces the approaching the Pc 

↔ P1 transformation to the tricritical point, which is characterized by δH = 0 and δS = 0

[22].

In Fig. 7c, d one can see a linear decrease in the entropy jumps in both samples 

which are equal to zero at the pressure of the tricritical point pTCP ≈ 0.17 GPa in AHS 

Sol and ~ 0.22 GPa in AHS Melt. Taking into account the experimental uncertainties, a 

difference in the pTCP values for different samples can be considered as insignificant. 

The experimental results on the pressure effect on both phase transitions in AHS 

Sol and AHS Melt obtained by measuring ε and δS2 are summarized on T – p phase 

diagram (Fig. 8). 

Fig. 8. Temperature – pressure phase diagram combining the results on the DTA signal 
(1, 2) and permittivity (3) study in AHS Sol (2, 3) and AHS Melt (1).

Both properties of the samples under study show the same pressure dependence 

of T2 characterized by the negative baric coefficient dT2/dp = - 123 ± 15 K∙GPa-1. A shift

of T2 under pressure was also determined using the results of heat capacity and thermal 
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dilatation measurements in the framework of the Clausius-Clapeyron equation dT2/dp = 

δV2/δS2. These values for AHS Sol (-128 ± 16 K∙GPa-1) and AHS Melt (-158 ± 20 

K∙GPa-1) are close to that obtained in the direct measurements of T2(p).

Such a good agreement between the data obtained by three independent 

experiments performed on two samples of NH4HSO4 prepared by different methods 

suggested a high reliability of determination of the dT2/dp sign and value.

And what could be the reason of the contradiction between these results and data

obtained in [4, 14], where the value dT2/dp was found positive and very large + 765 

K∙GPa-1? We do not think that it is connected with the kind of the sample: single crystal 

[4, 14] and quasi-ceramics used in the present study. The temperatures and entropies of 

the phase transitions P21/c ↔ Pc ↔ P1 as well as baric coefficient dT1/dp in AHS Sol 

and AHS Melt are in satisfactory agreement with the data obtained on powder [1, 5], 

single crystal [1, 9, 10, 14, 23] and ceramic [20] samples. On the other hand, the volume

strain jump δ(ΔV/V0) at T2 calculated using the Clausius-Clapeyron equation, baric 

coefficient dT2/dp from [4, 14] and δS2 value determined in the present paper or in [1, 

10], is unrealistically gigantic ~ (+ 8 %). And at last, the positive shift of T2 under 

pressure [4, 14] is in contradiction with the negative sign of volume strain upon heating 

through the P1 ↔ Pc phase transition found by us (Fig. 3) and in [1, 14].

A constancy of the dT2/dp value in AHS Sol and AHS Melt at least in the range 

of pressure studied means the fall of δV2 in accordance with the decrease of δS2. Similar 

correlated decrease in the volume and entropy changes with pressure was recently 

observed in (NH4)2SO4 undergoing ferrielectric phase transition of the first order 

characterized by the negative baric coefficient [24]. It is safe to assume that this 

transformation is also close to the tricritical point. Of course the fall of δS2 as well as 
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δV2 under pressure is not common peculiarity of phase transitions. For example, recent 

studies of the T – p phase diagrams in some perovskite-like ferroelastics have shown the

constancy of the entropy jump at phase transition point at least in the range of p = 0 – 

0.5 GPa [25, 26]. 

A constant ratio between the values of δS2(p) and ΔS2
*(T, p) with the pressure 

change is very convenient for the analysis of barocaloric effect (BCE) which is 

associated with the entropy decrease or temperature increase with pressure elevating at 

T = const or S = const, respectively. However, for detailed and correct determination of 

BCE in NH4HSO4 as well as in recently studied (NH4)2SO4 [24], characterized by δS2 

decrease and ΔS2
*(T, p) increase with the pressure increase, it is necessary to have 

information on the pressure dependence of the heat capacity. Owing to a lack of 

opportunity to measure Cp(T, p), BCE in (NH4)2SO4 was evaluated only in connection 

with the δS2 part of entropy [24]. We were also not able to determine the ΔS2
*(T, p) 

dependence for NH4HSO4. However, taking into account that the maximum value of the

extensive BCE ΔSBCE
max near T2 is equal to the phase transition entropy ΔS2, one can 

perform raw estimation of the minimum pressure, pmin, which produces the maximum 

values of ΔSBCE
max as well as ΔTAD

max [26]

dpdTC

ST
p

p /2

2
min


min

2max p
dp
dT

TAD 

Use of the Cp, ΔS2 and dT2/dp values determined above for AHS Sol and AHS Melt 

gives pmin = 0.10 ± 0.02 GPa and ΔTAD
max = - 12 ± 2 K, which are close to those found 

for (NH4)2SO4 [24]. Negative sign of intensive BCE (ΔTAD
max < 0) in both ammonium 

sulfate and ammonium hydrosulfate (near T2) is associated with the decrease of the unit 

cell volume in the region of the phase transition point. On the other hand, both crystals 

are characterized by the positive volume deformation ΔV/V0 > 0 far from the transition 
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temperature, which leads to the conventional BCE (ΔSBCE < 0; ΔTAD > 0) in accordance 

with the Maxwell equation [27]

pT
T

V

p

S





















.

This peculiarity will decrease the extensive and intensive inverse BCE in the region of 

the phase transition. Near the Pc ↔ P1 transformation in NH4HSO4, these amendments 

are – (1.2 ± 0.02) J∙(mol∙K)-1 and + (2.0 ± 0.3 K for ΔSBCE and ΔTAD, respectively.

4. Conclusions

The study of the thermal and dielectric properties performed on two quasi-

ceramic samples of NH4HSO4 obtained by different ways revealed the following points.

The method of the samples preparation does not affect the main properties 

associated with the succession of the P21/c (T1) ↔ Pc (T2) ↔ P1 phase transitions. The 

transformation temperatures, changes of entropy and volume deformation in AHS Sol 

and AHS Melt are in satisfactory agreement with the data obtained on powder [1, 5], 

single crystal [1, 9, 10, 14, 23] and ceramic [20] samples.

The direct dilatometric measurements showed the negative change of the volume

deformation at T2 upon heating which coincides with the ratio between unit cell 

parameters in the Pc and P1 phases [1, 9]. 

The temperature-pressure phase diagram constructed on the ground of the study 

of susceptibility of DTA signal and permittivity to hydrostatic pressure revealed the 

expansion of the temperature interval of the ferroelectric phase Pc stability associated 

with different signs of baric coefficients dT1/dp and dT2/dp. The decrease of T2 under 

pressure agrees with the negative sign of δ(ΔV/V) T=T2. The calculated values of baric 

coefficients are close to obtained in direct measurements.
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Pressure increase leads to decrease in the entropy jump δS2 at the Pc ↔ P1 

transformation in AHS Sol and AHS Melt which is connected with approaching of this 

transformation towards the tricritical point.

The analysis of barocaloric efficiency showed that the maximum extensive and 

intensive BCE (ΔSBCE
max = 8  1 J(mol∙K)-1; ΔTAD

max = 12  2.0 K) can be realized at 

rather low pressure ~ 0.1 GPa. Conventional BCE associated with the Pc ↔ P1 phase 

transition in NH4HSO4 does not exceed ~ 15 % compared to the maximum inverse BCE.
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