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VARIATION OF SPECTRAL CHARACTERISTICS OF 

COELENTERAMIDE-CONTAINING FLUORESCENT PROTEIN 

FROM OBELIA LONGISSIMA EXPOSED TO DIMETHYL 

SULFOXIDE 

A. S. Petrova,1,3 R. R. Alieva,1 N. V. Belogurova,1 UDC 577.345, 577.34 
L. S. Tirranen1,3, and N. S. Kudryasheva1,2 

Effect of dimethyl sulfoxide (DMSO), a widespread biomedical agent, on spectral-luminescent characteristics 
of coelenteramide-containing fluorescent protein – discharged obelin – is investigated. Contributions of violet 
and blue-green spectral components to fluorescence of discharged obelin are elucidated and characterized at 
different photoexcitation energies. Dependences of these contributions on the DMSO concentration are 
presented. Spectral changes are related to the destructive effect of DMSO on fluorescent protein and 
decreasing efficiency of proton transfer to electronically excited states of fluorophore. 

Keywords: fluorescent coelenteramide-containing fluorescent proteins, discharged obelin, proton transfer, 
dimethyl sulfoxide. 

INTRODUCTION 

Fluorescent proteins are modern and very promising tools for biological and medical investigations. These 
proteins are synthesized within cells and can be used as biological fluorescent markers for monitoring of intracellular 
processes. Fluorescent protein is polypeptide comprising aromatic fluorophore. The most famous fluorescent protein is 
green fluorescent protein (GFP) [1, 2]. In addition, coelenteramide-containing proteins also belong to the group of 
fluorescent proteins. Their fluorophore is the coelenteramide molecule (Fig. 1) non-covalently bonded with protein 
inside its hydrophobic cavity. Unlike GFPs, coelenteramide-containing fluorescent proteins are not so widespread in 
biomedical investigations and their potential as color biomarkers is currently underestimated. 

Fluorophore of discharged photoproteins – coelenteramide – is chemically active in excited state and capable of 
producing a recoil proton with the formation of various fluorescent forms [3] that differ by the energy of fluorescent 
states and hence fluorescence color. Figure 1 shows schematically the energy level diagram of the excited states of 
protonated and partially protonated coelenteramide forms that are responsible for violet and blue-green components of 
the fluorescence spectra of coelenteramide and coelenteramide-containing proteins. The energy of the state S1*  is 
determined by the effective position of the proton of the coelenteramide phenolic group with respect to the proton-
acceptor fragment of the histidine amino acid residue (His22) (Fig. 1) in the protein surrounding. Wherein the 
relationship between the violet and blue-green components is determined by the deprotonation of the coelenteramide 
phenolic group in the excited state S1* that, in its turn, is determined by the microsurrounding of coelenteramide in 
proteins or solvents [4–10]. 
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a 0.02 M Tris-HCL buffer solution (pH = 7.0) and 0.005 M EDTA. The obelin concentration in the examined solution 
was 10–5 M. DMSO was added to the obelin solution after the bioluminescent reaction immediately before the 
registration of the spectra. The DMSO concentration was varied from 0.002 to 2.65 M (from 0.016 to 18.9 vol.%). The 
fluorescent spectra were registered with the use of PerkinElmer LS55 fluorescence spectrometer (USA). The 
temperature of the cell was 20°C. The parameters of registration of the spectra were the following: the wavelength 
range was 300–750 nm and the photoexcitation wavelengths were 280 and 350 nm. 

The complex fluorescence spectra of discharged obelin were deconvolved into components using Gaussian 
distribution. Mathematical processing was performed with the software packages Origin 8.5.1 and Matlab 8.0. To 
determine the number and position of maxima of the spectral components, the second derivative method was used. The 
spectra were deconvolved into individual Gaussian components in the coordinates: fluorescence intensity – 
wavelength [28, 29]. The deviation d of the calculated spectrum from the experimental one was evaluated as follows: 

 
exp comp

exp

100%
S S

d
S


  ,  (1) 

where Sexp is the area of the experimental spectrum and Scomp is the area of the individual spectral component. The value 
of d did not exceed 0.5%. 

In the short-wavelength range (<380 and <300 nm for photoexcitatioin wavelengths of 350 and 280 nm, 
respectively), the spectra were complemented using the Gaussian distribution. Contribution W of the spectral 
components to the overall photoluminescence spectrum was calculated using the following formula: 

 
comp

comp

S
W

S



.  (2) 

The effect of DMSO on the fluorescence intensity of discharged obelin was estimated using the empirical fluorescence 
quenching constant K: 

 0
KCI Ι e  ,  (3) 

where I and I0 are the fluorescence intensities in the presence and absence of DMSO, respectively, and C is the DMSO 
concentration, in M. 

RESULTS AND DISCUSSION 

Fluorescent characteristics of discharged obelin in DMSO solutions were investigated. Figure 2 shows the 
normalized fluorescence spectra of discharged obelin at photoexcitation wavelengths of 280 and 350 nm, corresponding 
to its absorption maxima. It can be seen that the obelin fluorescence is characterized by the maximum at 503 nm upon 
photoexcitation by 350 nm and includes an additional band in the near-ultraviolet range with the maximum at 346 nm 
upon photoexcitation by 280 nm. 

Figure 3 shows dependences of the fluorescence intensities of discharged obelin on the DMSO concentration at 
two photoexcitation energies – 280 and 350 nm. It can be seen that increasing DMSO concentration leads to decreasing 
maximum intensity in the visible spectral range in both cases (503 nm, curves 1 and 3). Wherein the intensity of the 
ultraviolet maximum (346 nm, curve 2) increases with DMSO concentration. 

The fluorescence quenching constants K were calculated from Eq. (3) using three dependences shown in Fig. 3. 
Values of these constants differed by approximately two orders of magnitude in the intervals of low and high DMSO 
concentrations. For example, the K values for curve 3 (Fig. 3) were equal to 42 and 0.32 M–1, respectively. Such 
differences in the constants can testify to different mechanisms of fluorescence quenching at low and high DMSO 
concentrations related, probably, to the protein destruction. 
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The efficiency of the process decreases due to the change of interatomic distances in amino acid coelenteramide 
surrounding in protein under the destructive effect of DMSO. The increase in the contribution of the ultraviolet 
component also testifies to the structural change of coelenteramide-containing fluorescent protein exposed to DMSO. 
The contributions of various groups of this protein to the ultraviolet luminescence will be elucidated in subsequent 
investigations including time-resolved experiments. 
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