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Abstract. This paper describes the synthesis of copper oxide nanoparticles with different 

percentages of CuO and Cu2O phases. It was achieved by the control of the percentage of oxygen 

in the gas mixture (N2 + O2) in a plasma-chemical process of evaporation-condensation by 

means of low-pressure arc discharge. In all the experiments, the pressure in the plasma-chemical 

reactor remained constant at 60 Pa. By means of X-ray diffraction (XRD), high resolution 

transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), 

Fourier transform infrared spectroscopy (FTIR) it was found that the average particle size was 6 

nm, and Cu2O phase content decreases with increasing oxygen content in the gas mixture. High 

photocatalytic properties of Cu2O powder were shown by the example of the reaction of the 

methyl orange dye decomposition in water solution. The problems, associated with the 

performance of this method and the formation of crystalline phases, are discussed. 

Keywords: oxides; vapor deposition; X-ray diffraction; transmission electron microscopy 

(TEM); catalytic properties. 

 

1. Introduction 

 

Today production of devices and products, which apply the photocatalysis principle, is 

sustainably developed. For example, photocatalytic domestic and industrial air purifiers, 

antibacterial filters, steam-resistant glass and self-cleaning coatings for developing the exterior 

of city buildings and road infrastructure are now widely used. [1,2] 

At the present moment the most widely-studied photoactive material is titanium dioxide. 

However, people continue searching for new materials that could compete with TiO2. One of 

these materials can be the univalent copper oxide. 

Copper oxide (I) – Cu2O is a semiconductor of p-type with the bandgap width of 2.0-2.2 eV. 

In recent years, Cu2O is studied intensively for the conversion of solar energy into electrical 

energy. Theoretically, the efficiency of this process for Cu2O is 9-11%. Cu2O is a promising 

material for the creation of Bose cells with high exciton binding energy (~150 meV). In addition, 

Cu2O is a photocatalyst, working under the influence of visible light. [3] By means of the 

synthesis of particles with different size, it is possible to control the bandgap of Cu2O while 

producing the photocatalysts with sensitivity to different wavelengths of visible light. Copper 

oxide, as a photocatalyst, can be used for the decomposition of water and for the organic 

contamination control. Cu2O is also a promising magnetic semiconductor. [4] 

The chemical methods allow supporting mass-production of nanopowders [5], but their 

structure is mainly amorphous. It is shown that the content of the amorphous structure reduces 
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photocatalytic reactivity and, consequently, the synthesis of nanocrystalline Cu2O is of current 

importance. [6] The results of the chemical synthesis show that the time of calcination and the 

temperature strongly influence the nanopowder. [5] Thus, the problem of crystalline phase 

control during the growth of crystals from the nanoparticles, within large-scale production, 

remains difficult for any chemical method. Nanocrystalline particles with an average size of < 10 

nm show higher photocatalytic properties than particles of larger size. [6] Thus, detailed 

investigation of Cu2O nanoparticles is a significant research focus as well. It was shown that the 

thermal processes in plasma provide very efficient means for producing nanocrystalline materials 

taking into account their high temperature, high enthalpy and high speed of quenching, which 

causes the homogeneous condensation of the gas phase. [7,8] 

Thus, considering the growing large-scale need in Cu2O nanopowder, we used the method of 

condensation from the gas phase for the synthesis of Cu2O with a proper crystalline phase. It is 

shown that the phase content of CuO and Cu2O in the synthesized nanopowder can be controlled 

by choosing a suitable concentration of oxygen inside the chamber. 

 

2. Experimental 

 

The morphological structure of the samples was studied by using a JEOL JEM-2100 

transmission electron microscope. The samples for electron microscopy investigations were 

prepared as follows: the powder was placed in isopropyl alcohol and was dispersed for 2 min in 

an ultrasonic bath, and then a drop of this solution was dripped on a carbon support film located 

on a TEM grid. The thickness of the carbon support film was 10-15 nm. The phase composition 

of the produced samples was studied by using Advance D8 X-ray diffractometer under the 

influence of CuK monochromatic radiation. Scanning was fulfilled at room temperature in the 

range of angles within 30–120° by 2θ with the interval of 0.04 deg. The specific surface area was 

measured by BJH method. 

Spectral measurements of discharge plasma were carried out using a flexible optical fiber 

with a diameter of 0.5 mm, installed near the cathode of the evaporator. The applied part of the 

optical fiber was placed in the metal collimator with a diameter of 1.5 mm, which was exposed 

by applying negative potential (−300V) relative to the vacuum chamber, which allowed isolating 

the optical fiber from contact with the plasma and from dusting caused by the material of the 

cathode. The rest of the optical fiber was covered with an opaque plastic tube. The radiation of 

the plasma arc discharge was recorded by Ocean Optics HR4000 spectrometer. This 

spectrometer allows to record radiation spectra in the range of 200-1100 nm with a resolution of 

0.7 nm. 

The photocatalytic properties of Cu2O were studied by the example of the reaction of 

photocatalytic decomposition of the dye (methyl orange) in water solution. The mercury-quartz 

lamp (arc tube mercury lamp) was used as a source of ultraviolet radiation. The preliminary 

washed Cu2O powder (0.1 g), 200 ml of distilled water and 20 ml of 0.1 M solution of the dye 

was placed in the cell made from PMMA. Mixing was carried out in the cell with a mechanical 

stirrer. The hydrogen peroxide was used as an oxidizing agent in the reaction of decomposition, 

while the concentration of the agent at the beginning of the reaction was 1 mol/l. During the 

experiment, the samples were selected from the cell and centrifuged at the equal intervals of time 

(15 min). The change in dye concentration in the centrate was controlled through 
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spectrophotomer by changing the intensity of the dye absorption peak. The spectrophotometric 

measurements were performed by spectrophotometer SHIMADZU UV-3600 (206-23000). 

The analysis of IR spectra was carried out by Nicolet 6700 IR Fourier spectrometer with a 

resolution of up to 0.09 sm
-1

 in the spectral range of 25000-20 sm
-1

. The samples in the shape of 

granules were produced by using 100 mg of dry KBr and 2 mg of nanopowder. 

The experimental equipment and the dependence of the powder properties on the spraying 

conditions are discussed. [9-12] The cathode consists of copper alloy M1 with diameter of 80 

mm and length of 100 mm; it was placed on a water-cooled copper current lead. An auxiliary 

electrode was used to start the pilot arc, as it provided the plasma stream stabilization. The 

dimensions of the reaction chamber are 0.6 m in diameter and 0.6 m in height, with double walls 

and flanges made from stainless steel. The camera has two ports, one for viewing the arc column 

during evaporation of the metal, and the other for measuring the optical emission spectra (OES). 

Plasma-generating nitrogen gas was fed through the evaporator and created a pressure of 60 

Pa in the chamber. The capacity of the evaporator was 10 kW, the direct current of arc discharge 

was 100 A, the reaction gas was oxygen with the flow rate maintained at the level of 10, 20, 30 

and 40 vol. % from the nitrogen supply. The oxygen was fed into the reactor in order to form a 

uniform shell around the plasma torch. The gas in reactor was preliminary evacuated up to the 

basic pressure of 10
-3

 Pa. The products of the reaction were collected during 10 min onto a 

hemispherical collector made from stainless steel with a water-cooling system, located at a 

distance of 0.12 m from the cathode. Below described the operating parameters of the reactor 

during the synthesis process. 

 Base pressure in the chamber – 10
-3

 Pa; 

 Arc discharge current – 100 A; 

 Voltage – 70 V; 

 Power – 10 kW; 

 The cooling water supply through: 

a) cathode – 1 l/min; 

b) substrate – 1 l/min; 

c) chamber wall – 2 l/min; 

 Supply of plasma gas (nitrogen) – 60 Pa; 

 Supply of reaction gas (oxygen) – 10, 20, 30 and 40 vol. % of O2. 

 

4. Results and Discussions 

 

The rate of CuO synthesis at different oxygen concentrations was measured. The 

performance of vacuum plasma-chemical reactor was determined by measuring the loss in mass 

of the cathode material, and then using the measurements of the weight of the selected 

nanoparticles, synthesized at different oxygen concentrations. For concentrations of 10, 20, 30 

and 40 vol.% of O2, the resulted values were 35; 34.3; 22.1 and 21 g/h respectively. The loss of 

performance is caused by the intensification of the oxidation processes on the cathode surface. 

The efficiency of deposition of the material on the substrate was about 20% of the total 

nanoparticles weight. The bulk of the synthesized nanoparticles were deposited on the reactor 

walls. The nanoparticles, gathered on the substrate, were used for the further study. 

Figure 1 shows X-ray diffraction spectra of the nanoparticles synthesized at different oxygen 

concentrations for values of 2θ in the range from 28° to 65°. The diffraction spectra of the 
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nanoparticles, synthesized at oxygen concentrations of 10 and 20 vol.% of O2 from the nitrogen 

supply, clearly show the reflections (PDF 4+ #00-005-0667) corresponding cuprite structure of 

Cu2O, Pn3m space group, other crystal structures were not found. Increasing the oxygen 

concentration up to 20 vol.% causes decreasing the crystallinity of the nanoparticles, therefore 

the grid parameter increases from 4.285 Å to 4.290 Å, which is significantly higher than the ones 

in the coarse-grained samples. Increasing the proportion of X-ray amorphous phase while 

increasing the concentration of oxygen is defined by the characteristic of plasma-chemical 

synthesis, when the oxygen saturation of the resulting nanoparticles occurs under a 

thermodynamically non-equilibrium conditions, with the violation of stoichiometry, as well as 

high residual stresses and defects of crystal structure. The diffraction spectrum of the 

nanoparticles synthesized at oxygen concentration of 30 vol.% of O2 from the nitrogen supply 

shows that the reflections, corresponding to the monoclinic structure of CuO (PDF 4+ #00-045-

0937) with lattice parameters a = 4.691 Å, b = 3.432 Å, c = 5.138 Å, appear in addition to the 

reflections corresponding to cuprite structure of Cu2O. The reflections at 2θ = 35.915°, 44.189°, 

58.396°, 64.210°, corresponding, evidently, to the transition tetragonal-distorted cubic crystal 

lattice of CuO, belonging to the space group I41/amd, are also presented.  The proportion of CuO 

and Cu2O, calculated according to the most intense lines of the diffraction spectrum, make up 

65%. Further increasing the concentration of oxygen up to 40 vol.% of O2 from the nitrogen 

supply, leads to a monotonic increase in the proportion of CuO up to 86%, according to the 

diffraction spectrum. 

 

 
FIG. 1. X-ray diffraction spectra of the nanoparticles synthesized at different oxygen 

concentrations. 

 

The sustainable growth of the monoclinic phase of copper oxide from 0 up to 86% means 

that the concentration of O2 in the synthesis process deeply influences on the formation of 

crystalline phases. Fig. 1 also shows that high concentration of O2 facilitates the formation of the 

monoclinic phase, while reducing the concentration of O2 promotes the growth of cuprite phase 

of copper oxide. 

Figure 2a shows a typical high-resolution transmission electron microscopy (HRTEM) 

image of the sample. The powder represents an ensemble of strongly agglomerated particles with 

irregular shape ranging from 4 to 9 nm in size. The particles up to 15 nm in size are also formed, 
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but they are, evidently, the agglomerates of smaller particles. These agglomerates cannot be 

disaggregated. These particles have a shape generally close to spherical one. The study of the 

granulometric composition shown that the NP has a lognormal distribution and the average 

particle size of 6 nm. The standard deviation was 1.2. The interpretation of the selected area 

electron diffraction (SAED) pattern (Fig. 2b) obtained from a group of the particles gives CuO 

phase with monoclinic structure (JCPDS data, No. 45-0937). This corresponds with the results 

obtained by the XRD spectrum. 

The elemental composition of CuO nanopowder, with the ratio of gas mixture of 30% O2 + 

70% N2, is given below (the content of the elements are given in at.%): 

Cu – 52,70; O – 47,06; Si – 0,02; Cr – 0,02; Fe – 0,16; Ni – 0,02; Zn – 0,02. The elemental 

composition was determined using the Thermo Scientific ARL QUANT’X energy-dispersive X-

ray fluorescence spectrometer. 

 

 a  b 

FIG. 2. HRTEM image (a) and SAED pattern (b) of the produced sample of copper oxide. 

The condition of synthesis: the pressure of N in the plasma-chemical reactor is 60 Pa, the 

concentration of O2 is 30 vol.%. 

 

Figure 3 presents the results of studying the optical spectra of radiation in the process of 

copper oxide synthesis in oxygen-containing plasma of low pressure arc discharge for different 

concentrations of oxygen, covering the spectral range between 200-1200 nm. 
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FIG. 3. Optical emission spectra in the process of copper oxide synthesis in oxygen-

containing plasma of low pressure arc discharge for different concentrations of oxygen. 

 

The main characteristics of the spectra correspond to the emission of excited ions of Cu 

(578.213 nm) and O (777.194 nm) produced directly in the process of impact ionization by the 

electron. [3] The results were normalized at its maximum peak. As the graphs show, the intensity 

of the emission lines of Cu is higher than those of O at low oxygen concentrations corresponding 

to the synthesis of Cu2O. However, when the concentration of O increases, the intensity of the 

emission lines of O begins to dominate, it corresponds to the preferential synthesis of monoclinic 

CuO phase. The decrease in the intensity of emission lines of Cu with the increase of oxygen 

consumption is caused by two effects. First, increasing the concentration of oxygen intensifies 

chemical processes of oxidation on the cathode surface, which causes a decrease in the rate of 

cathode evaporation, as evidenced by a decrease in the output of the nanosized powder. 

Secondly, the intensity of plasma-chemical reactions is sharply increased and, consequently, 

causes more intense saturation by oxygen of copper clusters generated by arc evaporation. [13] It 

should be noted that the intensity of the emission lines of O increases sharply when the oxygen 

concentration is above 20 vol.%. 

The value of the specific surface of the produced copper oxide nanopowder, calculated by 

the isotherm of low-temperature nitrogen adsorption, has amounted to 386 m
2
/g. Applying the 

known ratio between the surface area S, pycnometric specific gravity  = 6.3 g/sm
3
 and an 

average particle size of d = 6/S, we get the result of 2.5 nm, which, however, does not comply 

with the data obtained by TEM. This noncompliance is explained by the fact that the condensate, 

dropped off on the surface of the particles, is much smaller than the basic powder. This 

condensate forms a rather porous “fur coat” around the particles and mainly determines the 

sorption activity of the powder. [14,15] 

The FT-IR spectra of the nanoparticles synthesized at oxygen concentrations above 10 and 

40 vol.%, is presented in Figure 4. 

 

 
FIG. 4. The FT-IR spectra of the nanoparticles synthesized at oxygen concentrations above 

10 (a) and 40 (b) vol.%. 

 

The absorption frequencies of metal oxides are located usually in the area below 1000 sm
-1

 

and arise from interatomic vibrations. As it can be seen from Figure 4a, the characteristic 
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symmetric and asymmetric frequencies for Cu2O are observed at 1162 and 532 sm
-1

, which 

corresponds to Cu(I)-O vibrations. [16,17] The CuO nanoparticles have similar characteristic 

frequencies (Figure 4b) at 1115 sm
-1

. However, the appearance of two bands at 593 and 527 sm
-1

 

can be attributed to Cu(II)-O vibrations, corresponding to the monoclinic CuO phase. [18] The 

similarity of the IR spectra of the nanoparticles produced in the plasma-chemical reactor at 

various concentrations of oxygen is defined by small particle sizes and the presence of several 

phases in the synthesized nanopowder, that was confirmed by XRD spectra. 

The broad absorption band near 3414 sm
-1

 is observed in the near infrared spectra. It refers 

to the stretching vibrations of bound OH groups. [19] The presence of such groups is indirect 

evidence of high surface activity of the produced nanoparticles, appeared at high specific 

surface. In this case, a large number of available bonds formed on the surface of the particles, 

and the exposed atoms, such as Cu and O in the nanoparticles, could adsorb OH
–
 and H

+
 ions 

from their surrounding with a high probability, which could result in forming the surface 

enriched with active OH groups. The absorption band at 1622-1383 sm
-1

, related to the 

deformation vibrations of water residue δ(HOH), is appeared in the spectrum of Cu2O and CuO 

nanoparticles along with stretching vibrations of the bond OH groups.  

To evaluate the photocatalytic activity of the produced Cu2O nanoparticles, the reaction of 

photocatalytic decomposition of the methyl orange dye (MO) in water solution was used. The 

optical behavior of MO in the solution was analyzed by measuring its absorption spectra at 464 

nm. The preliminary testing shows that without photocatalyst any degradation of the dye in 

solution does not observe. TiO2 powder cannot be used for decomposition of MO in the visible 

range due to the large width of the forbidden zone (3.2 eV). Thus, in this case Cu2O can be an 

effective catalyst. Figure 5 shows the absorption spectra of MO during its oxidation in the 

presence of nanosized Cu2O powder synthesized at concentrations of 10 vol.% of O2 and 

hydrogen peroxide under the influence of ultraviolet radiation. 

 

 
FIG. 5. The temporal evolution of the absorption spectra of MO with the addition of Cu2O 

nanoparticles synthesized at oxygen concentration of 10 vol.%. 

 

As the absorption spectra shows, the almost complete oxidation of the dye occurs  after 60 

min of irradiation process. The time of complete decolorization of methyl orange solution in the 

presence of nanosized copper oxide powder was 12 h. Comparing the catalytic activity of 

nanosized powder, obtained at different oxygen concentrations in plasma-chemical reactor, it 
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was found that the decay rate of MO is significantly higher in the presence of Cu2O powder 

synthesized with 10 vol.% of O2, that is caused, in our opinion, by low catalytic reactivity of 

CuO. 

Thus, the effect of decomposition of poorly efflorescent dyes (for example, methyl orange) 

under the influence of Cu2O nanoparticles was confirmed in our experiments. 

 

5. Conclusion 

 

The effect of oxygen concentration in the gas mixture of plasma-chemical reactor on the 

ratio of crystal phases of copper oxide nanoparticles has been investigated in this paper. Low 

concentration of O2 facilitates the formation of cubic phase of Cu2O, while the increase in O2 

concentration facilitates the growth of the monoclinic phase of CuO. The change in the 

crystalline phase, counting on the change of O2 in the reactor, is associated with the caused by 

the cluster chemistry of vapor phase of condensation. Increasing the concentration of oxygen 

intensifies chemical processes of oxidation at the surface of the cathode, that causes a decrease in 

the rate of the cathode evaporation, the intensity of plasma-chemical reactions is sharply 

increases and, consequently, it leads to more intense oxygen saturation of copper clusters 

generated by arc evaporation. 

The decomposition rate of MO is significantly higher with applying Cu2O powder 

synthesized with 10 vol.% of O2, that is caused, in our opinion, by low catalytic reactivity of 

CuO.  
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