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Abstract We study the two-dimensional ultracold Bose
gas in optical lattice. We use cluster perturbation the-

ory based on Hubbard X-operators to calculate the

spectral function and phase diagram of Bose-Hubbard

model which is minimal model to describe behavior of

ultracold gases in optical lattices. We have analyzed
spectral properties of spinless bosons in a square lat-

tice taking into account the short-range correlation.
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1 Introduction

Ultracold gases have been studied intensively since the
achievement of Bose-Einstein condensation. This achieve-

ment results in two major developments. One can tune

the strengths of interaction between particles by means

of Feshbach resonance and change the dimensionality

with optical lattices. Using both of them or separately,
one can enter a regime in which ultracold gas is no

longer described by noninteracting quasiparticles. On

contrary, such system will exhibit strong interactions

and should be described adequately. Interest to ultra-
cold gases in optical lattices comes from the possibil-

ity of studying phenomena of quantum many-body sys-
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tems. Also ultracold systems could be used in quantum
simulations [1,2]. Quantum phase transition from a su-

perfluid to a Mott insulator has been realized in ultra-

cold boson gases in optical lattices [3–6]. There have

been done a lot of work in order to understand the be-

havior of this systems in different regimes [7–11].

In this paper we have studied ultracold spinless Bose

particles in the optical lattice. A simple model to de-

scribe the behavior of such systems is Bose-Hubbard

model [12]. We studied the Bose-Hubbard model with

the nearest and next-to-nearest neighbor hoppings. We
have used the cluster perturbation theory based on Hub-

bard X-operators [13] in order to acquire the spectral

function. We calculate the phase diagram of the Mott

insulator (MI) - superfluid state (SF) transition and
determine the boundary of the two first Mott lobes

for the different value of the next-to-nearest neighbor

hoppings. We also study the density of states and the

momentum distribution in the Mott phase taking into

account the quasiparticle spectral weight.

The paper is organized as follows. Firstly, we intro-

duce the Bose-Hubbard model with the next-to-nearest

neighbor hoppings and describe the cluster perturba-

tion theory based on X-operators in Section 2. Spec-

tral properties and phase diagram of ultracold spinless
bosons in the square optical lattice are described in Sec-

tion 3. Finally, in Section 4 we draw the conclusion.

2 Cluster perturbation theory based on

X-operators

A conceptually simple model to describe ultracold atoms
in an optical lattice at finite density is obtained by com-

bining the kinetic energy in the lowest band with the

on-site repulsion in the limit of sufficiently deep optical
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lattice [7]. We study the Bose-Hubbard model with the

next-to-nearest neighbor hoppings J ′:

Ĥ = −
∑
<i,j>

Jij b̂
†
i b̂j −

∑
≪i,j≫

J ′
ij b̂

†
i b̂j+

U

2

∑
i

n̂i (n̂i − 1)− µ
∑
i

n̂i,
(1)

where b̂†i and b̂j are creation and annihilation operators,

respectively; n̂i = b̂i
†
b̂i is the particle number operator,

U is the on-site repulsion energy; Jij is the hopping

matrix element of nearest neighbors, J ′
ij is the hop-

ping matrix element of next-to-nearest neighbors; µ is
the chemical potential. Here < ... > and ≪ ... ≫ de-

note sum over nearest neighbors and sum over next-

to-nearest neighbors, respectively. It is schematically

shown in Figure 1.
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Fig. 1 Scheme of a square optical lattice. J denotes the near-
est neighbor hoppings, J ′ denotes the next-to-nearest neigh-
bor hoppings. f and g are the cluster indexes.

In order to obtain spectral properties of ultracold
gas in the optical lattice we used the cluster perturba-

tion theory based on Hubbard X-operators [13]. Here

we use the 2 × 2 cluster for tiling of the square lattice

(see Figure 1).

Firstly, we divide Hamiltonian (1) into two part:

Ĥ =
∑
f

Ĥ0(f) +
∑
f 6=g

Ĥint(f, g), (2)

where Ĥ0(f) is Hamiltonian of 2×2 cluster f , Ĥint(f, g)

is the interaction between clusters f and g.

Secondly, we exactly diagonalize Ĥ0(f). Eigenvec-

tors are used to construct X-operators [13–15]:

X̂α
f ≡ X̂pq

f = |p〉 〈q| , (3)

where |p〉 is the initial cluster state, 〈q| is the final clus-
ter state, α(p, q) is a root vector of transition between

states in the Hilbert space of cluster.

Now we can represent annihilation operator b̂i in the

form:

b̂i =
∑
fα

γi(α)X̂
α
f , (4)

γi(α) = 〈m′, N − 1| b̂i |m,N〉 (5)

where i is index inside of a cluster and runs over 1,
2, 3, 4, γi(α) is the matrix element which determine a

transition from state |m,N〉 to |m′, N − 1〉, m and m′

denote states in the Hilbert space with N and N − 1

particles, respectively.

Using commutation relation between Bose-operators,

one can get the following sum rule:

〈[b̂i, b̂†i ]〉 = 1 =
∑
α

|γi(α)|2B(α) ≡ f, (6)

B(α) = 〈Xpp〉 − 〈Xqq〉, (7)

where B(α) is a filling factor [13]. In exact calculations
including all possible quasiparticle excitations α the

sum in Eq.(6) is equal to unity. Practically some part

of the Hilbert space gives miserable contribution to the

spectral function and may be omitted to reduce the
computation time. Here we introduced f -factor which

controls the sum over all transitions in the Hilbert space.

This study shows that if one keeps this number within

a range from 0.99 to 1 results will remain correct. This

fact is only natural, we neglected unlikely transitions
which didn’t change a whole picture. More details on

this matter one can find below.

Substituting (4) into (1) and keeping in mind that

Ĥ0(f) is diagonalized, we have:

Ĥ =
∑
fn

ǫnX
nn
f +

∑
f 6=g

∑
αβ

Jαβ
fg X

α
f X

−β
g , (8)

where f and g are cluster indexes, α and β are root

vectors of transitions between cluster states, ǫn is the

energy of cluster, Jαβ
fg is the matrix element of the in-

teraction between clusters f and g.

Let us carry out a Fourier transformation of X-
operators. We take into account that these operators

are defined for the cluster forming quadratic superlat-

tice with a period twice as large as that of the initial

lattice. In our case, the number of sites in a cluster

is four. Hence, the total number of clusters is smaller
than the initial number of sites also by a factor of four.

Keeping this in mind, we have:

Xα
f =

1√
N∗

∑
k̃

Xα

k̃
eik̃Rf , (9)
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where N∗ is the number of clusters in the superlattice

and k̃ is a wave vector which runs over the reduced

Brillouin zone. Taking into account (9), we obtain:

ĤJ =
∑
k̃

∑
α,β

Jαβ(k̃)X̂
α

k̃
X̂−β

k̃
, (10)

where Jαβ(k̃) is the interaction between clusters.

To calculate the spectral function we used the two-

time Green functions for the initial Bose-operators and

for Hubbard bosons in the representation ofX-operators:

G(if, t; jg, t′) = 〈〈b̂if (t)|b̂†jg(t′)〉〉, (11)

Dαβ(f, t; g, t
′) = 〈〈Xα

f (t)|Xβ
g (t

′)〉〉, (12)

where i and j are intra-cluster indexes, f and g are

cluster indexes. Here we used notation from [13].

After writing the equations of motion for the Green
function (12) and using the Fourier transform (9), we

can obtain the following matrix equation in the Hubbard-

I approximation:

D−1(k̃, ω) = (D0(ω))
−1 − J(k̃), (13)

where

D0(ω) =
B(α)

ω −Ω(α)
δαβ , (14)

Ω(α) = ǫq(N + 1)− ǫp(N). (15)

Expression (14) defines the cluster Green function which

can be evaluated precisely and contains the energy (quasi-

particle energy) of transition from the state q with num-

ber of particles N + 1 to the state p with number of

particles N ; B(α) is the filling factor (7).

Let us perform a Fourier transformation for Bose-
operators:

b̂if =
1√
N0

∑
k

b̄k exp(ik · (Rf + ri)), (16)

where N0 is the number of sites in the initial lattice

and k is a wave vector defined in the initial Brillouin

zone. There is a relation between Fourier transform of

the Green functions (11) and (12):

G(k, ω) =
1

Nc

∑
αβ

Nc∑
i,j=1

γi(α)γ
∗
j (β)×

×Dαβ(k, ω)e
−ik(ri−rj), (17)

where Nc is a number of sites in cluster (which is four

in our case).

We using the following spectral function:

A(k, ω) = −2Im[G(k, ω)], (18)

It is well known that the spectral function must obey

the sum rule obtained from the commutation relation

for Bose-operators as follows:

∫
dωA(k, ω) = 〈[b̂k, b̂†k]〉 = 1. (19)
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Fig. 2 The phase diagram of the Mott insulator (MI) - su-
perfluid state (SF) transition. The first two Mott lobes with
an occupation number per site < n >= 1 and < n >= 2
are presented. Solid blue line is acquired when the next-to-
nearest neighbor hoppings are disable (J ′ = 0). Dashed red
line is acquired when the next-to-nearest neighbor hoppings
are enabled (J ′ = 0.1J). Asterisks denote the results of the
variational cluster approach (VCA) [9] and circles denote the
results of the quantum Monte-Carlo (QMC) [11].

Above, we introduced the concept of f -factor (6)

which defines the extent to which equality equation (19)

is satisfied, i.e.,

∫
dωA(k, ω) = f. (20)

We can now fully estimate the necessity of monitor-

ing f -factor at first steps of computation of the com-
plete Green function. After exact diagonalization of the

cluster and before calculating of the Green function we

can choose this number of Bose quasiparticles which

allow us to obey the sum rule at the end of calcula-

tions. In ideal case, we must include all transitions in
Hilbert space. However, since we perform numerical cal-

culations in which an increase in number of transition

involves an increase the computation time. It is very

important to determine the optimal number of tran-
sitions before calculations without noticeably affecting

the final result. This is ensured by controlling f -factor

at the beginning of numerical calculations.
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Fig. 3 (a) The density of states N(ω), (b) the dispersion ω(k), and (c) the momentum distribution N(k). Here and below we
use the following notation: Γ = (0, 0), X = (π, 0),M = (π, π). The hopping parameters J/U = 1/22 and J ′ = 0.
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Fig. 4 The same as in Figure 3 for the hopping parameters J/U = 1/50 and J ′ = 0.

3 Spectral properties of the spinless bosons in

the square lattice

Here we study ultracold spinless Bose gas in the square

optical lattice. For analyzing of the physical properties

of this system in Mott phase we calculate the quasi-
particle dispersion with spectral weight. In accordance

with definition (13) the dispersion equation takes the

form:

det((ω −Ω(α)δαβ)−B(α)Jαβ(k̃)) = 0. (21)

The solution of this equation gives a bare dispersion

for all quasiparticles. This set contains both dispersions

that define bands as well as dispersionless levels, i.e.,
equation (21) gives such poles which can be cancelled

out by f -factor. The spectral function (18) determines

the spectral weight of all such states for each value of

a wave vector and, thus, selects physically significant

poles.

The Bose-Hubbard model exhibits a quantum phase

transition from a Mott phase to a superfluid phase by

changing an occupation number per site or increasing
the ration J/U . The first two lobes of 2D Bose-Hubbard

model obtained by means of the cluster perturbation

theory based on X-operators are shown in Figure 2. We

used a gap between bands to draw boundaries of the

Mott phase on this phase diagram.

The critical ration is (J/U)c = 0.047 for the first
Mott lobe and (J/U)c = 0.028 for the second Mott

lobe when the next-to-nearest neighbor hoppings are

disabled. For a case when the next-to-nearest neighbor

hoppings are enabled (J/U)c = 0.053 for the first lobe
and (J/U)c = 0.032 for the second one. Thus the Mott

lobes increase with the next-to-nearest neighbor hop-

ping J ′. The strong-coupling perturbation theory [16]
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and QMC [11] results (J/U)c = 0.0597 for the first lobe

and (J/U)c = 0.0378 for the second one.

The dispersion ω(k), the density of states N(ω) and
the momentum distribution N(k) for an occupation

number per site < n >= 1 and the nearest neighbor

hopping J/U = 1/22 are shown in Figure 3. In the nu-

merical computation of spectral density we replaced a

delta-function by a Lorenz curve with a broadening pa-
rameter δ = 0.03. All calculation was carried out while

keeping f -factor at 0.995. The dispersion is displayed

along the symmetrical directions Γ → X → M → Γ in

the first quadrant of the first Brillouin zone. We use the
following notation Γ = (0, 0), X = (π, 0),M = (π, π).

An interesting feature of Bose systems is negative

value of N(ω). It is result of the Green function defini-
tion [9]. When the strength of hoppings J is growing in

comparison with on-site interaction U the gap between

bands tend to narrow and close at critical (J/U)c (see

Figures 3 and 4).

Particles tend to occupy sites instead of hopping

when the nearest neighbor hopping J are small. In this

case the distribution of the spectral weight becomes

more uniform and the momentum distribution N(k)
straightens (Figure 4b, c). For large hopping we see

a peak in the momentum distribution at the Γ point

which is a precursor for the Bose-Einstein condensa-

tion. Figure 3b shows the nonuniform distribution of
the spectral weight in the dispersion. We can see a large

spectral weight near the Γ point. These results agree

with the results obtained by means of the variational

cluster approach [9] and the strong-coupling perturba-

tion theory [16].

In addition, we studied and analyzed the spectral

properties for J ′ = 0.1J . But we don’t present these re-

sults here because they doesn’t qualitatively differ from
results above.

4 Conclusions

In this paper, we have presented and discussed results
obtained within the cluster perturbation theory based

on Hubbard X-operators for the spectral properties of

the two-dimensional Bose gas in optical lattice. The

minimal model to describe the behavior of such sys-

tem is the Bose-Hubbard model. It undergoes a quan-
tum phase transition form the Mott phase to superfluid

phase, depending on a occupation number per site and

the ration J/U . We determined the first two Mott lobes

of the phase diagram and obtained the change of bound-
ary of the Mott phase with the next-to-nearest neighbor

hopping J ′. In particular, the Mott lobes increase with

J ′ (see Figure 2). Our results is in reasonable agreement

with different methods for the boundaries of the Mott

lobes apart from the region close to the tip. Despite the

fact that methods like the quantum Monte-Carlo or the

strong-coupling perturbation theory are very accurate,

our approach requires less computational effort.
Moreover, we calculated the spectral function in the

first Mott lobe of the phase diagram. An important fact

about the cluster perturbation theory is that one can

calculate the Green function in the real frequency do-
main and, thus, directly calculate the spectral function.

It’s shown that the distribution of the spectral weight

is the uniform for a small nearest neighbor hopping J

and the sharply nonuniform for a large J . In particu-

lar, the spectral weight in the Γ point increases with J
and, thus, it indicates a precursor to the Bose-Einstein

condensation. We also calculated the density of states

and the momentum distribution taking into account the

quasiparticle spectral weight.
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I. Bloch, Nature 415, 39 (2002)
5. I.B. Spielman, W.D. Phillips, J.V. Porto, Physical Re-

view Letters 98, 080404 (2007)
6. I.B. Spielman, W.D. Phillips, J.V. Porto, Physical Re-

view Letters 100, 120402 (2008)
7. I. Bloch, D. Jean, Z. Wilhelm, Review of Modern Physics

80, 885 (2008)
8. L. Jiang, A.M. Rey, O. Romero-isart, J.J. Garćıa-ripoll,
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