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We consider non-collinear second harmonic generation from two ultrashort pulses intersecting in a non-
linear medium in spectral and time domains. We derive analytical expressions for the second harmonic
amplitude in crystals of finite thickness and obtain a refined phase-matching condition. The contribution
from characteristics of the fundamental radiation and interaction geometry to the process is analyzed. We
find that the spectral bandwidth is determined by the intersection angle and can be enlarged. The SH
pulse duration can be optimized by varying the fundamental beam size and the intersection angle. It is
shown that the fundamental pulse duration can be readily characterized with single pulses by means of
measuring the second harmonic beam profile. The approach developed can potentially be used to calcu-
late parametric interactions in one- and two-dimensional nonlinear photonic crystals. © 2016 Optical Society
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1. INTRODUCTION

The second harmonic generation (SHG) is a well-known nonlin-
ear optical process where two photons at frequency ω are con-
verted into a single photon at double frequency 2ω. The most
efficient SHG takes place when the fundamental frequency
(FF) and second harmonic (SH) waves are phase-matched in
a quadratic nonlinear medium. This may be achieved by us-
ing birefringent nonlinear media [1] or periodically poled non-
linear crystals [2, 3]. When interacting waves propagate in
the same direction (the so-called collinear interaction) in a ho-
mogeneous medium, the phase-matching angle is determined
by the fundamental wavelength. Unlike the above, the non-
collinear interaction is of interest because the phase-matching
angle is a function of both the FF wavelength and the intersec-
tion angle between two FF beams. This enables tunable spon-
taneous down conversion and optical parametrical amplifica-
tion [4]. The non-collinear interaction is preferable for auto-
and crosscorrelation measurements of femtosecond pulses be-
cause of the background free auto- and crosscorrelation traces
[5–10]. Recently disordered nonlinear media were successfully
used for these purposes [11–14]. Despite the numerous studies
on non-collinear SHG [5, 11, 15], the theory though lacks consis-
tency.

In the present work, we systematically study non-collinear
SHG from two ultrashort pulses intersecting in a nonlinear
medium. We elaborate the theoretical model for crystals of fi-
nite thickness and derive an analytical expression describing
the process.

2. THEORETICAL MODEL

We consider propagation of two intersecting fundamental
beams through a homogeneous nonlinear medium in the plane
XY as shown in Fig. 1. Each of the two FF beams propagates
at angle φ to the y axis. Let us suppose for simplicity that the
intersection angle between the FF beams 2φ is large enough to
provide for their overlapping inside the medium of thickness
L. In this representation, SH is generated along the bisector of
the angle between the two FF beams, i.e. in the positive direc-
tion of the axis y. Each of the FF beams propagates along its
respective axis yj in the reference coordinate system (xj,yj) and
its transverse coordinates are xj (j = 1, 2).

Transformation from the reference coordinate system (xj,yj)
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Fig. 1. Interaction of two intersecting fundamental beams in a
homogeneous nonlinear medium.

to the coordinates (x,y) is given by formulas
⎧
⎨

⎩

xj = x cos φ ∓ y sin φ

yj = ±x sin φ + y cos φ

Then in the negligible depletion approximation, the SHG pro-
cess will be governed by the equation
(

∂

∂y
+

1
u2

∂

∂t
− 1

2k2
Δ(x, z)

)

A(t, x, z, y) =

= iβg(x, y)A11(t, x, z, y)A12(t, x, z, y) exp(iΔky) (1)

where A is the SH amplitude, β = 2πk2χ(2)/n2
2, g(x, y) is the

function characterizing modulation of the nonlinear susceptibil-
ity χ(2) (g(x, y) = const), n2 is the refractive index at the 2ω fre-
quency, Δk = 2k1 cos φ − k2 is the wave-vector mismatch, u2 is
the SH pulse group velocity, and Δ(x, z) =

(
∂2/∂x2 + ∂2/∂z2)

is the transverse Laplacian.
Propagation of FF beams A11 and A12 in the coordinate sys-

tem (x,y) obeys the equation
(

∂

∂y
± tan φ

∂

∂x
+

1
u1 cos φ

∂

∂t

)

A1j(t, x, z, y) = 0, (2)

here φ is the inner angle between the propagation direction of
the fundamental beam and the y axis, u1 is the FF pulse group
velocity, the sign "+" refers to j = 1 and "−" to j = 2.

By solving the Cauchy problem for the equation under con-
sideration we obtain

A1j(t, x, z, y) =

A1j

(

x cos φ ∓ y sin φ, t − y cos φ ± x sin φ

u1

)

, (3)

where the condition at the input of the nonlinear crys-
tal (y = 0) has been taken into account A1j(t, x, z) =

A1j

(
x cos φ, t ∓ x sin φ

u1

)
.

Further, as in the case of FF beams, diffraction of the SH
beam can be neglected. Using the Fourier transform

A(Ω, Kx, Kz, y) =

1
(2π)3/2

∫

A(t, x, z, y) exp(−i(Ωt − Kxx − Kzz))dtdxdz (4)

Eq. (1) can be expressed in the form

∂

∂y
A(Ω, Kx, Kz, y) =

iβg
(2π)3/2 eiΔky

∫∫∫

A11(t, x, z, y)A12(t, x, z, y)

× exp(−iΩt + iKxx + iKzz)dtdxdz (5)

The frequency domain representation of fundamental pulses
(Eq. (3)) allows us to write down Eq. (5) as follows

∂

∂y
A(Ω, Kx, Kz, y) =

iβg
(2π)3/2 eiΔky

∫∫∫

dΩ1dKx1dKz1 Ã11(Ω1, Kx1, Kz1)

× Ã12

(

Ω − Ω1,
Kx

cos φ
− Kx1 +

tan φ

u1
(Ω − 2Ω1) , Kz − Kz1

)

× exp
(

iΩνy − i
(

Kx

cos φ
− 2Kx1 +

tan φ

u1
(Ω − 2Ω1)

)

sin φy
)

,

(6)

where ν = cos φ/u1 − 1/u2 is the group velocity mismatch
(GVM). Eq. (6) can be used for FF pulses of an arbitrary spectral
shape. On the contrary, the use of Eq. (5) requires the knowl-
edge of spatio-temporal characteristics of the fundamental radi-
ation.

Our analysis shows the following relations between spatial
and spectral components

Ω = Ω1 + Ω2, νΩ = (Kx1 − Kx2) sin φ

Kx = (Kx1 + Kx2) cos φ − Ω sin φ/ u1

Kz = Kz1 + Kz2. (7)

These relations represent phase-matching conditions for non-
collinear SHG in a non-steady state regime.

Next we assume for definiteness that the two incident funda-
mental pulses are spatially identical. It is reasonable to consider
interaction of spectrally limited Gaussian pulses with a Gaus-
sian intensity distribution in transverse direction A1j(t, r) =

A1j(0) exp(−t2/τ2
0 ) exp(−r2/a2), here index j = 1, 2 refers to

the respective fundamental beam, 2τ0 is the pulse duration, a is
the beam radius, and r2 = x2 + z2. Integration of Eq. (5) along
the propagation coordinate over [−L/2,L/2] yields the second
harmonic amplitude

A(Ω, Kx, Kz) =
(−1)3/4

√
i
√

πβgpτ0a3

16
√

2 sin φ
A11(0)A12(0)

× exp

(

−Ω2τ2
0

8

)

exp
(

− a2 p2K2
x

8
− a2K2

z
8

− a2Δk̃2

8 sin2 φ

)

× 2i Im erfi

[
a
√

2(Δk̃ + 2iL sin2 φ/a2)

4 sin φ

]

, (8)

where Δk̃ = Δk − νΩ and

p2 = u2
1τ2

0 /
(

a2sin2φ + u2
1τ2

0 cos2 φ
)

. (9)
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The spectral intensity of SH can be expressed as follows

S(Ω) =
πcn2 pβ2τ2

0 a4

256 sin2 φ
g2 I2

1 exp
(

− a2Δk2

4 sin2 φ

)

× exp

(

− (τ2
0 + a2ν2/ sin2 φ)

4
Ω2 +

Δkνa2

2 sin2 φ
Ω

)

× Im

(

erfi

[
a
√

2(Δk̃ + 2iL sin2 φ/a2)

4 sin φ

])2

. (10)

Since interaction between FF and SH waves takes place over
the region where the fundamental beams overlap, we can intro-
duce an effective interaction length. According to Fig. 1, the ef-
fective interaction length is Lint = 2a/ sin φ. Consider the case
of an infinite nonlinear medium, i.e. when the medium thick-
ness satisfies the condition L � Lint. In this case, integration of
Eq. (5) from −∞ to ∞ results in the following expression

A(Ω, Kx, Kz) =
i
√

πβgpτ0a3

8
√

2 sin φ
A11(0)A12(0)

× exp
(

−μ2

8
Ω2 +

Δkνa2

4 sin2 φ
Ω
)

exp
(

− a2Δk2

8 sin2 φ

)

exp
(

− a2 p2K2
x

8

)

exp
(

− a2K2
z

8

)

, (11)

Here μ2 = τ2
0 + a2ν2/ sin2 φ = τ2

0 + L2
intν

2/4.
Fourier transform of Eq. (11) yields

A(t, x, z) =
i
√

πβgτ0a√
2μ sin φ

A11(0)A12(0) exp
(

− a2Δk2

8 sin2 φ

)

× exp
(

− 2x2

a2 p2 − 2z2

a2

)

exp

(
2

μ2

(

it − Δkνa2

4 sin2 φ

)2)

(12)

Eq. (11) and Eq. (12) prove to satisfy the Parseval theorem.
By integrating Eq. (11) over the spatial frequencies, we ob-

tain spectral intensity of the second harmonic

S(Ω) =
πcn2 pβ2τ2

0 a4

256 sin2 φ
g2 I2

1 exp
(

− a2Δk2

4 sin2 φ

)

× exp
(

−μ2

4
Ω2 +

Δkνa2

2 sin2 φ
Ω
)

, (13)

The spatial distribution of the second harmonic intensity de-
fined as I(t, x, z) = (cn2/8π)|A(t, x, z)|2 has the form

I(t, x, z) =
cn2β2g2τ2

0 a2 I2
1

16μ2sin2φ
exp

(

− 4x2

a2 p2 − 4z2

a2

)

× exp
(

− a2Δk2

4sin2 ϕ

)

exp

(

− 4
μ2

[

t2 −
(

Δkνa2

4 sin2 φ

)2])

(14)

The SH pulse envelope represents a Gaussian function and the
parameter μ determines the SH pulse duration. The SH pulse

duration can be represented as μ = τ0

√(
1 + L2

int/(4L2
gr)
)
,

and, therefore, it is a function of both Lint and Lgr = τ0/ν, the
latter being the length of the group velocity mismatch. Con-
versely the interaction length depends on the beam spot size
and the intersection angle. By varying these parameters we can
change the SH pulse duration.

3. RESULTS AND DISCUSSION

For the calculations we choose a beta barium borate (BBO) crys-
tal as a nonlinear medium, which is commonly used for SHG of
Ti:Sapphire oscillator. The fundamental spectrum has a Gaus-
sian shape with the full width at half maximum (FWHM) 10
nm at the central wavelength 800 nm. It is also preferable to con-
sider the SHG process of the I-type (oo − e interaction). Under
non-collinear interaction the calculated phase matching angle
equals 41.2 deg for the inner intersection angle 20 deg. The re-
fractive indexes of BBO were approximated using the Sellmeier
coefficients from Ref. [16].

The calculated SH spectra are shown in Fig. 2. The length of
the medium is 1 mm. For the calculations, Eq. (10) and Eq. (13)
were used. As seen, Eq. (13) provides a good description for the
non-collinear SHG when the actual thickness of the medium is
larger than the effective interaction length L > Lint (Fig. 2(a)).
A different situation arises with L ≤ Lint (Fig. 2(b)). In this case,
Eq. (13) gives a spectrum profile with an underestimated width.
The condition of use of Eq. (13) (L > Lint) can be represented
in the form φ′ ≥ arcsin (2a/L).

From Eq. (13) , the SH spectral bandwidth (full width at half
maximum) is

ΔΩ(φ) =
Δkνa2

μ2sin2φ
+

2
μ

√

ln (2) (15)

Note that only the second term in Eq. (15) contributes to the
spectral width if the phase matching condition is fulfilled. The
presence of the phase mismatch (Δk �= 0) leads to modification
of the spectral envelope. In particular, there appears a spectral
shift if phase mismatch is introduced

δΩ = − Δkνa2

μ2sin2φ
(16)

Fig. 2. Non-collinear SH spectral intensity calculated using
Eq. (10) (green) and Eq. (13) (red) for intersection angles 5 (a)
and 2 deg (b). The respective effective interaction lengths are
0.74 and 1.9 mm.

Fig. 3 shows the calculated spectral intensities for collinear
and non-collinear interaction in a 2-mm-thick medium. In the
case of collinear SHG, the spectral intensity derived from [17]
has a sinc2-shaped profile. The curves corresponding to the
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non-collinear SHG are found from Eq. (10). As one can see, in-
creasing the intersection angle results in widening of the spec-
tral curve. This result can be accounted for by the short inter-
action length within the fundamental beam intersection, which
implies a larger spectral range where the phase-matching con-
dition is fulfilled.

Fig. 4 illustrates in more detail the behaviour of the spectral
width depending on the intersection angle. The spectral width
was calculated using Eq. (15) and then scaled to the wavelength.
In the extreme case, when the intersection angle goes to zero,
the spectral width comes close to the spectral width of collinear
SHG. This angular behaviour is also accompanied by a remark-
able reduction in the SH pulse duration.

Fig. 3. Calculated spectral intensity for collinear (black) and
non-collinear SHG (colored).

Taking into account that μ2 = τ2
0

(
1 + L2

int/(4L2
gr)
)

in
Eq. (14), the broadening of SH pulses can obviously be at-
tributed to the group velocity mismatch and depends on the
relation between Lint and Lgr. For example, SH pulses are

√
2

times wider than FF pulses for Lint = 2Lgr. The choice of the
interaction length must rely on GVM for a given material.

Fig. 4. Spectral width (left axis) and relative pulse broadening
(right axis) versus intersection angle.

The approach proposed can be used for to simulate inten-
sity autocorrelation measurements by introducing time delay
between the fundamental pulses. On the other hand, from
Eq. (14) one can see that the SH beam cross section becomes
elliptical with the ellipticity factor p. It was shown previously,
that the ellipticity factor is determined by the pulse duration of
incident beams, their cross-section size and the intersection an-
gle. Hence, we can find the pulse duration with single pulses
by means of measuring the second harmonic beam profile by a
spatial detector. The extracted fundamental pulse duration is
given by

τext =
2ap sin φ

u1
√

1 − p2 cos2 φ
(17)

The use of Eq. (17) requires exact knowledge of the size of fun-
damental beams (the ellipticity factor p) and their intersection
angle. Fig. 5 illustrates the behaviour of the parameter p de-
pending on the pulse duration for three different beam radii a.
These curves are identical except for the scaling factor which is
determined by the relation between the terms in the denomina-
tor of Eq. (9). If a = u1τ0, there is no the SH beam ellipticity
and the parameter p = 1. However, if a 	 u1τ0, the curve in
Fig. 5 is saturated. Our analysis shows that this technique can
be applied for monitoring sub-100-fs pulses. In particular, in
the situation under study (p = 0.92, a = 34 μm, 2φ = 20 deg),
the pulse width is equal to 85 fs (FWHM).

Fig. 5. Dependence of the parameter p on the FF pulse dura-
tion.

The second harmonic pulse energy at the exit from the
medium is

E =

√
ππcn2 pβ2g2τ2

0 a4 I2
1

128μsin2 ϕ
exp

(

− a2Δk2

4sin2 ϕ

)

× exp
(

(Δkνa2)2

μ2(2sin2φ)2

)

(18)

As seen, the SH pulse energy significantly goes down with the
growing intersection angle. For instance, there is a ten-fold en-
ergy drop, when the intersection angle changes from 1 to 3 deg.
This results from the group velocity mismatch and fractional
overlapping of the fundamental pulses inside the medium. To
compensate for the latter factor, dispersion prisms can be used
for tailoring fundamental pulses prior to entering the crystal
[15, 18].
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4. CONCLUSION

We have developed a consistent theory of non-collinear sec-
ond harmonic generation by ultrashort laser pulses in homoge-
neous nonlinear media in spectral and time domains. We have
derived analytical expressions for the second harmonic ampli-
tude in crystals of finite thickness and obtained a refined phase-
matching condition. A contribution from the characteristics of
the fundamental radiation and interaction geometry to the pro-
cess has been analyzed. We have found that the spectral band-
width is determined by the intersection angle and can be en-
larged. The SH pulse duration can be optimized by varying the
fundamental beam size and the intersection angle. It has been
shown that the fundamental pulse duration can be readily char-
acterized with single pulses by means of measuring the second
harmonic beam profile by a spatial detector. The approach pro-
posed can be used to calculate parametric interactions in one-
and two-dimensional nonlinear photonic crystals [19, 20].
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