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Abstract In several Russian northern lakes and rivers, Arctic cisco Coregonus autumnalis, least 

cisco C. sardinella, peled C. peled, tugun C. tugun, broad whitefish C. nasus, whitefish C. 

lavaretus and vendace C. albula were sampled in periods of officially permitted commercial 

fishery. Special attention was paid to contents (mg g-1 of wet weight) of eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA) in muscle tissues (filets), which are essential for human 

nutrition. The highest values of EPA+DHA content in semi-anadromous fish and freshwater fish 

were recorded for C. autumnalis from the Yenisei River, 17.60 mg g-1 wet weight, and for C. 

lavaretus from the Sobachye Lake, 16.61 mg g-1 wet weight, respectively. Intra-genus variations 

of EPA+DHA contents of Coregonus species were from 1.87 to 17.60 mg g-1 wet weight. Since 

the congeneric species were genetically close to each other, the variations in EPA and DHA 

contents were thought to be caused primarily by ecological factors: capability to migrations, type

of feeding and trophic status of aquatic ecosystems. In general, the majority of studied species 

appeared to be of a high nutritive value for humans, although unfavorable environmental 

conditions could considerably diminish this value. 
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Abbreviations

BFA Branched fatty acid(s)

CCA Canonical correspondence analysis

DHA Docosahexaenoic acid (22:6n-3)

EPA Eicosapentaenoic acid (20:5n-3)

FA Fatty acid(s)

FAME Fatty acid methyl ester(s)

GC-MS Gas chromatography - mass spectrometry

PL Phospholipids

PUFA Polyunsaturated fatty acid(s)

TAG Triacylglycerol(s)
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Introduction

In recent decades, many extensive clinical and epidemiological studies have demonstrated a key 

importance of polyunsaturated fatty acids of omega-3 family, namely eicosapentaenoic acid 

(EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) for healthy functioning of human 

cardiovascular and neural systems [1– 4]. To prevent many cardiovascular diseases and 

psychiatric disorders, a personal daily consumption of 0.5 – 1 g of EPA+DHA was recommended

by a number of national and international health organizations [5– 8]. The main food source of 

EPA and DHA for most humans is fish [9–12]. However, various fish species differ in EPA and 

DHA contents in edible biomass by more than two orders of magnitude [10]. Some fish species 

have too low contents of EPA and DHA and it is impossible to obtain the recommended daily 

dose by eating these fish [13, 14]. Thus, on the one hand, a continual improvement of databases 

on EPA and DHA contents in various fish species is necessary to provide individuals and public 

health officials with quantitative information on the desirable healthy intakes [5, 15]. On the 

other hand, it is important to comprehend causes of the great variations of EPA and DHA in fish 

biomass. 

In general, two groups of factors can control fatty acid (FA) composition and contents in 

aquatic animals: phylogenetic and ecological [14, 16, 17]. Relative contributions of these two 

groups of factors to fish FA contents, including that of EPA and DHA, are not completely known 

yet. Among ecological factors, feeding habits (planktivorous, benthivorous, piscivorous), habitat 

(marine vs freshwater, pelagic vs. demersal and oligotrophic vs. eutrophic) and water 

temperature are regarded to control FA contents of fish. For instance, pelagic-feeding species are 

regarded to be richer in lipids, including EPA and DHA than demersal fish [12, 18]. Piscivorous 

fish are believed to have a higher EPA and DHA contents [14, 19]. Marine fish seem to be richer

in polyunsaturated fatty acids (PUFA), including EPA and DHA, than freshwater species [20, 

21]. Fish from oligotrophic water bodies appeared to have comparatively higher PUFA contents 
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[22]. However, phylogenetic factor, i.e., species identity, may overweight the ecological factors 

regarding the control of EPA and DHA contents in fish [13, 23, 24]. Indeed, in spite of any 

ecological factors, maximum value of contents of EPA and DHA in species from, let’s say, order 

Salmoniformes are higher than that in order Cypriniformes [10]. Presumably, within each fish 

taxa (species, genus, …, order), there are genetically determined lower and upper limits of EPA 

and DHA contents, and only within these limits variations of the PUFA contents can be provided 

by ecological factors. 

It is desirable to know the putative limits of EPA and DHA contents in fish taxa for many 

theoretical and applied purposes. For instance, we need to understand, how global challenges, 

climate warming, anthropogenic pollution, eutrophication or biological invasions, which cause 

changes of natural fish species composition, will affect PUFA supply for humans. The 

information about the taxon-specific limits also seems to be useful for fish aquaculture, 

especially for introducing of new species, potentially rich in EPA and DHA. 

To determine the taxon-specific limits and to evaluate the contribution of ecological 

factors to EPA and DHA contents, it is necessary to quantify these contents as mass units, i.e., 

mg per g of fish biomass. Meanwhile, most published data are given in relative units, i.e. percent

of total FA [25]. Nevertheless, to estimate the nutritive value of fish for humans, it is necessary to

measure EPA and DHA contents in edible biomass (mg g-1), rather than then percent [18, 24, 26–

28]. 

Thus, the aim of our study was to evaluate variations of fatty acid composition and 

contents of EPA and DHA within commercially important species of genus Coregonus in water 

bodies of Russian Subarctic. To our knowledge, this was the first attempt to determine taxon 

(genus)-specific limits of EPA and DHA contents in wild fish. Besides, we aimed to test common

ideas concerning differences in EPA and DHA contents between planktivorous and benthivorous 

fish using congeneric species. At last, we aimed to supplement existing data on EPA and DHA 

contents in fish with previously unexplored species. 
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Materials and Methods

Standards and Reagents

All organic solvents were of analytical grade and were purchased from Khimreactivsnab (Ufa, 

Russian Federation). Sodium of 99.8 % grade was purchased from Acros Organic - Thermo 

Fisher Scientific (Geel, Belgium). We prepared 3 M sodium methoxide solution cautiously 

dissolving sodium in methanol. The solution was stored at 4 oC no more than a week prior usage.

Standards of methyl esters of individual fatty acids (FAME) and their mixtures [29] were 

purchased from Sigma-Aldrich (USA). Solutions of the standard compounds were prepared in 

hexane at a concentration range of 0.5-5 mg mL-1 and analysed by GC-MS. Methyl ester of 

nonadecanoic acid (Sigma-Aldrich, USA) was used as an internal standard, which stock solution 

in chloroform at concentration of 1 mg mL-1 was prepared and stored at -20 oC. 

Aquatic Environments

All sampled water bodies (Table 1) were oligotrophic (except nearly mesotrophic Lake Onega) 

and had low water temperature. Dominant phytoplankton taxa were Bacillariophyta [31, 38, 39]. 

A map of the sampled water bodies is given in Fig. 1. 

Fish Sampling

Fish of commercial sizes were obtained from local authorized fishers just after catching. 
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Following sampling was conducted in accordance with the BioEthics Protocol on Animal Care, 

approved by the Siberian Federal University. Species of genus Coregonus, collected in diverse 

water bodies, and numbers of samples are given in Table 2. Although feeding habits of these 

species were well known from literature, stomach contents of some specimens were taken for 

microscopic analyses to check their food items (Table 2).

Arctic cisco Coregonus autumnalis (Pallas, 1776) in the Yenisei River is semi-

anadromous fish, which feed in the Yenisei Gulf (the Kara Sea) and migrate in the river for 

spawning [40]. Arctic cisco is a pelagic feeder, which eats zooplankton, planktobenthic 

invertebrates and small fish [40] (Table 2).

Least cisco Coregonus sardinella Valenciennes, 1848 were caught in the Yenisei River 

and in the Sobachye Lake. Least cisco from the Yenisei River, like Arctic cisco, is semi-

anadromous fish, which feed in the Yenisei Gulf and migrate in the river for spawning. Least 

cisco from the Sobachye Lake is landlocked fish. Least cisco is primarily zooplanktivore [40] 

(Table 2).

Peled Coregonus peled (Gmelin, 1789) in the Yenisei River is planktivore-benthivore 

[40] (Table 2).

Whitefish Coregonus lavaretus (Linnaeus, 1758) were caught in the Yenisei River, in the 

Sobachye Lake, in the Keret River and in the Lake Onega. In the Keret River, C. lavaretus is 

semi-anadromous fish, which feed in in the White Sea. C. lavaretus in all the water bodies were 

benthivorous [40–43] (Table 2).

Tugun Coregonus tugun (Pallas, 1814) were caught in the Yenisei River and in the 

Sobachye Lake. Tugun is planktivorous-benthivorous species [40] (Table 2).

Broad whitefish Coregonus nasus (Pallas, 1776) were caught in the Yenisei River and in 

the Sobachye Lake. Broad whitefish is benthivore [40] (Table 2).

Vendace Coregonus albula (Linnaeus, 1758) in the Bolshoie Krasnoie Lake is planktivore

[44, 45]. 
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For biochemical analyses, samples of white muscle tissue of approximately 0.7-2 g, were 

taken 1 - 2 cm below the dorsal fin. When cutting the sample, we tried to avoid skin, red muscle 

and bones. The portion of muscle tissue was immediately weighed, placed into chloroform/ 

methanol mixture (2:1, by vol.) and kept until further analysis at −20 °C. The samples were 

transported to laboratory in 1-2 weeks under ice. Lipid analyses were done within two months 

after sampling. 

Fatty Acid Analysis

Lipids were extracted with chloroform/methanol (2:1, by vol.) three times, when tissues were 

simultaneously homogenized with glass beads in a mortar [11]. The extracts were dried with 

anhydrous Na2SO4 and chloroform and methanol were roto evaporated under vacuum at 35 oC. 

The extracted lipid was dissolved in 1ml of hexane, then 0.2 mL of 3 M methanolic sodium 

methoxide solution was added, and mixture was shaken vigorously for 1 min. Subsequently, the 

mixture was kept quiet at ambient temperature for 5 min, and finally 2.5 mL of hexane and 5 mL 

of a saturated solution of NaCl were added. Contents were mixed for 1 min, transferred in a 

separatory funnel, and the lower aquatic layer was discarded. The hexane layer was washed one 

more time with an aliquot of the solution of NaCl and twice with 5 mL of distilled water. The 

hexane solution of FAME was dried with anhydrous Na2SO4, and hexane was removed by roto-

evaporating at 30 oC. The FAME were redissolved in 150-300 μL of hexane prior 

chromatographic analysis. 

A gas chromatograph equipped with a mass spectrometer detector (model 6890/5975C; 

Agilent Technologies, USA) and with a 30-m long, 0.25-mm internal diameter capillary HP-

FFAP column was used for FAME analysis. Detailed descriptions of the chromatographic and 

mass-spectrometric conditions are given elsewhere [46]. The FAME were quantified according 
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to the peak area of the internal standard, 19:0-FAME, which we added to samples prior to the 

lipid extraction.

Statistical Analysis

Kolmogorov-Smirnov one-sample test for normality DK-S, standard errors (SE), Student’s t-tests, 

one-way ANOVA with post hoc Tukey HSD test, Kruskal-Wallis test (in the absence of normal 

distribution) and canonical correspondence analysis (CCA) [47] were calculated conventionally, 

using STATISTICA software, version 9.0 (StatSoft Inc., Tulsa, OK, USA). 

Results

Moisture content of studied species had a small range of variations. C. lavaretus from the 

Sobachye Lake tended to have the lowest value of moisture, 66.1 ± 2.9%, while C. sardinella 

from the Sobachye Lake tended to have the highest value, 78.3 ± 0.5%. 

The correspondence analysis demonstrated a marked partitioning of the same species 

from different water bodies, e.g., C. sardinella from the Yenisei River and the Sobachye Lake, C.

tugun from the Yenisei River and the Sobachye Lake, and C. lavaretus from the Keret River and 

the Yenisei River. (Fig. 2). Along Dimension 1, which represented the largest proportion of 

inertia, most overall differences in FA composition were found between C. lavaretus from the 

Keret River, on the one hand, and C. autumnalis and C. lavaretus from the Sobachye Lake, on 

the other hand (Fig. 2). These differences were mainly provided by contrast levels of 22:6n-3 and

16PUFA in the species (populations) (Fig. 2). Along Dimension 2, most differences were 

between C. autumnalis from the Yenisei River and C. tugun from the Sobachye Lake (Fig. 2). 
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These differences primarily were due to the contrast between levels of Σ20:1 and 18:4n-3 in the 

species (Fig. 2).

C. autumnalis from the Yenisei River tended to have the lowest mean levels of 17:0, 

20:4n-6 and 22:5n-6, but the highest levels of Σ20:1 and 24PUFA (Table 3). C. sardinella from 

the Yenisei River tended to have the highest levels of 20:2n-6 (Table 3). C. peled from the 

Yenisei River tended to have the highest levels of 15-17BFA and 18:3n-3 (Table 3). C. tugun 

from the Yenisei River tended to have the lowest levels of 20:5n-3, 22:5n-3 and 22:6n-3, but the 

highest level of 18:1n-9 (Table 3). C. sardinella from the Sobachye Lake tended to have the 

highest levels of 22:5n-6 (Table 3). C. tugun from the Sobachye Lake tended to have the highest 

levels of 18:2n-6 (Table 3). C. nasus from the Sobachye Lake tended to have the highest levels 

of 18:0 and 18:1n-7 (Table 3). C. lavaretus from the Sobachye Lake tended to have the lowest 

levels of 15:0, 16:0 and 18:0, but the highest levels of 16:1n-7 and 16PUFA (Table 3). C. 

lavaretus from the Keret River tended to have the lowest level of 14:0, 15-17BFA, 18:2n-6, 

18:3n-3, 18:4n-3, 20:3n-3, 20:4n-3 and 24PUFA but the highest level of 16:0, 20:5n-3, 22:5n-3 

and 22:6n-3 (Table 3). C. lavaretus from Lake Onega tended to have the lowest level of 18:1n-9 

and Σ20:1, but the highest levels of 16:1n-9 and 20:4n-6 (Table 3). C. albula from the Bolshoie 

Krasnoie Lake tended to have the lowest level of 16:1n-7, 16PUFA and 18:1n-7, but the highest 

levels of 14:0 (Table 3). C. lavaretus from the Keret River tended to have the lowest content of 

total FA, while C. autumnalis from the Yenisei River tended to have the highest content of total 

FA (Table 3).

Mean contents of EPA+DHA in the studied congeneric species varied from 1.87 ± 0.06 

mg g-1 wet weight in C. lavaretus from Lake Onega to 17.60 ± 3.63 mg g-1 wet weight in C. 

autumnalis from the Yenisei River (Fig. 3). C. lavaretus from the Sobachye Lake also had very 

high content of EPA+DHA in biomass, 16.61 ± 2.80 mg g-1 wet weight (Fig. 3). Thus, variations 

of average EPA and DHA contents between the congeneric species were 10-fold (Fig. 3), while 

variations of average percentages of these PUFA were ~3-fold only (Table 3). 
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Discussion

Intra-genus variations of EPA+DHA contents of Coregonus species, revealed in this study, were 

from 1.87 to 17.60 mg g-1 wet weight. Values of the contents of another species of this genus, 

published in available literature, fell in the above range and varied from 3.1 mg g-1 wet weight in 

lake whitefish C. clupeaformis ([48], recalculated from dry weight using mean moisture content 

in Salmoniformes 72.5%) to 10.7 mg g-1 wet weight in European whitefish C. macrophtalmus 

([14], recalculated from Table 5 of the source). Thus, in present study we expanded the lower and

upper limits of intra-genus variations of EPA+DHA contents in wild Coregonus species. 

Moreover, to our knowledge, the highest values of EPA+DHA content in anadromous and 

freshwater fish, published in available literature, were 11.06 mg g-1 wet weight in Chinook 

salmon (Oncorhynchus tshawytscha) [49] and 11.07 mg g-1 wet weight in lake trout (Salvelinus 

namaycush) [50], calculated from Table 5 of the source), respectively. In our study, the 

maximum value for semi-anadromous species, C. autumnalis, was 17.60 mg g-1 wet weight, and 

for the landlocked C. lavaretus from the Sobachye Lake this value was 16.61 mg g-1 wet weight. 

Hence, in the present work, we expanded considerably the upper limit of EPA+DHA contents for

anadromous freshwater fish. 

The new maximum values of EPA+DHA content in the semi-anadromous C. autumnalis 

and the freshwater C. lavaretus are still lower than the maximum value of EPA+DHA content in 

marine fish, published in available literature, 25.6 mg g-1 wet weight in Sardine (Sardinops 

sagax) [28]. However, there are many unexplored freshwater fish species, especially in pristine 

cold oligotrophic Arctic lakes of Russia, and there might be found in future some species with 

extremely high content of EPA and DHA in their biomass. In any case, regarding present 

findings, the common point of view on higher PUFA contents in marine fish [20, 21, 51] should 
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be taken with caution. Indeed, EPA+DHA contents in C. autumnalis and in C. lavaretus were 

considerably higher than that in a majority of marine fish, reviewed in [10]. The high nutritive 

value of freshwater fish for humans was revealed in this work. Thus, “more must be learned 

about the possible benefits of freshwater fish consumption in different areas of the world” [52, p.

1305].

Since congeneric species were believed to be genetically close to each other, the above 

variations in EPA and DHA contents were likely caused primarily by ecological factors. Among 

the ecological factors, water temperature was often regarded as a driver of the PUFA contents in 

fish. The effect of water temperature was explained by a hypothesis of “homeoviscous 

adaptation”, which predicted a decrease of a degree of saturation of phospholipid FA with an 

increase of temperature to maintain an optimal cell membrane fluidity [53]. For instance, Arts et 

al. [54] found, that under a laboratory conditions an increase of water temperature from 12 to 19 

oC caused a decrease of DHA content in juvenile Atlantic salmon (Salmo salar) from 4.6 to 3.3 

mg g-1 wet weight (recalculated from dry weight using mean moisture content in Salmoniformes 

72.5%). There are also some data on higher PUFA contents in wild fish in cold waters compared 

to those in warm waters [55, 56]. However, other authors did not find any significant effect of 

water temperature on the PUFA levels in fish in a laboratory or in natural waters [18, 57–61] 

Moreover, in many works the putative peculiar role of EPA or DHA in the temperature 

adaptations of the cell membrane properties (fluidity, order, curvature and elastic stress) was not 

confirmed [53, 58, 62–64]. In any case, in our study water temperature in the subarctic water 

bodies was below 16 oC and hardly contributed considerably to the observed differences in EPA 

and DHA contents between the studied species. Indeed, in the Yenisei River, or in the Sobachye 

Lake, Coregonus species, which dwelt together under the same temperature, had significantly 

different contents of these PUFA. 

Another important ecological factor, which affects FA composition and content in fish 

biomass, is nutrition. Fish food chains in inland waters are known to base on autochthonous 
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resources, microalgae, and, to some extent, on allochthonous (terrestrial) organic matter. 

Allochthonous resources are regarded to be of a high biochemical quality for consumers, 

including fish, especially in oligotrophic water bodies, where diatom, cryptophyte and 

dinoflagellate algae, rich in EPA and DHA, are dominant species [22, 65]. In our study, all water 

bodies were oligotrophic, diatom-dominated rivers and lakes, except the mesotrophic Lake 

Onega. It is worth to note, that C. lavaretus from Lake Onega had the lowest content of EPA and 

DHA in biomass. Hence, the above result seems to be in a good agreement with data of other 

authors on higher content of PUFA in fish from oligotrophic water bodies [22, 65].  Moreover, C.

lavaretus from Lake Onega had the highest level of arachidonic acid 20:4n-6, which is regarded 

as marker of allochthonous (terrestrial) organic matter of the comparatively low nutritive value 

[31]. Thus, the lowest content of EPA+DHA of C. lavaretus from Lake Onega among the studied

fish was likely determined by the low quality of its food sources. 

Planktivorous (pelagic-feeding) fish are considered to have higher EPA and DHA 

contents than benthivorous (demersal) species [12, 18]. According to the above point of view, in 

our study, in the Yenisei River planktivorous C. autumnalis and C. sardinella tended to have 

higher EPA and DHA contents, than benthivorous C. lavaretus and C. nasus, while 

planktivorous-benthivorous C. peled and C. tugun had intermediate values. However, the high 

contents in C. autumnalis and C. sardinella may be explained by another cause, than the pelagic 

feeding only (see below). Moreover, in the Sobachye Lake, the planktivorous C. sardinella had 

the lowest EPA+DHA content, while the highest content was characteristic of the benthivorous 

C. lavaretus. Thus, planktivorous species of Coregonus genus did not necessary have a higher 

EPA and DHA contents compared to benthivorous species. 

As mentioned above, marine fish are commonly regarded to be richer in PUFA content 

compared with freshwater fish [20, 21, 51]. In our study, the highest EPA and DHA contents 

were characteristic of the semi-anadromous C. autumnalis, which fed in the Yenisei Gulf of the 

Kara Sea and then migrated in the Yenisei River for spawning. Indeed, C. autumnalis had the 
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highest level of sum of 20:1 fatty acids. These acids, namely 20:1n-9 and 20:1n-7, are known to 

be markers of marine copepods [66, 67]. Evidently, this species assimilated organic matter of 

marine origin, which seemed to be of very high nutritive value. For instance, marine planktonic 

copepods are extremely rich in lipids, which constitute up to 75% of their dry mass [68]. 

Moreover, C. autumnalis had the lowest proportion of the marker of low-quality terrestrial 

organic matter, 20:4n-6. Similarly, anadromous (marine) forms of another species of 

Salmoniformes, Oncorhynchus nerka, had considerable levels of Σ20:1 in their biomass, while in

landlocked forms (kokanee) these FAs were nearly absent [24, 69]. In turn, levels of 20:4n-6 in 

the marine O. nerka were significantly lower, than that in kokanee [24, 69]. Thus, the migrating 

C. autumnalis had explicit markers of food of marine origin, while the contribution of low-

quality terrestrial organic matter was considerably lower, than that in the land-locked river and 

lake fish species. 

Another semi-anadromous species from the Yenisei River, C. sardinella, also tended to 

have higher level of Σ20:1 and lower level of 20:4n-6, than land-locked C. sardinella from the 

Sobachye Lake. However, the migratory species from the Keret River, C. lavaretus, did not have 

an explicitly higher level of Σ20:1, and lower level of 20:4n-6 than land-locked species. In 

addition, it should be noted that some 20:1 acids, e.g., 20:1n-13, are markers of mollusks [70]. 

Indeed, C. nasus from the Yenisei River, which consumed primarily mollusks, had a 

comparatively high level of Σ20:1.

What range of variations of EPA and DHA content in fish muscle tissues can be provided 

by feeding conditions? Species of the order Salmoniformes, Atlantic salmon (Salmo salar), 

reared in aquaculture using food of a low and high quality, i.e., based on vegetable and fish oil, 

respectively, had EPA+DHA content 3.2 mg g-1 and 7.0 mg g-1, respectively [71]. Similarly, 

Oncorhynchus mykiss, reared in aquaculture using vegetable and fish oil, had EPA+DHA content

3.7 mg g-1 and 8.3 mg g-1, respectively [72]. The above inter-species ranges of variations, 

provided by the changing of food composition in aquaculture, are evidently narrower, than the 
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inter-genus ranges of variations of EPA+DHA content, revealed in our study. Thus, feeding 

conditions might not play the principal role in variations of EPA and DHA content in fish 

compared with the other ecological and phylogenetic factors. For instance, basing on the putative

importance of food, Ahlgren et al. [65] supposed, that different fish species from the same 

ecosystem, with access to the same food items, should have similar FA content. However, in our 

study, the congeneric benthivorous fish species from the Sobachye Lake, C. lavaretus and C. 

nasus, had significantly different EPA and DHA contents.

It is well known, that contents of lipids (total fatty acids) in fish tissues are highly 

variable and depend on feeding and reproduction season [14, 19, 73 ]. In our study, content of 

total FA, which tightly correlated with total lipid content in fish [65] varied significantly. Since 

all species were sampled before spawning season, these variations were believed to be caused 

primarily by food availability in particular aquatic ecosystems. It is worth to note, that all fish 

were obtained in the periods of officially permitted commercial fishery. The EPA and DHA 

content in fish is the indicator of their nutritive value for humans. Therefore, the measuring of 

the nutritive value in the period of commercial fishery seemed to be reasonable. 

In our study, a considerable discrepancy between levels (percentages) of PUFA and their 

content in mass units in fish biomass was found, like in many other studies [14, 24, 26– 28]. 

Indeed, C. lavaretus from the Keret River had the highest EPA and DHA levels, 12.1% and 

26.5%, respectively, while it had one of the lowest content of EPA+DHA, 2.33 mg g-1 wet 

weight. This phenomenon might be explained by a difference between PUFA contents in polar 

lipids, phospholipids (PL) and neutral lipids, triacylglycerols (TAG). The functionally important 

EPA and DHA are known to contain mostly in PL, which are structural lipids of cell membranes 

and their constant proportions are essential for muscle tissue functioning [74]. Thus, a high 

proportion of EPA and DHA seem to be maintained in fish muscles even under unfavorable 

feeding conditions. Meanwhile, under favorable feeding conditions, fish accumulate storage 

lipids, TAG, which are relatively poor in PUFA and contain mainly saturated and 
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monounsaturated FA [18, 75]. Therefore, fatty fish with high total lipid (total FA) contents have 

high EPA and DHA contents in mass units, but levels (percent of total FA) of these PUFA are 

‘diluted’ by the other FAs in TAG. Hence, our study confirmed, that the nutritive value of fish 

species for humans should be estimated basing on mass units, mg per g of consumed tissues, 

rather than on the basis of total FA percentage. 

In the present work, the data on EPA and DHA contents in seven species of the genus 

Coregonus were obtained for the first time except the only report for C. lavaretus [76]. Majority 

of these species in most studied water bodies appeared to be the valuable food source for 

humans, i.e., they could provide the recommended daily personal doze of EPA and DHA. 

However, environmental conditions of the species habitats should be taken in account in future 

works, since some ecological factors could diminish the species (genus)-specific contents of the 

essential PUFA in fish biomass. 
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Figure Captions

Fig 1 Map of sample sites (pointed by arrows): KR – the Keret River; BKL – the Bolshoie 

Krasnoie Lake (situated in the Bolshoy Solovetsky Island in the White Sea), SL – the Sobachye 

Lake

Fig 2 Canonical correspondence analysis of levels of fatty acids (% of total) in species of genus 

Coregonus: autY – C. autumnalis from the Yenisei River (red circles); sarY – C. sardinella from 

the Yenisei River (black circles); pelY – C. peled from the Yenisei River (blue circles); lavY – C.

lavaretus from the Yenisei River (green circles); tugY – C. tugun from the Yenisei River (violet 

circles); nasY – C. nasus from the Yenisei River (light-blue circles); sarS – C. sardinella from 

the Sobachye Lake (black squares); tugS – C. tugun from the Sobachye Lake (violet squares); 

nasS – C. nasus from the Sobachye Lake (light-blue squares); lavS – C. lavaretus from the 

Sobachye Lake (green squares); lavK – C. lavaretus from the Keret River (green diamonds); 

lavO – C. lavaretus from Lake Onega (orange triangles); albB – C. albula from the Bolshoie 

Krasnoie Lake (rose crosses). Dimension 1 and Dimension 2 represented 48.1% and 15.5% of 

inertia, respectively

Fig 3 Mean content (mg∙g-1 wet weight) of eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA) and their sum (EPA+DHA) in species of genus Coregonus: autY – C. autumnalis 

from the Yenisei River; sarY – C. sardinella from the Yenisei River; pelY – C. peled from the 

Yenisei River; lavY – C. lavaretus from the Yenisei River; tugY – C. tugun from the Yenisei 

River; nasY – C. nasus from the Yenisei River; sarS – C. sardinella from the Sobachye Lake; 

tugS – C. tugun from the Sobachye Lake; nasS – C. nasus from the Sobachye Lake; lavS – C. 

lavaretus from the Sobachye Lake; lavK – C. lavaretus from the Keret River; lavO – C. 
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lavaretus from Lake Onega; albB – C. albula from the Bolshoie Krasnoie Lake. Bars represent 

standard error. Means labelled with the same letter are not significantly different at P < 0.05 after

Kruskal-Wallis test
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