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Abstract 

Stomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors 

affecting the stomatal conductance have been intensively studied but temperature has been largely neglected, 

even though it is one of the fastest changing environmental variables and it is rising due to climate change. In 

this study, we describe how stomata open when the temperature increases. Stomatal conductance increased by 

ca 40% in a broadleaf and a coniferous species, poplar (Populus deltoides x nigra) and loblolly pine (Pinus 

taeda) when temperature was increased by 10 °C, from 30 °C to 40 °C at a constant vapor pressure deficit of 

1 kPa. The mechanism of regulating stomatal conductance by temperature was, at least partly, independent of 

other known mechanisms linked to water status and carbon metabolism. Stomatal conductance increased with 

rising temperature despite the decrease in leaf water potential, increase in transpiration, increase in 
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intercellular CO2 concentration and was decoupled from photosynthesis. Increase in xylem and mesophyll 

hydraulic conductance coming from lower water viscosity may to some degree explain temperature 

dependent opening of stomata. The direct stomatal response to temperature allows plants to benefit from 

increased evaporative cooling during the heat waves and from lower stomatal limitations to photosynthesis 

but they may be jeopardized by faster depletion of soil water. 

Key words 

Ball-Berry model; elevated temperature; evaporative cooling; global change; heat waves; photosynthesis; 

stomatal conductance 
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TEXT 

Temperature is one of the most variable environmental factors. It changes diurnally, within the seasons of a 

year and, due to the climate change, it also has been gradually increasing over decades, a trend that is 

expected to continue through this century. Both mean temperature and temperature extremes are important to 

tree functioning and survival. Various tree species can withstand a wide temperature range, from temperatures 

well below zero °C to temperatures exceeding 50 °C. The high temperature limit is especially crucial and it is 

becoming ever more important: the frequency of extreme temperatures and the severity of heat waves have 

increased, and they are likely to increase further in the future.
1-3

 Temperature affects most plant physiological 

processes, including photosynthesis (Anet) and transpiration (E). Both, Anet and E, are regulated by stomatal 

conductance (gs) and they mutually affect each other.
4,5

 Therefore, the effect of temperature on stomata is 

often considered indirect, through changes in plant water status, photosynthesis or vapor pressure deficit 

(VPD). Very little is known about the direct effect of temperature on stomatal conductance (gs)
6
 which may 

exist independently from indirect mechanisms.
7,8

 Results of experiments that examined the direct dependence 

of stomatal conductance on temperature have not been consistent. Previous studies have reported a complete 

range of responses to increased temperature, including stomatal opening,
9–12

 no significant response,
13–16

 

stomatal closure,
17–19

 peaked response with maximum gs at temperatures optimal for photosynthesis
20

 or more 

complex responses.
21

 One possible explanation for these inconsistent results is that to isolate the direct effect of 

temperature on gs requires a well-controlled environment, particularly with respect to VPD, which is often hard 

to achieve. 

Therefore, we have conducted a controlled experiment in the growth chambers on two tree species with 

contrasting anatomy and physiology: a broad leaved species, poplar (Populus deltoides x nigra) and coniferous 

species, loblolly pine (Pinus taeda).
22

 We manipulated air temperature and VPD across large range (20 – 49 

°C and 0 – 10 kPa, respectively) and we repeated the measurements under well-watered and droughted 

conditions and under ambient and elevated CO2 concentration ([CO2], 400 and 800 µmol mol
1

). 

Photosynthesis and transpiration were measured on a leaf level at various levels of temperature and VPD 
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using a Li-Cor 6400. We addressed two questions: Does gs change with temperature at the same VPD, and if 

so, is it related to various indices of plant water status and photosynthesis? 

We have observed that gs increased with increasing temperature in both species in all tested environmental 

conditions (Figure 1). For example, when leaf temperature increased from 30 °C to 40 °C, gs increased by 

42% in poplar and by 40% in loblolly pine, at a VPD of 1 kPa and [CO2] of 400 mol mol
1

. Change in gs 

occurred quickly. Faster than the 30 minutes required to change temperature and stabilize VPD in the growth 

chamber. When VPD was high the effect of temperature on gs was larger than when VPD was low. Increase in 

[CO2] or decrease in soil water content lowered gs but even in at high [CO2] or low soil water content gs 

increased with increased temperature. 

We have tried to link this increase in gs to several indices of water status and photosynthesis but none of them 

could explain increase in gs across the whole range of temperature used in this study, 20 to 49 °C. Trees often 

regulate their stomatal conductance to maintain a specific transpiration rate across a wide range of VPD.
23

 

Loblolly pine adjusted gs in this manner but only at a given temperature. When temperature increased 

transpiration increased as well. Plants, at least isohydric ones, adjust their gs in response to leaf water potential.
24

 

Typically, gs lowers with a decline in water potential. In contrary, leaf water potential of both species 

decreased with increasing temperature but the stomatal opening response continued. Indices related to carbon 

metabolism also did not explain stomatal opening with temperature. Plants usually maintain a stable ratio 

between intercellular [CO2] (Ci) and atmospheric [CO2] (Ca).
25

 In our study, while Ci was relatively stable at a 

given temperature over large range of VPD, it became highly variable with changes in temperature. For 

example, in loblolly pine it ranged between 165 µmol mol
1

 at 20 °C to over 400 µmol mol
1

 at 49 °C which 

was more than the ambient [CO2] because photosynthesis became negative. One would expect a decrease of gs 

at this extreme temperature (i.e. to save water when it was pointless to keep stomata open for the 

photosynthesis) but we observed the contrary response: stomata opened even more. Many models,
26

 on the 

scale from leaf through plant and ecosystem
27,28

 and even global circulation models
29

 rely on the correlation 

between Anet and gs. Their central assumption is that when gs increases Anet increases as well and that this 
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relationship holds over the wide range of environmental conditions. This assumption worked in our experiment 

at the range of temperatures close to temperature optimum of photosynthesis. However, at temperatures of 40 

°C or more Anet was decoupled from gs and at the highest temperature (49 
o
C) it was apparent that gs had 

become independent of Anet because Anet was negative. Some studies indicated that under extreme 

temperatures during heat waves, that the relationship between Anet and gs was decoupled, and similar to our 

observations, A decreased, but gs did not.
16,17,30

 With heat waves becoming more frequent, for accurate 

predictions of trasnpiration we recommend introducing the decoupling of gs from Anet at extreme temperatures 

into models. 

The answer to why stomata opened with increasing temperature may be partly explained by a change in 

hydraulic conductivity of the pathway to the sites of evaporation.
31

 When temperature increases, viscosity of 

water declines, roughly by 20% per each 10 °C, and at the same time, mesophyll conductance increases, 

which may improve the supply of water to sites of evaporation increasing guard cell turgor and stomatal 

aperture.
16,32

 Resistance to water vapor and heat transfer among sites of evaporation and guard cells, which 

induce differences in temperature and VPD at these sites, may also regulate stomatal opening in response to 

transpiration and leaf temperature.
8
 

So far, we have discussed only disadvantages of increased stomatal conductance at extreme temperatures. 

What about the possible benefits for the plant? First, there can be an increased rate of evaporative cooling. In 

poplar, transpiring leaves were by up to 9 °C cooler than non-transpiring which facilitated its survival and 

maintained positive rates of photosynthesis at most extreme temperature, dry air and wet soil. On the other 

hand, loblolly pine which maintained much lower transpiration rates than poplar was able to achieve only a 1 

°C temperature difference. Furthermore, the cooling effect in both species was small when the soil was dry. 

The benefit for loblolly pine of increased gs at higher temperatures may be lower stomatal limitations to 

photosynthesis at higher temperatures. Stomata are the largest barrier for diffusion of CO2 into leaf 

mesophyll. Indeed, in loblolly pine at 30 °C and a high VPD (3.5 kPa) stomata limitation to the diffusion of 

CO2 was by far the greatest restriction to photosynthesis, constituting 78% of the total of stomatal and 
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mesophyll limitations combined. When temperature increased to 40 °C stomatal limitations fell to 23%. We 

did not see such a large change in poplar and stomatal limitations were low at all temperatures. Therefore, 

conifers may benefit more from a decrease in stomatal limitations more than broadleaves. That may be 

particularly advantageous for conifers as atmospheric [CO2] increases in response to climate change because 

their stomata have much less response to CO2 than broadleaves. In summary, increased stomatal conductance 

at higher temperatures may help trees to increase rates of photosynthesis and may help them survive short 

heat waves when there is enough water in the soil. However, it could have the disadvantage of quickly 

depleting soil water reserves during long heat episodes. 
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Figure 1 

Stomatal conductance (gs) of poplar (left panel) and loblolly pine (right panel) and its dependence on air 

temperature and vapor pressure deficit (VPD). Plants were measured in high soil moisture conditions and 

ambient [CO2]. Error bars indicate standard error of the mean (n = 6). Linear regression was used to fit the 

data at the same temperatures. 
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