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Abstract—We study a partially invariant solution of rank 2 and defect 3 of the equations of a viscid
heat-conducting liquid. It is interpreted as a two-dimensional motion of three immiscible liquids
in a flat channel bounded by fixed solid walls, the temperature distribution on which is known.
From a mathematical point of view, the resulting initial-boundary value problem is a nonlinear
inverse problem. Under some assumptions (often valid in practical applications), the problem can
be replaced by a linear problem. For the latter we obtain some a priori estimates, find an exact steady
solution, and prove that the solution approaches the steady regime as time increases, provided that
the temperature on the walls stabilizes.
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As is known, motion begins in a nonuniformly heated liquid. In applications, we often encounter the
situations when motion is originated in the two or more liquid media that contact one another along
certain interfaces. If the liquids do not mix during their interaction then they form some more or less
visible interfaces. The oil-water system is a typical example of this situation. The need for modeling
multiphase flows, taking into account the differences in physical and chemical factors, arises in the
design of cooling systems and power plants, in studying the growth of crystals and films, or in the
aerospace industry [1–4].

Some exact solutions of the equations of Marangoni convection are known [5–7]. One of the first was
obtained in [8] which is a steady Poiseuille flow of two immiscible liquids in an oblique channel. As a rule,
almost all flows were steady and unidirectional. The stability of these flows was investigated in [9, 10]. As
far as the nonsteady thermocapillary flows are concerned, their study have begun rather recently [11, 12].

The problem of thermocapillary convection of two incompressible liquids in a container separated by
a closed separation surface was studied in [13]. The time-local unique solvability of the problem was
obtained in the Hölder classes of functions. The problem of thermocapillary motion of a drop in the entire
three-dimensional space was studied in [14]. Moreover, its unique solvability was established in the
Hölder classes with a power-like weight. It turned out that the velocity vector field decreases at infinity
in same manner as the initial data and mass forces, whereas the temperature tends to a constant equal
to the limit of the initial temperature at infinity.

This article is devoted to the study of solutions of the two-dimensional conjugate boundary value
problem which results from the linearization of the Navier–Stokes system of equations supplemented
with the heat transfer equation. Motion is initiated by thermocapillary forces applied along two interfaces
which cause nonsteady Marangoni convection. Such a convection can prevail under conditions of
microgravity or in the movement of thin liquid films.

The aim of the work is to obtain some a priori estimates for the solutions of the above conjugate
problem in the space of uniform convergence. The estimates of the solutions are obtained using special
identities and the Friedrichs Inequality. The main difficulty is encountered in estimating the pressure
gradients which are unknown either.
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**E-mail: elena_cher@icm.krasn.ru
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8 ANDREEV, CHEREMNYKH

1. STATEMENT OF THE PROBLEM

The two-dimensional motion of a viscid incompressible heat-conducting liquid is described by the
system of equations

ut + uux + vuy +
1
ρ

px = ν(uxx + uyy),

vt + uvx + vvy +
1
ρ

py = ν(vxx + vyy),

ux + vy = 0,
Θt + uΘx + vΘy = χ(Θxx + Θyy).

(1)

Here u(x, y, t) and v(x, y, t) are the components of the velocity vector, p(x, y, t) is the pressure, Θ(x, y, t)
is the temperature, ρ is the density, ν is the kinematic viscosity, and χ is the thermal conductivity of the
liquid. The quantities ρ, ν, and χ are assumed constant.

The system of equations (1) admits a four-dimensional Lie subalgebra 〈∂x, ∂u + t∂x, ∂p, ∂Θ〉 [6]. Its
invariants are t, y, and v, and a partially invariant solution of rank 2 and defect 3 should be sought for in
the form u = u(x, y, t), v = v(y, t), p = p(x, y, t), and Θ = Θ(x, y, t).

Inserting the exact form of the solution into the first three equations of (1) yields

u = w(y, t)x + u1(y, t), w + vy = 0, wt + vwy + w2 = f(t) + νwyy,

1
ρ

p = d(y, t) − f(t)
2

x2, dy = νvyy − vt − vvy, u1t + vu1y + u1w = 0
(2)

with some function f(t) that is arbitrary so far.

Regarding the temperature field, we assume that it has the form

Θ = a(y, t)x2 + a1(y, t)x + b(y, t). (3)

As we see below, (3) is in good accord with the conditions on the interfaces.

We assume for simplicity that u1(y, t) ≡ 0 and a1(y, t) ≡ 0. The latter condition means that the
temperature field has an extremum at x = 0: a maximum for a(y, t) < 0 and a minimum for a(y, t) > 0.
Let us apply the solution of the form (2), (3) to describe joint motion of three immiscible liquids in the flat
layer 0 < y < l3, considering that the walls y = 0 and y = l3 are solid. Introducing the index j = 1, 2, 3,
for the liquids and using (2) and (3), we come to the conclusion that, in their domains, the unknowns
satisfy the equations

wjt + vjwjy + w2
j = νjwjyy + fj(t),

vjt + vjvjy + djy = νjvjyy,

wj + vjy = 0,
ajt + 2wjaj + vjajy = χjajyy,

bjt + vjbjy = χjbjyy + 2χjaj.

(4)

At the interfaces y = ln(x, t) for n = 1, 2, the conditions hold [9]:

w1(l1(x, t), t) = w2(l1(x, t), t), w2(l2(x, t), t) = w3(l2(x, t), t),
v1(l1(x, t), t) = v2(l1(x, t), t), v2(l2(x, t), t) = v3(l2(x, t), t),

(5)

l1t + xw1(l1(x, t), t)l1x = v1(l1(x, t), t), l2t + xw2(l2(x, t), t)l2x = v2(l2(x, t), t), (6)

a1(l1(x, t), t) = a2(l1(x, t), t), a2(l2(x, t), t) = a3(l2(x, t), t),

k1
∂a1

∂n1
= k2

∂a2

∂n1
, k2

∂a2

∂n2
= k3

∂a3

∂n2
,

(7)
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THE JOINT CREEPING MOTION OF THREE VISCID LIQUIDS 9

where kj > 0 are the heat conductivity coefficients and nn =
(
1 + l2nx

)−1/2(−lnx, 1) are the normals to
the lines y = ln(x, t). The dynamic conditions for y = ln(x, t) are as follows [9]:

(p1 − p2)n1 + [2ρ2ν2D(u2) − 2ρ1ν1D(u1)]n1 = 2σ1(Θ1)K1n1 + ∇11σ1,

(p2 − p3)n2 + [2ρ3ν3D(u3) − 2ρ2ν2D(u2)]n2 = 2σ2(Θ2)K2n2 + ∇11σ2.
(8)

In (8), D is the strain-rate tensor uj = (xwj(y, t), vj(y, t)), whereas ∇11 = ∇− (n · ∇)n on the right-

hand side designates the surface gradient; Kn = lnxx

(
1 + l2nx

)−3/2 are the mean curvatures of the
interfaces y = ln(x, t); while σ1(Θ1) and σ2(Θ2) are the surface tension coefficients depending on
temperature. For most of real liquid media, the dependence σn(Θn) is approximated well by the linear
function

σn(Θn) = σ0
n − κnΘn, (9)

where κn > 0 is the temperature coefficients of the surface tension of the lines y = ln(x, t). They are
assumed constant and determined by experimental methods.

The dynamic conditions (8) have a vector form. Projecting them to the tangent directions τn =
(
1 + l2nx

)−1/2(1, lnx) and using (9) and (2), we obtain
[
μ2D(u2) − μ1D(u1)

]
n1 · τ1 = −κ1∇11Θ1 · τ1,

[
μ3D(u3) − μ2D(u2)

]
n2 · τ2 = −κ2∇11Θ2 · τ2,

(10)

where μj = ρjνj are the dynamic viscosity of the liquids. The projections (8) to the normal n1,2 yield

ρ1d1(l1(x, t), t) +
[
ρ2f2(t) − ρ1f1(t)

]
x2/2 − ρ2d2(l1(x, t), t) + [2μ2D(u2) − 2μ1D(u1)]n1 · n1

=
(
σ0

1 − κ1[a1(l1(x, t), t)x2 + b1(l1(x, t), t)]
)
l1xx

(
1 + l21x

)−3/2
, (11)

ρ2d2(l2(x, t), t) +
[
ρ3f3(t) − ρ2f2(t)

]
x2/2 − ρ3d3(l2(x, t), t) + [2μ3D(u3) − 2μ2D(u2)]n2 · n2

=
(
σ0

2 − κ2[a2(l2(x, t), t)x2 + b2(l2(x, t), t)]
)
l2xx

(
1 + l22x

)−3/2
.

The boundary conditions on the solid walls have the form

u1(0, t) = 0, u3(l3, t) = 0, v1(0, t) = 0, v3(l3, t) = 0,
a1(0, t) = a10(t), a3(l3, t) = a30(t)

(12)

with some given functions a10(t) and a30(t).
The initial conditions for the velocities are zero (we study the properties of the solution of the problem

simulating the motion only under the action of thermocapillary forces):

uj(y, 0) = 0, vj(y, 0) = 0. (13)

Besides,

ln(x, 0) = l0n(x), aj(y, 0) = a0
j(y), (14)

while a0
j �= 0 for at least one of the indices j so that the thermocapillary effect starts at t = 0.

Note several specific features of the formulated problem: This is a nonlinear and inverse problem
since the functions fj(t) are the sought-for. It is easy if we eliminate vj(y, t) from the equations of mass
conservation. Then the problem reduces to the conjugate problem for the functions wj(y, t), aj(y, t)
and ln(x, t). The problem for bj(y, t) given vj(y, t) and aj(y, t) can be separated; the boundary conditions
for bj(y, t) are analogous to those for aj(y, t). The functions dj(y, t) can be recovered by quadrature from
the second equation (4) up to a function of time. Thus, wj(y, t), vj(y, t), and aj(y, t) are solutions of
nonlinear parabolic equations with boundary conditions (5)–(7), (12) and initial data (13) and (14). The
last two conditions in (5) and the fourth from (12) are the additional conditions on fj(t).

To simplify (4)–(7), (10)–(14) we introduce the characteristic scales of length and time as well as
functions wj , vj , aj , dj , and fj ; namely, the quantities l01, l021 /ν1, κ1a

0l01/μ1, κ2a
0l021 /μ1, a0, κ1a

0l01/ρ1,
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10 ANDREEV, CHEREMNYKH

and κ1a
0/

(
ρ1l

0
1

)
respectively, where l01 = const > 0 is the average value of thickness of the first layer of

the liquid at t = 0,

a0 = max
t�0

|a30(t) − a10(t)| > 0 or a0 = max
j

max
y

∣
∣a0

j (y)
∣
∣ > 0.

In the dimensionless variables, some factor appears at the nonlinear terms in (4), the Marangoni
number M = κ1a

0l031 μ−1
1 ν−1

1 . The same applies to the kinematic conditions (6); this time for the
linear terms containing velocities. Assume that the temperature coefficients of the surface tensions are
comparable in their value κ1 ∼ κ2 and M � 1. The latter holds either in the thin layers or for large
viscosities. Then the nonlinear terms in the equations can be neglected, and the latter become linear.
In particular, the kinematic conditions have the form lnt = 0, i.e., ln = ln(x) for n = 1, 2.

Let us turn to (11). After transition to the dimensionless variables on the right-hand sides, the Weber
numbers Wen = σ0

n/
(
a0l021 κ1

)
appear instead of σ0

1 and σ0
2 . In the real conditions, Wen 	 1 for the most

of liquid media; for example, for the water-air system We ∼ 106. Therefore, for these Weber numbers,
(11) assume the form lnxx = 0; i.e., ln(x) = αnx + l0n.

We assume later that αn = 0 and the separation surfaces are the planes y = l01 and y = l02 > l01,
parallel to the solid walls y = 0 and y = l3; in what follows, the index 0 for l0n will be omitted.

2. A PRIORI ESTIMATES

Let us present the so-obtained linear problem in its entirety in dimensional form:

wjt = νjwjyy + fj(t), j = 1, 2, 3, (15)

wj(y, 0) = 0, (16)

w1(0, t) = 0, w3(l3, t) = 0, (17)

w1(l1, t) = w2(l1, t), w2(l2, t) = w3(l2, t), (18)

μ2w2y(l1, t) − μ1w1y(l1, t) = −2κ1a1(l1, t),
μ3w3y(l2, t) − μ2w2y(l2, t) = −2κ2a2(l2, t),

(19)

l1∫

0

w1(y, t) dy = 0,

l2∫

l1

w2(y, t) dy = 0,

l3∫

l2

w3(y, t) dy = 0, (20)

where 0 < y < l1 for j = 1, l1 < y < l2 for j = 2, and l2 < y < l3 for j = 3. Conditions (19) follow from
(10) since τ1 = τ2 = (1, 0) and ∇11Θ1,2 · τ1,2 = 2a1,2x according to representation (3) for temperature.
The first two equalities in (20) follow from (6), whereas the last is the no-slip condition: v3(l3, t) = 0.

Let us write the problem for the functions aj(y, t):

ajt = χjajyy, (21)

aj(y, 0) = a0
j (y), (22)

a1(0, t) = a10(t), a3(l3, t) = a30(t), (23)

a1(l1, t) = a2(l1, t), a2(l2, t) = a3(l2, t), (24)

k1a1y(l1, t) = k2a2y(l1, t), k2a2y(l2, t) = k3a3y(l2, t). (25)

In order to obtain a priori estimates for wj(y, t) and fj(t) of the solution of (15)–(20), it is necessary
firstly to infer the estimates for the solutions of initial-boundary value problem (21)–(25). We perform
the change of variables:

a1(y, t) = ã1(y, t) +
a10(t)

l21
(y − l1)2, a2(y, t) = ã2(y, t),

a3(y, t) = ã3(y, t) +
a30(t)

(l3 − l2)2
(y − l2)2.

(26)
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THE JOINT CREEPING MOTION OF THREE VISCID LIQUIDS 11

The functions ãj(y, t) in their domains satisfy the equations

ã1t = χ1ã1yy +
2χ1a10(t)

l21
− a′10(t)(y − l1)2

l21
, (27)

ã2t = χ2ã2yy, (28)

ã3t = χ3ã3yy +
2χ3a30(t)
(l3 − l2)2

− a′30(t)(y − l2)2

(l3 − l2)2
, (29)

where the prime denotes differentiation with respect to time.
Boundary conditions (23) for ã1 and ã3 become homogeneous, whereas (24) and (25) preserve their

form. Initial conditions (22) for ã1 and ã3 change:

ã1(y, 0) = a0
1(y) − a10(0)

l21
(y − l1)2 ≡ ã0

1(y),

ã3(y, 0) = a0
3(y) − a30(0)

(l3 − l2)2
(y − l2)2 ≡ ã0

3(y).
(30)

Introduce the notations:

g1(y, t) =
2χ1a10(t)

l21
− a′10(t)(y − l1)2

l21
, g3(y, t) =

2χ3a30(t)
(l3 − l2)2

− a′30(t)(y − l2)2

(l3 − l2)2
. (31)

Let us multiply (27)–(29) by ρ1c1ã1, ρ2c2ã2, and ρ3c3ã3 and integrate over the segments [0, l1], [l1, l2],
and [l2, l3] taking into account (24) and (25). Then add up the results. We infer that

dA(t)
dt

+ k1

l1∫

0

ã2
1y dy + k2

l2∫

l1

ã2
2y dy + k3

l3∫

l2

ã2
3y dy

= ρ1c1

l1∫

0

g1(y, t)ã1(y, t) dy + ρ3c3

l3∫

l2

g3(y, t)ã3(y, t) dy, (32)

A(t) =
1
2
ρ1c1

l1∫

0

ã2
1 dy +

1
2
ρ2c2

l2∫

l1

ã2
2 dy +

1
2
ρ3c3

l3∫

l2

ã2
3 dy, (33)

where cj = kj/(ρjχj) are the coefficients of the specific heat capacity. Since on the solid walls ã1(0, t)=0
and ã3(l3, t) = 0, while for ã1, ã2, and ã3 the conditions (24) and (25) are fulfilled; therefore,

l1∫

0

ã2
1 dy +

l2∫

l1

ã2
2 dy +

l3∫

l2

ã2
3 dy ≤ M1

(

k1

l1∫

0

ã2
1y dy + k2

l2∫

l1

ã2
2y dy + k3

l3∫

l2

ã2
3y dy

)

with a positive minimum constant M1 < ∞ [15]. Hence, the left-hand side in (32) is at least

dA(t)
dt

+ 2δA(t), δ =
1

M1
min

j

(
χj

kj

)
. (34)

As for the right-hand side, it does not exceed

ρ1c1

( l1∫

0

g2
1 dy

)1/2( l1∫

0

ã2
1 dy

)1/2

+ ρ3c3

( l3∫

l2

g2
3 dy

)1/2( l3∫

l2

ã2
3 dy

)1/2

≤
[(

2ρ1c1

l1∫

0

g2
1 dy

)1/2

+

(

2ρ3c3

l3∫

l2

g2
3 dy

)1/2]√
A(t) ≡ G(t)

√
A(t). (35)
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Thus, from (32) with (34) and (35) we derive
dA(t)

dt
+ 2δA(t) ≤ G(t)

√
A(t), and so

A(t) ≤
[
√

A(0) +
1
2

t∫

0

eδτG(τ) dτ

]2

e−2δt. (36)

According to (33),

A(0) =
1
2
ρ1c1

l1∫

0

(
ã0

1(y)
)2

dy +
1
2
ρ2c2

l2∫

l1

(
a0

2(y)
)2

dy +
1
2
ρ3c3

l3∫

l2

(
ã0

3(y)
)2

dy,

where ã0
1(y) and ã0

3(y) are given by (30). Then, using (31), we obtain

l1∫

0

g2
1(y, t) dy ≤ 4χ2

1a
2
10(t)

l31
+

1
5

l1
(
a′10(t)

)2
,

l3∫

l2

g2
3(y, t) dy ≤ 4χ2

3a
2
30(t)

(l3 − l2)3
+

1
5

(l3 − l2)
(
a′30(t)

)2
.

(37)

By the definition of G(t) (see (35)), we have

G(t) ≤ 2
√

ρ1c1

(
2χ1|a10(t)|

l
3/2
1

+
1√
5

√
l1

∣
∣a′10(t)

∣
∣
)

+ 2
√

ρ3c3

(
2χ3|a30(t)|
(l3 − l2)3/2

+
1√
5

√
(l3 − l2)

∣∣a′30(t)
∣∣
)

, (38)

because of
√

x2 + y2 ≤ |x| + |y| for all x, y ∈ R1.

Remark 1. If the integrals

∞∫

0

eδτ |ak0(τ)| dτ,

∞∫

0

eδτ
∣∣a′k0(τ)

∣∣ dτ, k = 1, 3, (39)

converge then, by (36)–(39), A(t) tends to zero with time by an exponential law. Physically it means
that the thermal effects are rather small.

In view of (38) for G(t), we see that (36) assumes the form

A(t) ≤
[
√

A(0) +
√

ρ1c1

⎛

⎝2χ1

l
3/2
1

t∫

0

eδτ |a10(τ)| dτ +

√
l1
5

t∫

0

eδτ
∣
∣a′10(τ)

∣
∣ dτ

⎞

⎠

+
√

ρ3c3

(
2χ3

(l3 − l2)3/2

t∫

0

eδτ |a30(τ)| dτ +

√
l3 − l2

5

t∫

0

eδτ
∣
∣a′30(τ)

∣
∣ dτ

)]2

e−2δt. (40)

Let us rewrite (27)–(29) as ãjt − χj ãjyy = gj(y, t), g2 = 0, square each equation, and multiply by ρjcj .
Then let us integrate with respect to time and y in the respective domains and sum up the results. Using
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THE JOINT CREEPING MOTION OF THREE VISCID LIQUIDS 13

the boundary and initial conditions, we arrive at the integral equality

t∫

0

[

ρ1c1

l1∫

0

(
ã2

1t + χ2
1ã

2
1yy

)
dy + ρ2c2

l2∫

l1

(
ã2

2t + χ2
2ã

2
2yy

)
dy + ρ3c3

l3∫

l2

(
ã2

3t + χ2
3ã

2
3yy

)
dy

]

dt

+ k1

l1∫

0

ã2
1y(y, t) dy + k2

l2∫

l1

ã2
2y(y, t) dy + k3

l3∫

l2

ã2
3y(y, t) dy

= k1

l1∫

0

ã2
10y(y) dy + k2

l2∫

l1

ã2
20y(y) dy + k3

l3∫

l2

ã2
30y(y) dy

+ ρ1c1

t∫

0

l1∫

0

g2
1(y, t) dy dt + ρ3c3

t∫

0

l3∫

l2

g2
3(y, t) dydt. (41)

Considering (37), we obtain from (41) the estimates
l1∫

0

ã2
1y(y, t) dy ≤ F (t)

k1
,

l2∫

l1

ã2
2y(y, t) dy ≤ F (t)

k2
,

l3∫

l2

ã2
3y(y, t) dy ≤ F (t)

k3
(42)

with the function

F (t) = k1

l1∫

0

(
ã0

1y(y)
)2

dy + k2

l2∫

l1

(a0
2y(y))2 dy + k3

l3∫

l2

(
ã0

3y(y)
)2

dy

+ 2ρ1c1

[
4χ2

1

l31

t∫

0

a2
10(τ) dτ +

1
5
l1

t∫

0

(
a′10(τ)

)2
dτ

]

+ 2ρ3c3

⎡

⎣ 4χ2
3

(l3 − l2)

t∫

0

a2
30(τ) dτ +

1
5
(l3 − l2)2

t∫

0

(
a′30(τ)

)2
dτ

⎤

⎦ . (43)

Remark 2. The convergence of (39) also yields the convergence as t → ∞ of the integrals in the
expression of F (t) in (43).

Returning to (26), from (36), (38), (42), (43), and the Cauchy–Bunyakovskiĭ Inequality we obtain
the uniform estimates in y:

|a1(y, t)| �
(

8A(t)F (t)
ρ1c1k1

)1/4

+ h1(t)e−δt, (44)

|a3(y, t)| ≤
(

8A(t)F (t)
ρ3c3k3

)1/4

+ h3(t)e−δt, (45)

|a2(y, t)| ≤ (8A(t)F (t))1/4
(
(ρ2c2k2)−1/2 + (ρ1c1k1)−1/2

)1/2
. (46)

Remark 3. Since the integrals (39) converge, we have aj0(τ) ≤ hj(τ)e−δτ and a′j0(τ) ≤ h1
j (τ)e−δτ ,

whereas
∞∫

0

|hj(τ)| dτ < ∞,

∞∫

0

∣
∣h1

j (τ)
∣
∣ dτ < ∞.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 10 No. 1 2016



14 ANDREEV, CHEREMNYKH

The following holds:

Theorem 1. If the integrals (39) converge then the solution of (21)–(25) tends to zero as
t → ∞. Moreover, we have the estimates (44)–(46) for the convergence rate.

Indeed, according to (43) the function F (t) is bounded by a constant, and from (40) A(t) ∼ e−2δt;
therefore, (44)–(46) prove the theorem.

Let us return to (15)–(20). Note the following identity

dE(t)
dt

+ μ1

l1∫

0

w2
1y dy + μ2

l2∫

l1

w2
2y dy + μ3

l3∫

l2

w2
3y dy

= 2κ1a1(l1, t)w1(l1, t) + 2κ2a3(l2, t)w3(l2, t), (47)

E(t) =
1
2
ρ1

l1∫

0

w2
1 dy +

1
2
ρ2

l2∫

l1

w2
2 dy +

1
2
ρ3

l3∫

l2

w2
3 dy.

Observe that, using (26), we have a1(l1, t) = ã1(l1, t) and a3(l2, t) = ã3(l2, t) in (47). Now,

|w1(l1, t)| ≤
√

l1

( l1∫

0

w2
1y dy

)1/2

, |w3(l2, t)| ≤
√

l3 − l2

( l3∫

l2

w2
3y dy

)1/2

and so the right-hand side of (47) is estimated from above as follows: for all ε1 > 0 and ε2 > 0, we have

|2κ1ã1(l1, t)w1(l1, t) + 2κ2ã3(l2, t)w3(l2, t)|

≤ κ1

ε1
ã2

1(l1, t) +
κ2

ε2
ã2

3(l2, t) + κ1l1ε1

l1∫

0

w2
1y dy + κ2(l3 − l2)ε2

l3∫

l2

w2
3y dy.

Choosing ε1 < μ1/κ1l1 and ε2 < μ2/κ2(l3 − l2) and applying (44) and (45), we find from (47) that

dE

dt
+ (μ1 − κ1l1ε1)

l1∫

0

w2
1y dy + μ2

l2∫

l1

w2
2y dy + [μ3 − κ2(l3 − l2)ε2]

l3∫

l2

w2
3y dy

≤ 4
(

κ1

ε1

1√
ρ1c1k1

+
κ2

ε2

1√
ρ3c3k3

)√
A(t)F (t) . (48)

Owing to

l1∫

0

w2
1 dy +

l2∫

l1

w2
2 dy +

l3∫

l2

w2
3 dy ≤ l23

2

( l1∫

0

w2
1y dy +

l2∫

l1

w2
2y dy +

l3∫

l2

w2
3y dy

)

,

we can rewrite (48) as

dE

dt
+ 4δ1E ≤ H(t), δ1 =

1
l23

min
{

μ1 − κ1l1ε1

ρ1
,

μ2

ρ2
,

μ3 − κ2(l3 − l2)ε2

ρ3

}
, (49)

where

H(t) = 4
(

κ1

ε1

1√
ρ1c1k1

+
κ2

ε2

1√
ρ3c3k3

)√
A(t)F (t). (50)
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By (40), H(t) can be estimated from above as follows:

H(t) ≤ 4
(

κ1

ε1

1√
ρ1c1k1

+
κ2

ε2

1√
ρ3c3k3

)√
F (t)

×
[
√

A(0) +
√

ρ1c1

(
2χ1

l
3/2
1

t∫

0

eδτ |a10(τ)| dτ +

√
l1
5

t∫

0

eδτ
∣
∣a′10(τ)

∣
∣ dτ

)

+
√

ρ3c3

(
2χ3

(l3 − l2)3/2

t∫

0

eδτ |a30(τ)| dτ +

√
l3 − l2

5

t∫

0

eδτ
∣
∣a′30(τ)

∣
∣ dτ

)]

e−δt. (51)

The function F (t) in (51) is given by (43) and bounded by a constant (see Remark 2).

From (49) we obtain

E(t) ≤ e−4δ1t

t∫

0

e4δ1τH(τ) dτ. (52)

Hence, we find the estimates of the L2-norms of wj(y, t) on their respective domains

l1∫

0

w2
1 dy ≤ 2

ρ1
E(t),

l2∫

l1

w2
2 dy ≤ 2

ρ2
E(t),

l3∫

l2

w2
3 dy ≤ 2

ρ3
E(t). (53)

To obtain some analogous estimates for the derivatives wjy, we carry out the substitution

w1(y, t) = w̃1(y, t) +
2κ1a1(l1, t)

μ1l
2
1

(
2y3 − 3l1y2 + l21y

)
, w2(y, t) = w̃2(y, t),

w3(y, t) = w̃3(y, t) − 2κ2a2(l2, t)
μ3(l3 − l2)2

[
2y3 − 3(l2 + l3)y2 +

(
l22 + l23 + 4l2l3

)
y − l2l3(l2 + l3)

]
.

(54)

In this case, the boundary conditions (19) for w̃j(y, t) become homogeneous, whereas (17), (18),
and (20) have the same form. In (15) for j = 1 and j = 3, the right-hand sides change:

f̃1(y, t) = f1(t) −
2κ1a1t(l1, t)

μ1l21
(2y3 − 3l1y2 + l21y) +

12κ1ν1a1(l1, t)
μ1l21

(2y − l1)

≡ f1(t) + Q1(y, t), (55)

f̃3(y, t) = f3(t) +
2κ2a2t(l2, t)
μ3(l3 − l2)2

[
2y3 − 3(l2 + l3)y2 +

(
l22 + l23 + 4l2l3

)
y − l2l3(l2 + l3)

]

− 12κ2ν3a2(l2, t)
μ3(l3 − l2)2

[2y − (l2 + l3)] ≡ f3(t) + Q3(t).

Initial data (16) are inhomogeneous for j = 1 and j = 3:

w̃1(y, 0) = −2κ1a1(l1, 0)
μ1l21

(
2y3 − 3l1y2 + l21y

)
≡ w̃10(y),

w̃3(y, 0) =
2κ2a2(l2, 0)
μ3(l3 − l2)2

[
2y3 − 3(l2 + l3)y2 +

(
l22 + l23 + 4l2l3

)
y − l2l3(l2 + l3)

]
≡ w̃30(y).

(56)
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Multiply the equations for w̃j(y, t) by ρjw̃jt and sum up the results:

ρ1

l1∫

0

w̃2
1t dy + ρ2

l2∫

l1

w̃2
2t dy + ρ3

l3∫

l2

w̃2
3t dy

+
∂

∂t

[
1
2
μ1

l1∫

0

w̃2
1y dy +

1
2
μ2

l2∫

l1

w̃2
2y dy +

1
2
μ3

l3∫

l2

w̃2
3y dy

]

= ρ1

l1∫

0

Q1(y, t)w̃1t dy + ρ3

l3∫

l2

Q3(y, t)w̃3t dy. (57)

From (57) we derive the estimate

1
2
μ1

l1∫

0

w̃2
1y dy +

1
2
μ2

l2∫

l1

w̃2
2y dy +

1
2
μ3

l3∫

l2

w̃2
3y dy ≤ 1

2
μ1

l1∫

0

w̃2
10y dy +

1
2
μ3

l3∫

l2

w̃2
30y dy

+
1
2

[
ρ1

ε3

t∫

0

l1∫

0

Q2
1(y, τ) dydτ +

ρ3

ε4

t∫

0

l3∫

l2

Q2
3(y, τ) dydτ

]

. (58)

By the definitions of Q1(y, t) and Q2(y, t), from (55), (56), and (58) we obtain the boundedness of the
quantities

l1∫

0

w̃2
1y dy,

l2∫

l1

w̃2
2y dy,

l3∫

l2

w̃2
3y dy

provided that

∞∫

0

a2
1(l1, τ) dτ,

∞∫

0

a2
1τ (l1, τ) dτ,

∞∫

0

a2
2(l2, τ) dτ,

∞∫

0

a2
2τ (l2, τ) dτ (59)

converge. The convergence
∫ ∞
0 a2

1(l1, τ) dτ and
∫ ∞
0 a2

2(l2, τ) dτ follows from (44) and (46). In order to
demonstrate the boundedness of

∞∫

0

a2
1τ (l1, τ) dτ,

∞∫

0

a2
2τ (l2, τ) dτ,

we have to estimate ajt(y, t). To this end, it suffices to differentiate (21) and (23)–(25) with respect to t.
In result, the problem arises for ajt(y, t) that is analogous to (21)–(25) after replacement of (22) by

ajt(y, 0) = ψjyya
0(y).

If, in addition to the convergence of (39), we require the convergence of the integrals

∞∫

0

eδτ
∣
∣a′′j0(τ)

∣
∣ dτ, j = 1, 3; (60)
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then, using Remark 3, we estimate

|a1t(y, t)| ≤
(

8A1(t)F1(t)
ρ1c1k1

)1/4

+ h1
1(t)e

−δt,

|a3t(y, t)| ≤
(

8A1(t)F1(t)
ρ3c3k3

)1/4

+ h1
3(t)e

−δt,

|a2t(y, t)| � (8A1(t)F1(t))1/4
(
(ρ2c2k2)−1/2 + (ρ1c1k1)−1/2

)1/2
.

(61)

In (61), A1(t) ∼ e−2δt and F1(t) is bounded by some constant.
According to (54) and (59), the following integrals are bounded for all t > 0:

l1∫

0

w2
1y dy,

l2∫

l1

w2
2y dy,

l3∫

l2

w2
3y dy.

Using these facts together with (53), we find the estimates

|w1(y, t)| ≤ C1(E(t))1/4, |w2(y, t)| ≤ C2(E(t))1/4, |w3(y, t)| ≤ C3(E(t))1/4, (62)

uniform on their respective domains of definition, and Cj > 0 are constants.

Theorem 2. Let the integrals (39) and (60) converge. Then the solution of (15)–(20) converges
to zero as t → ∞, whereas (62) are valid for the convergence rate, where E(t) satisfies (52).

Theorem 2 and Remark 3 demonstrate that, under these conditions, the deceleration of the liquids
occurs with time due to friction on walls.

Now, let us proceed to estimating fj(t). To that end, we multiply (15) by y(l1 − y) for j = 1,
by (y − l1)(l2 − y) for j = 2, and by (l3 − y)(y − l2) for j = 3; and then we integrate over the respective
domains:

1
6

l31f1(t) = ν1

l1∫

0

(l1 − 2y)w1y dy +

l1∫

0

y(l1 − y)w1t dy,

1
6

(l2 − l1)3f2(t) = ν2

l2∫

l1

(l1 + l2 − 2y)w2y dy +

l2∫

l1

(y − l1)(l2 − y)w2t dy,

1
6

(l3 − l2)3f3(t) = ν3

l3∫

l2

(l2 + l3 − 2y)w3y dy +

l3∫

l2

(y − l2)(l3 − y)w3t dy.

(63)

In order to obtain the boundedness of |fj(t)|, we estimate
∫
Ωj

w2
jt dy. Make the substitution

wjt(y, t) = ϕ(y, t), fjt(t) = f̃j(t). (64)

Now (15) can be rewritten as ϕjt(y, t) = νjϕjyy(y, t) + f̃(t). Initial and boundary conditions (16)–(18)
and (20) preserve their form, whereas (19) changes:

μ2ϕ2y(l1, t) − μ1ϕ1y(l1, t) = −2κ1a1t(l1, t), μ3ϕ3y(l2, t) − μ2ϕ2y(l2, t) = −2κ2a2t(l2, t).

For the functions ϕ(y, t) we obtain some problem that is analogous to (15)–(20). Therefore, using (64)
and (61), we have

l1∫

0

w2
1t dy ≤ 2

ρ1
E1(t),

l2∫

l1

w2
2t dy ≤ 2

ρ2
E1(t),

l3∫

l2

w2
3t dy ≤ 2

ρ3
E1(t). (65)
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The function E1(t) in (65) can be estimated from above as follows:

E1(t) ≤ e−4δ1t

t∫

0

e4δ1τH1(τ) dτ,

H1(t) ≤ 4
(

κ1

ε1

1√
ρ1c1k1

+
κ2

ε2

1√
ρ3c3k3

)√
F1(t)A1(t).

(66)

Hence, using the Cauchy–Bunyakovskiĭ Inequality together with (54), (58), and (65), it is easy to obtain
from (63) the boundedness of |fj(t)| for all t ≥ 0 if (39) and (60) converge. More precise estimates can
be obtained if we use the equalities

l1∫

0

w1y dy = w1(l1, t),

l2∫

l1

w2y dy = w2(l2, t) − w2(l1, t),

l3∫

l2

w3y dy = −w3(l2, t),

l1∫

0

yw1y dy = l1w1(l1, t),

l2∫

l1

yw2y dy = l2w2(l2, t) − l1w2(l1, t),

l3∫

l2

yw3y dy = −l2w3(l2, t).

(67)

The first three equalities in (67) are obvious, whereas the others are obtained by integrating (20) by parts.
Using (67) and (18), we can reduce the first terms on the right-hand sides of (65) to the form

−ν1l1w1(l1, t), −ν2(l2 − l1)
(
w1(l1, t) + w3(l2, t)

)
, −ν3(l3 − l2)w3(l2, t). (68)

Hence, if (39) and (60) converge then, using (68) and the Cauchy–Bunyakovskiĭ Inequality together
with (52), (62), (65), and (66), we infer

|f1(t)| �
(

12
5l1ρ1

t∫

0

e4δ1τH1(τ) dτ

)1/2

e−2δ1t − 6ν1C1

l21

( t∫

0

e4δ1τH(τ) dτ

)1/4

e−δ1t,

|f2(t)| ≤
(

12
5(l2 − l1)ρ2

t∫

0

e4δ1τH1(τ) dτ

)1/2

e−2δ1t − 6ν2(C1 + C3)
(l2 − l1)2

( t∫

0

e4δ1τH(τ) dτ

)1/4

e−δ1t,

|f3(t)| ≤
(

12
5(l3 − l2)ρ3

t∫

0

e4δ1τH1(τ) dτ

)1/2

e−2δ1t − 6ν3C3

(l3 − l2)2

( t∫

0

e4δ1τH(τ) dτ

)1/4

e−δ1t.

(69)

The functions H(t) and H1(t) in (69) are estimated from above in (51) and (66). Therefore, in view of
convergence of (39) and (60), together with |aj(y, t)| and |wj(y, t)|, we also have |fj(t)| → 0 as t → ∞.

3. STATIONARY SOLUTION

Let us write a stationary solution of the problem (21)–(25) (as
10 and as

30 take constant values on the
walls y = 0 and y = l3; hereafter, as

10 �= 0):

as
1(ξ) = as

10[A1ξ + 1], 0 < ξ = y/l1 < 1,

as
2(ξ) = as

10[A1((ξ − 1)k̄1 + 1) + 1], 1 < ξ < 1/l̄1,

as
3(ξ) = as

10

[
k̄1k̄2A1(ξ − l̄2/l̄1) + as

30/a
s
10

]
, 1/l̄1 < ξ < l̄2/l̄1,
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and problem (15)–(20):

ws
1(ξ) =

l1κ2a
s
2(l2)

μ2

l̄1(l̄1 − 1)
m1

(2ξ − 3ξ2)
[

κ1a
s
1(l1)

κ2as
2(l2)

− m5

m4
(l̄1 − 1)

]

, 0 < ξ = y/l1 < 1,

ws
2(ξ) = − l1κ2a

s
2(l2)

μ2

[
3l̄1m5

m4
(ξ − 1)2 +

l̄1(l̄1 − 1)
m1

(1 + 4μ̄1(ξ − 1))

×
(

κ1a
s
1(l1)

κ2a
s
2(l2)

− m5(l̄1 − 1)
m4

)
+

2κ1a
s
1(l1)

κ2a
s
2(l2)

(ξ − 1)
]
, 1 < ξ < 1/l̄1,

ws
3(ξ) =

2μ̄2l1κ2a
s
2(l2)

μ2

(
ξ − l̄2

l̄1

)[
− 3m6 l̄1

4(l̄2 − 1)

(
ξ +

l̄2 − 2
l̄1

)

+
m2m5(l̄1 − 1)

m1m4
− κ1a

s
1(l1)l̄

2
1

m1κ2a
s
2(l2)

− 1
]
, 1/l̄1 < ξ < l̄2/l̄1,

f s
1 =

A2ν1(l̄1 − 1)
m1

(
κ1a

s
1(l1)

κ2a
s
2(l2)

− m5

m4
(l̄1 − 1)

)
, f s

2 =
A2ν2m5

m4
, f s

3 =
A2ν3μ̄2m6

2(l̄2 − 1)
,

where
A1 = l̄1a

s
30/

(
as

10 − 1
)
g−1, A2 = 6κ2a

s
2(l2)l

−1
2 μ−1

2 , l̄1 = l1/l2, l̄2 = l3/l2,

k̄1 = k1/k2, k̄2 = k2/k3, μ̄1 = μ1/μ2, μ̄2 = μ2/μ3,

whereas the constants g, m1, m2, m3, m4, m5, and m6 are calculated according to the available formulas.
Introducing the differences

âj(y, t) = as
j(y) − aj(y, t), ŵj(y, t) = ws

j(y) − wj(y, t), g(t) = f s
j − f(t)

and carrying out the calculations analogous to those in Section 2, we can prove that the solution of the
nonstationary problem reaches the steady regime as

j(y), ws
j(y), and f s

j = const under the conditions of

convergence of the second integrals in (39), (60) and the integral
∫ ∞
0 eδτ

∣∣as
k0 − ak0(τ)

∣∣ dτ for k = 1, 3.
Let us note that, instead of (39) and (60), it suffices to require that

∣
∣as

k0 − ak0(t)
∣
∣ ≤ α(t + γ)−n

with some constants n > 1, α > 0, and γ > 0.

Remark 4. Owing to the a priori estimates in Section 2, the solutions of (15)–(20) and (21)–(25) are
classical:

wj(y, t), aj(y, t) ∈ C2(Ωj) ∩ C1(0, T ], Ω1 = [0, l1], Ω2 = [l1, l2], Ω3 = [l2, l3].

It is also easy to show the continuity of the derivatives wjy, wjyy, ajy and ajyy. Using the above-obtained
estimates for wjt, fj and ajt, the estimates for wjyy and ajyy can be found from (15) and (21); therefore,
for example,

|wjy(y1, t) − wjy(y2, t)| =

∣
∣∣
∣
∣

y2∫

y1

wjyy dy

∣
∣∣
∣
∣
≤ |y1 − y2| max

y∈Ωj , t∈(0,T ]
|wjyy|

for all y1, y2 ∈ Ωj . Hence, the functions wjy(y, t) are continuous on their domains, and the boundary
conditions for the tangent stresses (19) are fulfilled in the sense of continuous functions. The estimates
for ajy can be obtained by analogy.
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