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Abstract. A new exact solution of the equations of free convection has been
constructed in the framework of the Oberbeck – Boussinesq approximation of the
Navier – Stokes equations. The solution describes a joint flow of an evaporating viscous
heat-conducting liquid and gas-vapor mixture in the horizontal channel. In the gas
phase the Dufour and Soret effects are taken into account. The consideration of
the exact solution allows one to describe different classes of flows depending on the
values of the problem parameters and boundary conditions for the vapor concentration.
A classification of solutions and results of the solution analysis have been presented.

The effects of the external disturbing influences (of the liquid flow rates
and longitudinal gradients of temperature on the channel walls) on the stability
characteristics have been numerically studied for the system HFE7100-nitrogen in the
common case, when the longitudinal temperature gradients on the boundaries of the
channel are not equal.

In the system both monotonic and oscillatory modes can be formed, which
damp or grow depending on the values of the initial perturbations, flow rates and
temperature gradients. Hydrodynamic perturbations are the most dangerous under
large gas flow rates. The increasing oscillatory perturbations are developed due to the
thermocapillary effect under large longitudinal gradients of temperature. The typical
forms of the disturbances are shown.
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1. Introduction

At present advanced technologies and experimental investigation methods of the features

of joint convective liquid flows and cocurrent gas fluxes at normal and microgravity have

actively been developed. The improvement of the existing techniques and development

of new experiments are based, in many ways, on theoretical results obtained using the

mathematical modeling of two-layer flows with interfaces. The media flow rates, their

thermophysical properties, type of a thermal load on the flow domain boundaries and

linear scales influence the character of the convective flows (Lyulin and Kabov 2013,

2014). The high accuracy of the experimental measurements of different thermodynamic

properties of a fluid allows one to study the velocity fields near the interface, to define the

dominant character of various factors and to compare the experimental and theoretical

results.

Two-layer flows can be used for thermostabilization and liquid cooling of electronic

devices. The efficiency of heat pipes, film (membrane) evaporators, two-phase cooling

systems depends on the velocity of the evaporation from the free surface. In practice, the

investigation results of the two-layer flows with evaporation can be used in developing

a compact high-performance cooling system of electronic equipment and in the drying

process, coating application technologies and in distillers. Precisely forecasting the fluid

dynamics in thin layers requires the comprehensive analysis based on modeling the two-

layers flows with evaporation. It is important for the identification of the mechanisms

of possible critical phenomena.

Mathematical models to investigate the convective flows with the mass transfer at

the interface require a correct formulation of the boundary conditions. The conditions

at the interface are deduced on the basis of some hypotheses on the interface and

physical processes, which guarantee the fulfillment of the conservation laws (Prosperetti

1979, Margerit et al 2003, Das and Ward 2007, Kuznetsov 2010, Frezzotti 2011,

Kuznetsov 2011, Goncharova 2012a). The convective flows accompanied by evaporation

or condensation at the interface were studied in (Oron et al 1997, Shklyaev and Fried

2007, Kuznetsov and Andreev 2013, Kabova et al 2014, Goncharova and Rezanova 2014a,

Goncharova et al 2014c, Goncharova and Rezanova 2015c) analytically and numerically

using the mathematical models constructed based on the long-wave approach of the

governing equations and boundary conditions. Mathematical models based on the

Navier-Stokes equations and relations at the interface, which generalize the dynamic,

heat and kinematic conditions allow one to obtain the results being in agreement with

the experiments of convection under the heat- and mass transfer through the interface

(Iorio et al 2007, Celata et al 2008, Lyulin and Kabov 2013, 2014). Similar problems of

the convective flows with evaporation are studied in (Iorio et al 2009, 2011) in the full

statements of the problem.

Recently special attention has been paid to the construction and investigation of an

exact solution describing the convective flow and taking into account the mass transfer
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at the interface, in particular, due to evaporation. The analysis of the properties of

the exact solutions allows one to investigate the effects of different factors on the flow

topology, evaporation intensity at the interface and stability characteristics of the basic

flow. The theoretical results provide an opportunity to predict a possible outcome of

the experiments (Iorio et al 2007, Celata et al 2008, Lyulin and Kabov 2013, 2014,

Lyulin et al 2015) and to create fundamentally new practical techniques. One of the

first exact solutions describing the flows in the two-layer systems with the mass transfer

was presented in (Shliomis and Yakushin 1972) for a “fluid-fluid” system. The papers

(Goncharova et al 2013, Goncharova and Rezanova 2014b) present an exact solution

for studying the two-layer flow with evaporation at the thermocapillary interface in a

“fluid-gas” system and with the Dufour effect in the gas phase. The solutions studied

in (Goncharova et al 2013) satisfy the additional condition of a closed flow, whereas in

(Goncharova and Rezanova 2014b) the exact solution of the stationary problem for the

given gas flow rate were obtained. A comparison of the analytical results obtained with

the help of the above mentioned exact solutions with the experimental ones was made

in (Goncharova et al 2015b).

It is necessary to ensure the stability of the basic state of the working fluid in the

experiments and equipment using the fluid technology where evaporation is significant.

If to take into consideration the expenses on the experiments, then one of the most

important aspects of the preliminary theoretical investigation is the identification and

analysis of the conditions ensuring the stability. The main part of the studies concerns

the problem of the stability of thin liquid films which are most sensitive to evaporation,

and stability of the liquid equilibrium (Burelbach et al 1988, Oron 2000, Sultan et al

2005, Shklyaev and Fried 2007, Klentzman and Ajaev 2009, Liu and Kabov 2012).

In the present paper the exact solutions of the Oberbeck –Boussinesq equations

describing the two-layer fluid flows in a horizontal layer are investigated. In the basic

equations the effects of thermodiffusion and diffusive heat conductivity are additionally

taken into consideration. The analysis of the flow characteristics formed under the

influence of inhomogeneous factors allows one to understand the physical mechanisms

of the studied processes and to estimate the degree of the interaction of several effects.

The properties of the periodic finite-amplitude perturbations of the main flow and the

effects of the problem parameters on their structure and mechanisms leading to the

change of the flow patterns are investigated.

The aim of the paper is to perform the analysis of the exact solutions of the

equations of natural convection as well as to analyze the influence of the type of the

boundary conditions for the vapor concentration, and the physical effects on the solution

properties and to define the typical forms of the arising perturbations at an example of

one of the constructed solutions.
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2. Basic assumptions and statement of the problem

Let a liquid and a gas-vapor mixture fill an infinite horizontal channel with solid

impermeable immovable upper y = h2 and lower y = −h1 walls. The coordinate system

is chosen so that the gravity vector has the coordinates g = (0, −g) (figure 1). The

thermocapillary interface Γ remains to be undeformed during the motion and it is given

by y = 0. The tangential forces act along Γ and the surface tension σ depends linearly

on the temperature σ = σ0 + æ(T − T0), where æ < 0, æ is the temperature coefficient

of the surface tension, T0 is an initial temperature value. In addition, the mass transfer

due to evaporation is taken into account at the interface.

Figure 1. Flow region.

2.1. Governing equations

The flow in a two-phase system is described by the Oberbeck –Boussinesq approximation

of the Navier – Stokes Equations, including the terms which correspond to the Dufour

and Soret effects (De Groot 1956, Gebhart et al 1988, Andreev et al 2012, Andreev

and Sobachkina 2012, Ryzhkov 2013) in the upper layer (see Goncharova et al 2015b).

The Dufour effect is the appearance of the temperature gradient due to the presence

of the concentration gradient. It is well known that this effect can reach a few degrees

of Celsius in gases and less than a thousandth in fluids (De Groot 1956, De Groot and

Mazur 1962). In the monographs (De Groot and Mazur 1962, Gebhart at al 1988)

the importance of taking into consideration the effects of diffusive heat conductivity

was emphasized. The influence of the Soret effect on the fluid flows was considered in

(Andreev et al 2012).

The equations of the motion and heat transfer have the form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
, (1)
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
+ g

(
βT + γCs

)
, (2)

∂u

∂x
+

∂v

∂y
= 0, (3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= χ


∂2T

∂x2
+

∂2T

∂y2
+ δ

(
∂2Cs

∂x2
+

∂2Cs

∂y2

)
 . (4)

The vapor is a passive admixture. The vapor diffusion in the gas is described by the

equation

∂Cs

∂t
+ u

∂Cs

∂x
+ v

∂Cs

∂y
= D

[
∂2Cs

∂x2
+

∂2Cs

∂y2
+ α

(
∂2T

∂x2
+

∂2T

∂y2

)]
, (5)

which is a result of the Fick law. The Fick laws were consistently confirmed by

experiment (Umov 1950) in the studies of low concentration solutions (Putilov 1963). In

Putilov’s monograph the comprehensive substantiation of the formal equivalence of the

Maxwell’s formulae (Maxwell 1890) for the vapor concentration and the Fick’s equation

is provided as well as additional ideas concerning the peculiarities of their use are also

presented. These laws are also valid for the interdiffusion of various gases (Sivukhin

2005).

The underlined terms in (2), (4) and equation (5) are taken into account in modeling

of the gas-vapor mixture flow in the upper layer. Here, u, v are the projection of the

velocity vector on the axes Ox and Oy, respectively, p is the modified pressure, the

deviation from the hydrostatic one, T is the temperature, Cs is the vapor concentration.

The physical characteristics of the media ρ, ν, χ, D, β, γ (density, coefficients of

kinematic viscosity, heat diffusivity, vapor diffusion in the gas, heat- and concentration

expansion, respectively) are constant. The coefficients δ and α characterize the Dufour

and Soret effects (Gebhart et al 1988, De Groot 1956). The Soret effect has been studied

well enough, including the experimental investigations of the Soret coefficients for some

media (see, for instance, (Mialdun and Shevtsova 2011)). According to (De Groot and

Mazur 1962; Gebhart et al 1988) the coefficients δ and α in the gases take on values of

the orders δ ∼ 10−6 − 10−4 K, α ∼ 10−5 − 10−3 K−1.

In general, the Soret and Dufour coefficients depend on physical parameters of the

gas-liquid systems, on temperature and concentration of the mixture components. In

our paper, as in the cited monographs (Andreev et al 2012, Andreev and Sobachkina

2012, Ryzhkov 2013), these coefficients are assumed to be constant. This assumption is

valid under moderate drops of temperature and concentration.

2.2. Form of the exact solution

According to (Napolitano 1980, Goncharova and Rezanova 2014b) the system of

equations (1)-(5) admits the stationary solution

uj = uj(y), υj = 0, pj = pj(x, y),
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Tj = (aj
1 + aj

2y)x + ϑj(y), Cs = (b1 + b2y)x + φ(y), (6)

where the variables and parameters with the index j = 1, 2 (subscript or superscript)

relate to the phases filling the lower and upper layers, respectively. The solution (6) is

a generalization of the well known Ostroumov–Birikh solution (Ostroumov 1952, Birikh

1966), which describes the unidirectional convective flow in the horizontal layer. The

group nature of the solution (6) and its possible generalizations in the three-dimensional

case were systematically studied in (Pukhnachev 2000).

Substitution of (6) into the system (1)-(5) leads to the following polynomial

relations:

uj (y) = Lj
4y

4 + Lj
3y

3 + cj
1y

2 + cj
2y + cj

3,

Tj (x, y) =
(
aj

1 + aj
2y

)
x + N j

7y
7 + N j

6y
6 + N j

5y
5+

+N j
4y

4 + N j
3y

3 + N j
2y

2 + cj
4y + cj

5,

pj (x, y) =
(
dj

1 + dj
2y + dj

3y
2
)
x + Kj

8y
8 + Kj

7y
7 + Kj

6y
6+ (7)

+Kj
5y

5 + Kj
4y

4 + Kj
3y

3 + Kj
2y

2 + Kj
1y + cj

6,

Cs (x, y) = (b1 + b2y) x + S7y
7 + S6y

6 + S5y
5 + S4y

4 + S3y
3+

+S2y
2 + c7y + c8.

Note that some coefficients of the polynomials (7) depend on the Dufour and Soret

parameters. The evaporation intensity also depends on these parameters.

The coefficients cj
m (m = 1, .., 6), c7, c8 are the integration constants, Lj

4, Lj
3, N j

i ,

Kj
m, Si (i = 2, .., 7, m = 1, .., 8) and dj

i (i = 1, 2, 3) in the polynomials (7) are expressed in

terms of the physical parameters of the problem such as ν, χ, ρ, D, β, γ, g, longitudinal

temperature and concentration gradients aj
i , bj (i = 1, 2), and integration constants.

The boundary conditions would impose possible relations between aj
i and bj and allow

one to calculate the integration constants cj
m, c7, c8.

2.3. Boundary conditions

At the boundaries of the channel y = −h1 and y = h2 the no-slip conditions

u1 (−h1) = 0, u2 (h2) = 0, (8)

and the linear temperature distribution with respect to the longitudinal coordinate

T1 (x,−h1) = A1x + T10, T2 (x, h2) = A2x + T20 (9)

are to be valid. The constants A1, A2, T10, T20 are taken to be known.

Two types of the conditions for the vapor concentration Cs can be considered.

Assume that the condition of the absence of the vapor flux at the upper boundary

y = h2 is satisfied

∂Cs

∂y

∣∣∣∣
y=h2

= 0. (10)
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Instead of (10) the boundary condition of the zero vapor concentration can be set on

y = h2

Cs

∣∣∣∣
y=h2

= 0. (11)

It is interpreted as a condition characterizing the property of the upper boundary to

instantly absorb the vapor or as a condition defining the condensation (Goncharova et

al 2013, Goncharova et al 2015b). In the last case a crucial question is an assumption

on a constant character of the concentration at the solid boundary instead of taking

into account its temperature dependence. However, we consider condition (11) to be

physically plausible in the moderate temperature range.

At the interface y = 0 the kinematic and dynamic conditions should be satisfied.

Since the mass transfer is not considered in the kinematic condition, this condition holds

automatically due to the form of the exact solution (6). The projections of the dynamic

condition on the tangential and normal vectors to the interface can be written as follows

(Andreev et al 2012, Goncharova and Rezanova 2014b):

p1 = p2, ρ1ν1
du1

dy
= ρ2ν2

du2

dy
+ æ

∂T

∂x
. (12)

The conditions of continuity of the longitudinal velocities and temperature are also

imposed at the interface

u1 = u2, T1 = T2. (13)

Because of the last relation the equality of the coefficients a1
1=a2

1 = A should hold.

The heat transfer condition with the diffusive-type evaporation at the interface

y = 0 has the form (Andreev et al 2012, Goncharova and Rezanova 2014b)

k1
∂T1

∂y
− k2

∂T2

∂y
− δk2

∂Cs

∂y

∣∣∣∣
y=0

= −LM. (14)

Here, L is the latent heat of evaporation, M is the evaporation mass flow rate, k1, k2

are the heat conductivity coefficients. The evaporation effects are taken into account

only in the heat transfer condition at the interface. The convective mass transfer is

not considered; only the diffusive mass flux at the interface is assumed. The heat

consumption for vaporization is taken into consideration in the heat balance condition

(Shliomis and Yakushin 1972, Kuznetsov 2010). The evaporation mass flow rate should

satisfy the expression of the mass balance at the interface, including the Soret effect in

the gas phase:

M = −Dρ2

(∂Cs

∂y

∣∣∣∣
y=0

+ α
∂T2

∂y

∣∣∣∣
y=0

)
. (15)

The condition (15) is single out for computational convenience and for

determination of a relationship between the thermal and mass balance conditions at

interface. At the same time, in calculations it allows one to show M that is an additional

quantitative characteristic of the flow and is interesting for comparison with experiments.

The form of the solution allows one to realize the case of linear dependence of M on
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the longitudinal coordinate. However, in constructing the solution we realize exactly

the case with the constant evaporation mass flow rate M . An interest to this situation

has been dictated by comparison of the quantitative flow characteristics obtained in the

experiments (Goncharova et al 2015b). At present the experimental data are presented

as the trendlines (Lyulin and Kabov 2013, 2014).

In the case when the upper layer of the system is filled by a one-component medium,

the concentration of the admixture (of vapor) in the liquid is taken to be equal to 1. The

saturated vapor should be above the surface of such a liquid (Shliomis and Yakushin

1972). The saturated vapor concentration is found using the relation

Cs|y=0 = C∗[1 + ε(T2|y=0 − T0)], (16)

that is a consequence of the Clapeyron –Clausius equation P = P0 exp[(Lµ0/R
∗)(1/T0−

−1/T )] and the Mendeleev –Clapeyron equation for an ideal gas ρυRT = µ0P . A similar

approach to derive the relation for the vapor concentration at the interface was used

in (Ghezzehei et al 2004, see also Shliomis and Yakushin 1972, Gatapova and Kabov

2008). Here, P0, T0 are the functions describing some initial state, R∗ is the universal

gas constant, µ0 is the molar mass of the evaporating liquid, ε = Lµ0/(R
∗T 2

0 ), C∗ is the

saturated vapor concentration at T2 = T0 (T0 is equal to 20o in (Shliomis and Yakushin

1972, Goncharova and Rezanova 2014b)), ρυ = Cρ2. If Cs = 1 in the liquid layer and

the exact balance condition of the vapor mass is considered, then the value of the mass

rate of evaporation will be determined as follows (Nakoryakov et al 2003, Haut and

Colinet 2005, Gatapova and Kabov 2008, Kuznetsov 2010, Goncharova 2012a):

M = − Dρ2

1− Cs

(∂Cs

∂n
+ α

∂T2

∂n

)
.

Equation (16) is obtained, given the smallness of the parameter (εT∗) for moderate

temperature variations (Goncharova et al 2103, Goncharova and Rezanova 2014b). Here,

T∗ is the typical value of a temperature drop. Note that the exact mass balance

relation requires using the coefficient D∗ equal to the diffusion coefficient divided by

(1−Cs) instead of D in (15) (Nakoryakov et al 2003, Haut and Colinet 2005, Gatapova

and Kabov 2008, Goncharova 2012a). According to the previous assumptions on the

moderate values of the temperature and its variations the condition of smallness of the

parameter (C∗εT∗) is valid so that we can make a conclusion that D∗ = D/(1− C∗).
The influence of the Soret and Dufour effects on the evaporation velocity was

investigated in (Maciev and Stasenko 1987, Maciev et al 1987).

The relation should be included into the problem statement, which determines the

mass flow rate of the gas R in the upper layer:

R =

h2∫

0

ρ2u2 (y) dy. (17)

In the strict sense, solution (6) can not be called an exact one and applied for

studying real fluid flows, in particular, because of the infinite domain of the flow. But

this was confirmed in experimental and numerical studies by Kirdyashkin A.G. and
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co-authors (see, for example, Kurdyashkin et al. 1983) for the channel with the finite

length. The flows, which can be described by the solution, are unidirectional ones and

they are realized in experiments investigating the properties of the convective flows with

evaporation (Lyulin and Kabov 2013, 2014, Lyulin et al 2015).

An analytical study of the presented exact solutions allows one to estimate the

degree of the influence of different factors on the flow character and evaporation

dynamics and also, to forecast the experimental results.

3. Analysis of the exact solution. Classes of flows

3.1. Analysis of taking into account the Soret effect in mathematical modeling

The solution given by (6) seems to be simple, but the construction of the solution

requires a carefully elaborated algorithm of finding the integration constants (see (7)).

In order to find the constants it should be specified what problem parameters are given.

An assumption should be made defining the physically correctly given parameters of the

problem.

The investigation of the exact solutions (6) in the case with the constant evaporation

mass flow rate M allows one to estimate the extent of the influence of various effects on

the flow character, including the Soret and Dufour effects. The degree of the influence is

found to depend on the type of the boundary condition for the vapor concentration on

the upper solid wall y = h2. Let the vapor concentration on this wall be equal to zero (the

condition of vapor absorption (11)). In this case a relation is established between the

coefficients A, A1 and A2. The coefficients define the longitudinal temperature gradients

which should be maintained on the channel boundaries (see, for example, Goncharova

et al 2015b). The given thermal conditions on the solid walls (9) are imposed by the

form of the exact solutions. Other types of the conditions for the temperature on the

solid boundaries can also be satisfied (Goncharova 2015a).

If one of the temperature gradients on the channel boundary, for example, A1, is

set, then the values of other longitudinal gradients are determined:

A =
αA1

α +
h1

h2

k2

k1

C∗ε(αδ − 1)
, A2 =

A1(α + C∗ε)

α +
h1

h2

k2

k1

C∗ε(αδ − 1)
.

If the Soret effect is not taken into consideration (α = 0), then the temperature

gradient along the interface should be taken to be equal to zero A = 0. Thus, modeling

of the thermocapillary convection will be impossible in this case. Upon specifying one

temperature gradient on the solid boundaries, for example, A1 as earlier, one obtains

another gradient A2 based on the heat transfer condition:

A2 = −A1
h2

h1

k1

k2

.

The exact solution (6) imposes the peculiar compatibility conditions between

the coefficients defining the longitudinal temperature gradients A, A1 and A2, and

concentrations b1, b2.
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Let condition (10) be imposed on the boundary y = h2, which is usually used

in the investigations of the problems with the evaporation at the interface (Gatapova

and Kabov 2008, Nakoryakov et al 2003, Goncharova and Rezanova 2014b). If the

Soret effect is taken into account, then the equality of all the longitudinal temperature

gradients A = A1 = A2 should hold. If the Soret effect is neglected in the mathematical

modeling of the two-layer flows using the exact solution (6), then two of the three

temperature gradients on the boundaries y = 0, y = −h1, y = h2 can be given,

for example, A and A1, but the value of the third temperature gradient should be

in agreement with the known values:

A2 = A + (A− A1)
h2

h1

k1

k2

.

If A,A1, A2 are known, then a1
2 and a2

2 (see (6)) can be calculated.

The analysis results of the Soret effect on the peculiarities of the fluid flows

connected with modeling the thermal boundary regimes are presented in Table 1. The

analysis of the constructed solutions shows the impact of the thermodiffusion effect (the

Soret effect) not only on the temperature and vapor concentration profiles and values

of the mass rate of evaporation, but also on the velocity profile.

Let (uj(α, y), Tj(α, y), pj(α, y), Cs(α, y)) denote solution (7) of equations (1) -

(5) constructed taking into account the Soret effect (α 6= 0). Let also (uj(0, y),

Tj(0, y), pj(0, y), Cs(0, y)) be the solution (7) of equations (1) - (5) without taking

into consideration the thermodiffusion effect in the upper layer, which are written

at α = 0. The limiting transition (uj(α, y), Tj(α, y), pj(α, y), Cs(α, y)) → (uj(0, y),

Tj(0, y), pj(0, y), Cs(0, y)) takes place at α → 0.

The algorithms for determining the integration constants for some boundary value

problems are described in detail in (Goncharova and Rezanova 2014b, Goncharova et al

2015b).

The exact form of the coefficients Lj
4, Lj

3, N j
i , Kj

m, Si (i = 2, .., 7, m = 1, .., 8) and

dj
i (i = 1, 2, 3) can be found in (Goncharova et al 2016).

3.2. Classes of flows

The solutions of special type (6) were constructed and studied in (Goncharova et al

2013) to investigate the two-layer fluid flows with evaporation which are subject to the

Dufour effect in the gas phase and under additional conditions implying the closeness of

the flows in both liquid and gas-vapor phases. Under the condition of the given gas flow

rate (17) a solution was constructed in (Goncharova and Rezanova 2014b, Goncharova et

al 2015b); the solution describes the flows with evaporation at the interface, if conditions

(10) (see (Goncharova and Rezanova 2014b)) and (11) (see (Goncharova et al 2015b))

are satisfied in the upper solid boundary. In (Goncharova et al 2015b) the results

of mathematical modeling of the two-layer flows are presented with and without the

Soret and Dufour effects in the upper layer. In the same paper the examples of the

velocity and temperature profiles are presented for the system “HF7100-nitrogen” with
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Table 1. Analytical investigation results of the Soret effect on the fluid flow features

under constant evaporation mass flow rate M , depending on the temperature regime

and vapor concentration on the boundaries

Flow 1: Condition of

the zero vapor concen-

tration (11) and tak-

ing into account the

Soret effect (α 6= 0)

Flow 2: Condi-

tion of the zero

vapor concentra-

tion (11) with-

out considering

the Soret effect

(α = 0)

Flow 3: Con-

dition of the va-

por flux absence

(10) and taking

into account the

Soret effect (α 6=
0)

Flow 4: Condi-

tion of the vapor

flux absence (10)

without consid-

ering the Soret

effect (α = 0)

A calculated: A =
αA1

α +
h1

h2

k2

k1

C∗ε(αδ − 1)

A = 0 (A =

=
b1

C∗ε
)

A = A1 = A2

(given)

given

A1 given given A = A1 = A2

(given)

given

A2 calculated: A2 =
A1(α + C∗ε)

α +
h1

h2

k2

k1

C∗ε(αδ − 1)

calculated:

A2 = −A1
h2

h1

k1

k2
(consequence of

the heat transfer

condition)

A = A1 = A2

(given)

calculated:

A2 = A + (A −
−A1)

h2

h1

k1

k2

b1 b1 = C∗εA (b1 =

= −b2h2)

b1 = 0 (b1 =

= −b2h2)

b1 = C∗εA b1 = C∗εA

b2 b2 = −C∗εA
h2

b2 = 0 (b2 =

= −α
A2 − A

h2

;

consequence of

the mass balance

condition)

b2 = 0 (b2 =

= −α
A2 − A

h2

)

b2 = 0

different values of the gas flow rates and longitudinal temperature gradients A, Aj. The

analytical and experimental results of the liquid evaporation at the thermocapillary

interface are compared in (Goncharova et al 2015b); the qualitative, and in some cases,

the approximate quantitative coincidence of the results was found.

The key novelty of the present work is the detailed analysis of the exact solution

(6), depending on the inclusion/exception of the Soret effect and the boundary condition

type for the vapor concentration function. We have also explained the limiting transition

from the presented solution with the Soret effect into the earlier studied solution without

this effect. This problem is not so evident because of the consideration of the possibility

to control the flows (the types of the flow patterns) relative to the thermal boundary
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regimes and, at the same time, relative to the possibility of determining the interface as a

thermocapillary boundary. And finally, we suggest some classification of flows admitted

by the considered exact solution, depending on the boundary condition for the vapor

concentration function and value of the Soret parameter (see Table 1).

The structure of the Ostroumov –Birikh solution allows one to describe various

types of flows appearing in the two-layer systems (Andreev and Bekezhanova 2010,

Sanochkin 1989). The two-phase flow can be controlled if the linear thickness of the

working media, values of the longitudinal temperature gradients and gas flow rates

change. Furthermore, it is possible to choose such values of controlling actions that the

liquid velocity should be equal to zero and the liquid be at rest (see the analysis of the

Ostroumov – Birikh solution in the problem on the two-layer flow without evaporation,

Andreev and Bekezhanova 2010).

The typical distributions of the velocity, temperature and concentration in the

system of media HFE7100 – nitrogen for Flow 4 (α = 0 and the condition of the vapor

flux absence (10)) under different thermal loads on the outer walls of the channel, gas

flow rates and linear sizes are shown in figures 2 and 3. For all the cases, the gas flow

rate R, sizes of the layers hj, values of the longitudinal temperature gradients A1, A2,

A and mass velocity of the evaporated/condensated (if M < 0) liquid M are given. The

applied values of the physical parameters of the media are presented in Table 2.

According to (Napolitano 1980) we single out the flows with the Poiseuille’s velocity

profile (figures 2a, 2c, 3a), purely thermocapillary (figures 2b, 3b) and mixed (figure 3c)

profiles, depending on dominant effects. In the first case the flows have a structure close

to the Poiseuille’s distribution (figures 2a, 3a) in each layer. The flows with the return

motions near the channel walls in one of the layers (figure 2c) can also be attributed to

this flow type. In this case the thermocapillary effect in the liquid phase is suppressed

by gravity; however, in one of the layers the reverse flows can be formed in the wall area.

The velocity of the return flow increases with increasing the intensity of the thermal

load on the channel walls, but the Poiseuille’s structure of the velocity distribution is

kept. The pressure function has a complex structure and it increases downstream in the

medium where the near-wall return flow arises. In the second medium the viscous effects

are dominant. These factors result in the formation of these types of the velocity profiles.

Similar flows appear also in the analogous problem with the additional condition of the

closed flux which defines the appearance of zones of the return flows (Goncharova et al

2013). Furthermore, the near-wall reverse flow is formed if the following conditions are

satisfied simultaneously: the non-zero gas flow rate is given, the zero liquid flow rate is

set and the temperature gradients on the channel walls have opposite signs (Goncharova

and Rezanova 2014b).

The flows with the purely thermocapillary profile are the flows with only return

motion in the liquid phase (figures 2b, 3b). These flows appear due to the

thermocapillary effect. This type of the velocity distribution arises in the system with

small thicknesses or at rather large Aj > 0 (i. e. the walls heated up in the direction
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Table 2. Values of the physical parameters

Parameter HFE-7100 Nitrogen

Density ρ, kg/m3 1.5 · 103 1.2

Kinematic viscosity ν,

m2/s

0.38 · 10−6 0.15 · 10−4

Thermal expansion coeffi-

cient β, K−1

1.8 · 10−3 3.67 · 10−3

Temperature coefficient of

the surface tension σT ,

N/(m·K)

−1.14 · 10−4

Diffusion coefficient D,

m2/s

0.7 · 10−5

Latent heat of evaporation

L, (W·s)/kg

1.11 · 105

Heat conductivity coeffi-

cient k, W/(m·K)

0.07 0.02717

Heat diffusivity coefficient

χ, m2/s

0.4 · 10−7 0.3 · 10−4

Concentration expansion

coefficient γ

−0.5

Saturated vapor concen-

tration C∗

0.45

Dufour coefficient δ, K 10−5

of stream axis) when the fluid moves from the hot pole to the cold one. In this case

it is clearly visible that the minimum temperature is reached near the interface due to

the presence of the evaporation effects. The flows with the mixed velocity profile are

characterized by the velocity “delamination” near the interface, but inside the layers the

flow topology is defined by non-zero pressure gradient (figure 3c). If Aj, A are positive,

the reverse flow is formed near Γ, and if Aj, A are negative, the appearance of a “wedge”

is due to the co-directional action of the thermocapillary mechanism and shear stresses.

It should be noted that the thickness of the liquid layer does not affect the vapor

concentration field which considerably depends on the values of the gas flow rates and

temperature gradient.

4. Non-dimensional variables and parameters

Thus, the exact solution (6) can describe different types of flows. Further investigations

will be carried out for Flow 4 on condition that T20 = T10 = 20 oC.

We introduce the characteristic values and specify the units of physical parameters

for the coupled problem on the basis of the characteristic values for the vapor – gas
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Figure 2. Distributions of the velocity (solid line), temperature (left) and concentration
(right) for Flow 4: a) — h1 = h2 = 5 mm, R = 9.6 · 10−6kg/(m·s), A1 = 5 K/m,
A2 = −10 K/m, A = 0.8058 K/m, M = 2.054 · 10−7 kg/(m2·s); b) — h1 = h2 = 2 mm,
R = 9.6 · 10−6kg/(m·s), A1 = A2 = A = 30 K/m, M = 7.646 · 10−6 kg/(m2·s); c) —
h1 = h2 = 5 mm, R = 9.6 · 10−6kg/(m·s), A1 = −5 K/m, A2 = 10 K/m, A = −0.8058 K/m,
M = −2.054 · 10−7 kg/(m2·s).

mixture. Let the linear size of the vapor – gas layer in the y-direction h2 be the

characteristic length, ν2/h2, ρ2ν
2
2/h

2
2, T20 are the characteristic velocity, pressure and

temperature, respectively. Non-dimensional variables have the following form: η = x/h2,

ξ = y/h2, τ = ν2t/h
2
2. For any parameters of the medium ωj, a non-dimensional analogue

ωj = ωj/ω2 is introduced. Thus, the domain −h ≤ ξ ≤ 0 corresponds to the index j = 1

and 0 ≤ ξ ≤ 1 corresponds to j = 2.

The following non-dimensional parameters appear:

Pr =
ν2

χ2

, Gr =
gβ2T20h

3
2

ν2
2

, Ma =
æAh2

2

ν2
2ρ2

,

Ga =
gh3

2

ν2
2

, Le =
D

χ2

, Q =
Ah2

T20

,

(18)
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Figure 3. Distributions of the velocity (solid line), temperature (left) and concentration
(right) for Flow 4, h1 = 1 mm, h2 = 5 mm: a) — R = 9.6 · 10−4kg/(m·s), A1 = A2 = A =
−5 K/m, M = −1.328 · 10−4 kg/(m2·s); b) — R = 9.6 · 10−7kg/(m·s), A1 = A2 = A = 5 K/m,
M = 1.328 · 10−7 kg/(m2·s); c) — R = 9.6 · 10−7kg/(m·s), A1 = A2 = A = −5 K/m,
M = −1.328 · 10−7 kg/(m2·s).

where Pr, Gr, Ma, Ga Le are the Prandtl, Grashof, Marangoni, Galilei and Lewis

numbers, respectively. The sign of the Q parameter defines the character of the thermal

load on the channel walls, the values Q < 0 correspond to cooling of the walls in the

direction of the Ox axis, and the values Q > 0 correspond to heating.

The concentration is a non-dimensional function, and the non-dimensional velocity

u′j, temperature T ′
j and pressure p′j are defined as follows:

uj =
ν2

h2

u′j, Tj = T20T
′
j , pj =

ρ2ν
2
2

h2
2

p′j. (19)

The primes will be omitted further. Now equations (1) – (5) have the following form

−h < ξ < 0 : u1τ + u1u1η + v1u1ξ = −1

ρ
p1η + ν (u1ηη + u1ξξ) ,
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v1τ + u1v1η + v1v1ξ = −1

ρ
p1ξ + ν (v1ηη + v1ξξ) + βGrT1, (20)

u1η + v1ξ = 0,

T1τ + u1T1η + v1T1ξ =
χ

Pr
(T1ηη + T1ξξ) ,

0 < ξ < 1 : u2τ + u2u2η + v2u2ξ = −p2η + u2ηη + u2ξξ,

v2τ + u2v2η + v2v2ξ = −p2ξ + v2ηη + v2ξξ + GrT2 + γGaCs,

u2η + v2ξ = 0, (21)

T2τ + u2T2η + v2T2ξ =
1

Pr

[
T2ηη + T2ξξ +

δ

T20

(Csηη + Csξξ)

]
,

Csτ + u2Csη + v2Csξ =
Le

Pr
(Csηη + Csξξ) .

Conditions (8) – (10) on the boundaries ξ = −h, ξ = 1 are the following

u1 (−h) = 0, u2 (1) = 0, Csξ(1) = 0,

T1 (η,−h) =
A1

A2

Qη +
T10

T20

, T2 (η, 1) = Qη + 1.
(22)

On the interface ξ = 0 conditions (12) – (16) are rewritten as follows

u1 = u2, T1 = T2, p1 = p2, ρνu1ξ = u2ξ +
Ma

Q
Tη,

kT1ξ − T2ξ − δ

T20

Csξ

∣∣∣∣
ξ=0

=
DLρ2

k2T20

Csξ

∣∣∣∣
ξ=0

,

Cs

∣∣∣∣
ξ=0

= C∗[1 + εT20(T2

∣∣∣∣
ξ=0

− T ′
0)].

(23)

The gas flow rate in the upper layer (17) is rewritten

1∫

0

u2 (ξ) dξ = Re, (24)

where the non-dimensional parameter Re = R/(ρ2ν2) is the flow rate’s Reynolds number.

5. Stability problem

5.1. Linearized equations

Let us introduce new unknown functions
(
Ûj, P̂j, T̂j, Ĉ

)
= (uj, pj, Tj, Cs) + (Uj, Pj, Θj, C) , (25)

where uj, pj, Tj, Cs are the solutions (6), Uj = (Vj, Wj), Pj = Pj(τ, η, ξ), Θj =

= Θj(τ, η, ξ), C = C(τ, η, ξ) are the small perturbations of velocity, pressure,

temperature and concentration, respectively.



17

We consider the problem with condition (10) for the vapor concentration. Under the

assumption that function (25) is the solution of the boundary problem (20) – (24), the

linearization of equations (20), (21) near the stationary solution (7) results in the system

of equations for small disturbances (see, for example, (Lin 1955, Landau and Lifshitz

1959, Betchov and Criminale 1967, Drazin and Reid 1981)). In the general case, when

a1
2, a

2
2 6= 0, the derivatives of the known functions (6) depending on η and ξ are included

in the above mentioned system of equations. In this case the normal mode analysis is

not applicable and the investigation of the solution stability is reduced to the numerical

solving the spatial – temporal problem in terms of “stream function – vorticity”.

Let us introduce the functions (ω, Ω) and (ψ, Ψ) as usual:

(u, U) =
∂(ψ, Ψ)

∂ξ
, (v, V ) = (0, V ) = − ∂(ψ, Ψ)

∂η
,

(ω, Ω) = (vη − uξ, Vη − Uξ) = (0− uξ, Vη − Uξ) = (−uξ, Vη − Uξ),

where Ψ and Ω are the perturbations of the stream function and vorticity,

correspondingly.

In view of the solution type, ψ does not depend on η, ψ = ψ(ξ) and ω = −uξ.

Then, the basic system has the following form:

Ω1τ +
∂ψ1

∂ξ
Ω1η − ω1ξ

∂Ψ1

∂η
= ν4Ω1 + βGrΘ1η,

4Ψ1 = −Ω1, (26)

Θ1τ +
∂ψ1

∂ξ
Θ1η + θ1η

∂Ψ1

∂ξ
− θ1ξ

∂Ψ1

∂η
=

χ

Pr
(Θ1ηη + Θ1ξξ),

Ω2τ +
∂ψ2

∂ξ
Ω2η − ω2ξ

∂Ψ2

∂η
= 4Ω2 + GrΘ2η + GaγCη,

4Ψ2 = −Ω2, (27)

Θ2τ +
∂ψ2

∂ξ
Θ2η + θ2η

∂Ψ2

∂ξ
− θ2ξ

∂Ψ2

∂η
=

1

Pr

(
(Θ2ηη + Θ2ξξ) +

δ

T20

(Cηη + Cξξ)

)
,

Cτ +
∂ψ2

∂ξ
Cη + cη

∂Ψ2

∂ξ
− cξ

∂Ψ2

∂η
=

Le

Pr
(Cηη + Cξξ).

The boundary conditions on the outer walls are the following:

∂Ψ1

∂ξ

∣∣∣∣
ξ=−h

= − ∂Ψ1

∂η

∣∣∣∣
ξ=−h

= Θ1

∣∣∣∣
ξ=−h

= 0,

∂Ψ2

∂ξ

∣∣∣∣
ξ=1

= − ∂Ψ2

∂η

∣∣∣∣
ξ=1

= Θ2

∣∣∣∣
ξ=1

= 0, (28)

Cξ(1) = 0. (29)

The kinematic condition on Γ (ξ = 0) guarantees that the following equalities

should hold

Ψ1η = Ψ2η = Ψη = 0.
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Furthermore, the following conditions are to be valid at the interface

∂Ψ1

∂ξ

∣∣∣∣
ξ=0

=
∂Ψ2

∂ξ

∣∣∣∣
ξ=0

= Ψξ,
∂Ψ1

∂η

∣∣∣∣
ξ=0

=
∂Ψ2

∂η

∣∣∣∣
ξ=0

= Ψη.

The first of these conditions implies the equality of the tangential velocity perturbations,

and, consequently, the equality of their derivatives with respect to the tangential

direction η. The presented conditions can be rewritten as Ψ1ξ = Ψ2ξ, Ψ1 = Ψ2 = 0.

The first of them will be used below in derivation of the normal part of the dynamic

condition in terms of Ψ and Ω (see (33)). Thus, only conditions

Ψ1 = Ψ2 = 0 (30)

remain and will be used directly.

The conditions of the energy balance and continuity of the temperature field lead

to

kΘ1ξ −Θ2ξ − δ

T20

Cξ = 0, Θ1 = Θ2. (31)

Due to the form of the solution ψj = ψj(ξ) and ψjη = 0, and with the help of the

equality Ψ1ξ = Ψ2ξ, the tangential and normal components of the dynamic conditions

for perturbations can be written as

Ω2 − νρΩ1 =
Ma

Q
Θη, (32)

Ω2ξ − νρΩ1ξ + (1− ρ)(ψξΨξη + Ψξτ ) + 2(νρΨ1ηξη −Ψ2ηξη) = 0. (33)

In derivation of the conditions on Γ we have assumed that the interface remains

to be non-deformed, i.e. the perturbations of the desired functions do not lead to

the interface perturbations. Let us note that the most problems with interface are

characterized by small values of the Crispation number Cr = ρνχ/σT h (in studied case

Cr = 4 · 10−5). A procedure of a expansion in powers of Cr, was presented in the

review (Puknachov 1989). We suppose that in the first approximation the interface is

the interface of capillary equilibrium. The questions related with interface correction

can be solved, for instance, according to (Zebib A. et al. 1985, Myshkis et al 1987,

Andreev et al 2000).

For numerical calculations the finite region with respect to the η and ξ directions

is necessary. Let us limit the computational domain on η by length −l′ ≤ η ≤ l′.
Thus, we suppose the flow domain is limited on the left and right sides with respect

to the longitudinal axis by fully permeable undeformed walls. Then, the basic solution

is interpreted to be the one describing the flow on the working section. It is necessary

to have such a length of the section so that we could observe perturbations with the

wavelength being shorter than the section length. It is known from the normal wave

analysis that the wavelength of the disturbances, leading to instability, is smaller than

2π. Taking into account the accepted non-dimensionalization we have l ≥ 2πh2. Thus,

it is sufficient to choose the computational domain with l = 10πh2 in the dimensional

variables and with l′ = 10π in the non-dimensional ones.
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The boundary conditions for the perturbations on η = −l′ and η = l′ are

Ψ1η = Ψ2η = 0, (34)

Ψ1 = Ψ2 = 0, Θ1 = Θ2 = 0, C = 0. (35)

Condition (34) is imposed by the form of the exact solution (v = −ψη = 0).

Conditions (35) mean that the perturbations fade out on the boundaries of the working

area and influence the flow properties inside the computational domain only.

The evolution of the perturbations is investigated on the basis of the systems of

equations (26), (27) for the non-stationary perturbations periodical with respect to

the longitudinal coordinate, which are proportional to exp(iqη). Here, q is the quasi-

wavenumber of the perturbations (Ziman 1972).

Taking into account the last assumption the following initial conditions are added

to the obtained system:

Ψjξ(0, η, ξ) = Ψ0
jξ (η, ξ) = ±γu

j ψjξ · exp(iqη),

Ψjη(0, η, ξ) = Ψ0
jη (η, ξ) = ±γv

j ψjη · exp(iqη),

Ωj(0, η, ξ) = Ω0
j(η, ξ) = ±γω

j ωj · exp(iqη), (36)

Θj(0, η, ξ) = Θ0
j (η, ξ) = ±γT

j T j · exp(iqη),

C(0, η, ξ) = C0 (η, ξ) = ±γc
jCs · exp(iqη),

where overlined notations are the averaged magnitudes, which are defined as follows

f j =
1

2hl′

0∫

−h

l′∫

−l′

f(η, ξ) dξdη, if j = 1,

f j =
1

2l′

1∫

0

l′∫

−l′

f(η, ξ) dξdη, if j = 2,

(37)

for each characteristic f of the basic flow. The quantities γu
j , γv

j , γ
ω
j , γT

j , γc
j are the

components of the corresponding vector γj and γc
1 ≡ 0. The behavior of perturbations

in time depends on relations among these components. Furthermore, the relations

among these components are defined by governing equations and boundary conditions.

The corresponding relationships can be found as a result of substitution of the initial

conditions (36) into the problem (26)-(35). Each component of γj can have such values

that the amplitudes of the harmonics (36) do not exceed 10% from the magnitude of

the corresponding characteristic of the basic flow ψ, ω, T , Cs.

Additionally, let us describe a way of computation of the terms of the equation

4Ψj = −Ωj. Having the exact expressions for the velocity components in the terms

of the variables (u, v) we postulate that the initial values Ψ0
jξξ and Ψ0

jηη are computed

as Ψ0
jξξ = ±γu

j ψjξξ · exp(iqη) and Ψ0
jηη = ±γu

j ψjηη · exp(iqη), where the averaged values

ψjξξ and ψjηη are calculated according to (37). Then the equation 4Ψj = −Ωj is valid,

if the connection q2γu
j = γω

j exists. It should be noted that the use of this way requires
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an additional smoothness of the functions (u, v). The requirement is satisfied for the

considered exact solution.

The method of the problem solution (26) – (36) is based on the algorithms suggested

in (Goncharova et al 2012b, Vozovoi and Nepomnyashchii 1982).

6. Possible regimes. Analysis of the results

For the system HFE-7100 – nitrogen a series of calculations have been performed for

the configuration l1 = l2 = 5 mm and for different values of the gas flow rate R and

gradients A1 6= A2.

The computations show that in the system both the monotonic and oscillatory

regimes can be formed. These disturbances can damp or grow, depending on γj (which

defines the amplitude of the initial perturbations), gas flow rates R and temperature

gradients Aj, A. Depending on the q values, intensity and type of the external

action both the thermocapillary (figures 4 and 6) and hydrodynamic (figures 5 and

7) mechanisms can play a dominant role.

In figure 4 the typical distributions of the thermocapillary pattern are presented.

The rapid monotonic damping of the perturbations of all the characteristics (velocity,

temperature and concentration) is observed even for high amplitudes of the initial

perturbations if R and positive A are small. The appearing transversal rolls fade out

and the velocity disturbances are localized near Γ due to the Marangoni effect. The

appearing vortices define entirely the distribution of the concentration perturbations,

which generate concentration “rolls” throughout the thickness of the gas phase. With

time the perturbations fade out and these “rolls” turn into “spots”. The concentration

“spots” drift additionally due to the interaction with the basic flow. The analogous

transition from the “rolls” into “spots” takes place for the thermal perturbations. So,

the thermocapillary effect stabilizes the basic flow at small R and A > 0.

If the temperature gradients remain quite small but the flow rate increases, then

it leads to unstable regimes (figure 5). For each fixed A a critical value of the gas

flow rate R at which the perturbations start growing, can be calculated. If A < 0 or

the initial temperature perturbations in the layers have different signs, the instability

develops more quickly. If A < 0, the action of the Marangoni and shear mechanisms

is co-directional, resulting in the growth of hydrodynamic perturbations, whereas the

thermal and concentration ones damp slowly (figure 5). The most important points in

the different modes of the temperature perturbations in the layers are the type of the

basic flow and the value of the initial velocity perturbations. Only the flows with the

purely thermocapillary profile of the velocity will be stable if γu
j and γv

j are small. Thus,

we can select the dominant mechanism. At quite large R the most dangerous are the

hydrodynamic perturbations. The instability has a hydrodynamic pattern, since the

thermocapillary forces are suppressed by shear stresses.
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Figure 4. Monotonically damping disturbances of the velocity, temperature and
concentration, R = 9.6 · 10−6kg/(m·s), A1 = 5 K/m, A = 0.8058 K/m, A2 = −10 K/m,
q = 5, |γj | = 0.07: a) — t = 0.5 s; b) — t = 2.5 s.

Figure 5. Monotonous instability of hydrodynamic character, growing disturbances of
velocity and damping disturbances of temperature and concentration, R = 9.6 · 10−4kg/(m·s),
A1 = −5 K/m, A = −0.8058 K/m, A2 = 10 K/m, q = 5, |γj | = 0.07: a) — t = 0.5 s; b) —
t = 4 s.

The increasing values of the gradients and gas flow rates lead to the formation

of the oscillatory modes (figures 6 and 7). They are caused by the influence of the

thermocapillary mechanism and shear stresses. These mechanisms are counteractive.

Under the action of the hydrodynamic perturbations the fluid moves in the direction of

the main flow, but the thermocapillary mechanism forces the particles to move in the



22

opposite direction. By increasing |γj| the oscillation frequency grows.

Damping or growing of the oscillatory disturbances are controlled by the values of

the initial disturbances. At quite small |γj| the disturbances attenuate, large vortices

fade out to the small ones and then, these small vortices are merged back into the large

ones, but the sizes of the “pulsating” vortices decrease gradually in the stable regimes

(figure 6) and they persist or increase in the unstable ones (figure 7). The field of the

concentration perturbations responds also to these oscillations of the vortices.

With the increasing pseudowavenumber q the sizes of the appearing structures

change: large-scale structures (vortices and thermal/concentration “rolls”) transform

into small-scale ones. It should be noted that at large gas flow rates R the increasing

q leads to the formation of high-frequency regimes. If R is small, then the increasing

q can result in the transition from the hydrodynamic patterns to the thermocapillary

ones.

7. Concluding remarks

The stationary exact solution of the stationary Oberbeck –Boussinesq equations has

been investigated in detail. The solution describes a joint flow liquid and a vapor-gas

mixture in a minichannel with solid outer walls. Basic equations take into account

the effects of thermodiffusion and diffusive heat conductivity additionally in the gas

phase. The considered solution is the analogue of the Ostroumov –Birikh solution of

the Oberbeck –Boussinesq equations. The solution has a group nature and describes

different classes of flows. A variety of the described types of flows is explained by the

properties of the solution (6). Also, the structure of the solution allows one to use

different classes of boundary conditions for the vapor concentration function Cs. The

influence of the boundary conditions and considered effects on the properties of the

solution and, consequently, on the characteristics of the two-layer flows are clarified

based on theoretical analysis. The classification of the flow types has been suggested,

depending on the boundary conditions for the Cs function and on the given parameters

of the problem.

The stability of one of the classes of the obtained solutions has been studied and

two different types of instabilities have been found. The behavior of the obtained

solutions has been investigated with different values of external actions (gas flow rates

R and longitudinal temperature gradients Aj, A). The stability of the basic Flow 4 is

guaranteed only if the values are small.

The suggested approach to study the influence of different mechanisms and

generation of the convective and concentration structures requires further development

since the obtained results can predict only some qualitative and quantitative features of

the joint flows of the evaporating fluid and co-current gas flux. Additional factors such
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Figure 6. Damping oscillatory disturbances of The velocity, temperature and concentration,
R = 9.6 · 10−5kg/(m·s), A1 = 50 K/m, A = 44.407 K/m, A2 = 30 K/m, q = 5, |γj | = 0.02:
a) — t = 0.5 s; b) — t = 1.5 s; c) t = 3 s, d) t = 5 s.

as thermophysical properties of the working media, linear sizes of the system should

be taken into account when further considering the problem. Furthermore, the critical

characteristics of the stability and influence of the problem parameters require a more

detailed study and specification.
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