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Abstract 19 

In the present study, the unit cell parameters and atomic coordinates were predicted for the Pbcm 20 

orthorhombic structure of Si(oP32) modification. This new allotrope of silicon is mechanically 21 

stable and stable with respect to the phonon states. The electronic structure of Si(oP32) is calculated 22 

for LDA and HSE06 optimized structures. The band gap value Eg = 1.361 eV predicted for 23 

Si(oP32) is extremely close to the Shockley–Queisser limit and it indicates that the Si(oP32) 24 

modification is a promising material for efficient solar cells. The frequencies of Raman and Infrared 25 

active vibrations have been calculated for allotrope Si(oP32). 26 
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1. Introduction 1 

The diamond-like cubic silicon (Fig. 1) is a semiconductor with the indirect band gap equal to 2 

1.12 eV [1,2]. This elemental material is abundant in nature and, due to its appropriate combination 3 

of structural, chemical, mechanical and electronic properties, is widely used in modern electronics, 4 

solar cells and chemical industry. Commonly, only the Si allotropes with amorphous and diamond-5 

like structures are widely known as stable in ambient conditions. In the recent decades, the search 6 

for new allotropes of Si has attracted considerable attention because most of chemical and physical 7 

properties depend on the crystal structure, and it is reasonably expected that new crystal structures 8 

might result in novel properties. As a result, many new thermodynamically stable silicon structures 9 

were predicted and their properties were theoretically observed [3-11] including the cases when the 10 

common tetragonal coordination of Si atoms transform into other forms [3,4,8]. Besides theoretical 11 

investigations, the experimental studies were implemented with the use of different preparation 12 

routes and several Si allotropes were synthesized to observe their structural and physical 13 

characteristics [12-14]. 14 

 15 

Fig. 1. Crystal structures of cubic silicon 16 

Recently, new germanium allotrope Ge(oP32) with the structure in space group Pbcm has 17 

been synthesized by the mild-oxidation/delithiation of Li7Ge12 in ionic liquids [15]. The powder and 18 

single crystal products were obtained by the reaction at 135-145 oC for several days. It is 19 

particularly interesting that Ge(oP32) crystals are stable in ambient conditions. The allotrope has as 20 

low direct optical band gap as Eg = 0.33 eV and is stable up to 363 °C. Thus, the transformation 21 
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from the diamond-like to orthorhombic structure results in a drastic band gap energy variation. As 1 

for silicon, to the best of our knowledge, the related allotrope Si(oP32) has not been considered up 2 

to now and its stability and properties remain unknown. Hence, the present study is aimed at the ab 3 

initio calculations to evaluate the structure and physical properties of silicon allotrope Si(oP32) 4 

isostructural to orthorhombic Ge(oP32). 5 

2. Calculations 6 

All the structural optimization, energy and vibrational calculation were carried out by the 7 

CASTEP code using the density-functional theory [16]. The structure of orthorhombic Ge(oP32) 8 

with the Pbcm space group was taken as the initial basis and the germanium atoms were replaced by 9 

silicon ones [15]. This structure was fully optimized using the local density approximation (LDA) 10 

provided by the Perdew and Zunger [17] parameterization of the numerical results of Ceperley and 11 

Alder (CA-PZ) [18] and using the nonlocal exchange-correlation HSE06 functional [19]. 12 

The calculations of both cubic diamond-like and orthorhombic Pbcm structures were 13 

performed using the norm-conserving pseudopotential with 3s2 3p2 electrons for Si atoms treated as 14 

valence ones. The self-consistent field (SCF) procedure was used with a convergence threshold of 15 

5.010−8 eV/atom. The total energy was corrected for the finite basis set with 3 cut-off energies. The 16 

geometry optimizations were performed at the convergence threshold of 0.001 eV Å−1 on the max 17 

force, 0.01 GPa - on the max stress. The energy cutoff was set to be 900 eV, and the Brillouin zone 18 

(BZ) was sampled by 4×3×4 and 6×6×6 k-points using the Monkhorst–Pack scheme [20] for 19 

orthorhombic and cubic structures, respectively. The electronic band structure was calculated within 20 

the hybrid functional HSE06 method [16] as for the structure obtained after the geometry 21 

optimization, using HSE06 as for the LDA relaxed structure. The phonon spectra at the Γ-point of 22 

the BZ and Raman tensor components were calculated within the density functional perturbation 23 

theory and the finite displacement method [21, 22] based on the crystal system type. The Raman 24 

spectra were simulated by the Lorentzian distribution with a fixed HWHM equal to 2 cm−1. The 25 

dispersion of phonon branches along high symmetry directions of the Brillouin zone was calculated 26 

using the linear response method [23]. 27 
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Quasiparticle GW calculations [24] were performed using the ABINIT code [25,26]. The 1 

one-shot G0W0 quasiparticle energies were computed using the Kohn-Sham eigenstates and 2 

eigenvalues calculated within the LDA approximation as the initial solution of non-interacting 3 

Hamiltonian. The inverse dielectric matrix 1

GG' ( , )q −  was calculated by the random phase 4 

approximation (RPA) using 192 unoccupied bands. The dynamic screening was calculated using the 5 

contour deformation method [27]. The wavefunctions with maximal kinetic energy 35 Ha were used 6 

in the calculations. The corrections to Kohn-Sham energies were calculated as 
xcE−  operator 7 

diagonal matrix elements, where GW = - self-energy operator, xcE - exchange-correlation energy 8 

operator, G - Green function, and 
1W −= v  - screening Coulomb interaction operator. The 9 

components of wavefunction with energies below 750 eV for both exchange and correlation parts 10 

were used to calculate  . 11 

3. Results and discussion 12 

The optimized crystal structure of Si(oP32) is shown in Figure 2 and the obtained 13 

crystallographic data are summarized in Table 1. The difference between the calculated unit cell 14 

parameters using LDA and HSE06 does not exceed 0.016 Å. The obtained fractional coordinates 15 

differ only in the third decimal place. 16 

 17 

Fig. 2. Crystal structures of predicted silicon allotrope Si(oP32). 18 
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Table 1. The calculated structural parameters and atomic positions of Si(oP32), as obtained by 1 

LDA and HSE06 (shown in parentheses) 2 

Unit cell parameters 

 a, Å b, Å c, Å  

 7.777625 

(7.785639) 

11.194104 

(11.186565) 

7.387129 

(7.402904) 

 

     

Atom Wyckoff site Fractional atomic coordinates 

Si1 4d 0.56517 

(0.56592) 

0.08464 

(0.08406) 

0.25000 

(0.25000) 

Si2 4d 0.33135 

(0.33106) 

0.22142 

(0.22017) 

0.25000 

(0.25000) 

Si3 4d 0.48543 

(0.48599) 

-0.11273 

(-0.11346) 

0.25000 

(0.25000) 

Si4 8e -0.02380 

-0.02378 

0.41322 

(0.41340) 

0.08613 

(0.08639) 

Si5 4c 0.15389 

(0.15405) 

0.25000 

(0.25000) 

0.00000 

(0.00000) 

Si6 8e 0.69943 

(0.69939) 

0.14703 

(0.14682) 

-0.01212 

(-0.01221) 

 3 

The mandatory part of mechanical stability of a crystal lattice is the calculations of elastic 4 

constants and elastic moduli [28, 29]. The elastic behavior of a lattice is described by the second-5 

order elastic constant matrix Cij [30]. The calculated stiffness matrix Cij of orthorhombic Pbcm 6 

silicon is presented below. 7 

146.07 45.46 51.31

45.46 154.12 39.23

51.31 39.23 181.75
=

44.18

55.08

45.76

ijC

 
 
 
 
 
 
 
  
 

 8 

The necessary and sufficient Born criteria for an orthorhombic system stability [30] are 9 

C11>0, C11C22>C12
2, C11C22C33+2C12C13C23 – C11C23

2 –C22C13
2 – C33C12

2>0, C44>0,C55>0, C66>0. 10 

All the above conditions are satisfied for the predicted orthorhombic structure. Thus, the predicted 11 

structure of Si(oP32) allotrope is stable with respect to elastic properties. The calculated bulk 12 

modulus (B) value is found to be equal to 83.19 GPa. The results obtained in this work for cubic 13 
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silicon: B=98.00 GPa and C11=163.97 GPa, C12=65.02 GPa, C44=77.39 GPa are in accordance with 1 

experimental data: B=98 GPa [31] and C11=166 GPa, C12=64 GPa, C44=79.6 GPa [32]. 2 

The electronic band structure calculations were performed for the LDA and HSE06 relaxed 3 

structures of orthorhombic Pbcm and cubic silicon allotropes. As expected, the strong the band gap 4 

value underestimation is found in the local density approximation for the cubic phase. Thus, one 5 

may assume that LDA fails to threat the electronic structure of crystalline Si. On the contrary, the 6 

good agreement is found in case of geometry optimization using the HSE06 method followed by the 7 

electronic structure calculations using HSE06 also. The calculated Ei
g value for cubic silicon is in 8 

excellent agreement with the experimental ones (1.12 eV [1,2,30.2]) obtained using the hybrid 9 

functional HSE06 method for the structure optimized by the local density approximation. This fact 10 

could be used as a good validation of the methods, and, hence, predicted values could be used as a 11 

reference for the orthorhombic Si(oP32) allotrope. The calculated data obtained with different 12 

approaches are shown in Table 2. 13 

Table 2. Calculated indirect band gap values (in eV) for cubic and orthorhombic Pbcm silicon 14 

allotropes 15 

 Cubic Orthorhombic Pbcm 

Functional for 

geom. opt. 
LDA LDA HSE06 LDA LDA HSE06 

Functional for 

band str. calc. 
LDA HSE06 HSE06 LDA HSE06 HSE06 

Ei
g (eV) 0.479 1.113 1.078 0.695 1.361 1.383 

 16 

The electronic band structure of Si(oP32) calculated by the hybrid functional HSE06 method 17 

for the LDA relaxed structure is plotted in Figure 3. For the energy band calculations, the high-18 

symmetry points of the BZ are selected as G–X–S–Y–G–Z–U–R–T–Z. The coordinates of the 19 

special points of the Brillouin zone are: G(0,0,0), X(0.5,0,0), S(0.5,0.5,0), Y(0,0.5,0), Z(0,0,0.5), 20 

U(0.5,0,0.5), R(0.5,0.5,0.5), T(0,0.5,0.5). It is found that the valence band (VBM) top is well 21 

localized in the vicinity of the Γ-point in the center of the Brillouin zone. The conduction band 22 

(CBM) bottom is located at X-point (0.5, 0, 0). The band gap value for the indirect electronic 23 
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transitions calculated within the hybrid functional HSE06 approach is equal to Ei
g= 1.361 eV. It is 1 

noteworthy to mention that the predicted Si(oP32) band gap value is very close to the theoretical 2 

value of Shockley–Queisser limit (1.34 eV) [33, 34]. Respectively, the Si(oP32) silicon 3 

modification seems to be a promising material for solar cells. The direct band gap is located at the 4 

Y-point of the Brillouin zone and the calculated band gap value is Ed
g = 1.402 eV. The results of 5 

quasi-particle G0W0 approximation are in agreement with the result of hybrid HSE06, and the 6 

difference between direct and indirect band gap values is insignificant, too (0.045 eV). However, 7 

there is a slight divergence in the band gap values of G0W0 approximation (Ei
g= 1.127 eV), with 8 

respect to HSE06 calculations (Ei
g= 1.362 eV), which is probably due to the fact that G0W0 was 9 

performed as "one-shot" calculations, while the calculations with the hybrid functional HSE06 10 

approach were made as self-consisted. Thus, as a result of the electronic band structure analysis, we 11 

can conclude that Si(oP32) is a semiconductor material with indirect band gap Ei
g= 1.362 eV. The 12 

difference between direct and indirect band gaps is negligible. 13 

The total and partial density of states of the Si(oP32) silicon allotrope structure obtained 14 

with the LDA method are shown in Figure 4. As a result of the curve analysis, one can find that the 15 

VBM and CBM are constructed mostly by the p-electrons of Si atoms, and s-electrons play a 16 

secondary role in the CBM formation. 17 

 18 

Figure 3. Electronic band structure of Si(oP32) silicon calculated with the use of HSE06. 19 
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 1 

Figure 4. Total and partial density of states of Si(oP32). 2 

The mechanical representation for the predicted Si(oP32) allotrope phase of Si (Pbcm) at the 3 

Brillouin zone center is Γvibr = 13Ag + 10Au + 14B1g + 11B1u + 11B2g + 14B2u + 10B3g + 13B3u [35] 4 

where the Raman active modes are ΓRaman = 13Ag + 14B1g + 11B2g + 10B3g, and the infrared active 5 

modes are 10B1u + 13B2u + 12B3u. The acoustic modes are ΓAcoustic = B1u + B2u + B3u. Thus, the 6 

Raman spectra of Pbcm silicon allotrope contain much more bands than that of cubic silicon. Cubic 7 

silicon has only one BZ center optical phonon mode active in the Raman spectrum at 522 cm–1 [36]. 8 

The calculated Raman spectrum of Si(oP32) allotrope is shown in Figure 5. The spectral line 9 

with the highest wavenumber value (533.6 cm–1) is related to the stretching vibration of the shortest 10 

bond in the structure (Si1-Si3, see Fig. 6a) and, according to the calculation data, the stretching-like 11 

vibrations of different Si-Si pairs are located in the rage of 463–533 cm–1. The various stretching-12 

like and bending-like vibrations of structural units (Fig. 6b) are located in the range of 323–457 cm–13 

1. The weak band at 291.5 cm–1, the most intensive band in the calculated Raman spectrum at 278.1 14 

cm–1 and a very weak band at 196.1 cm–1 are related to the stretching of the structure as a whole, as 15 

shown in Fig. 6c, Fig. 6d, Fig. 6e correspondingly. The intense line at 129.0 cm–1 is a vibration of 16 

Si chains, as shown in Fig. 6f. 17 
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 1 

Figure 5. Calculated Raman spectrum of Si(oP32). 2 
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 3 

Figure 6. Displacements of Si(oP32) atoms in the vibrations with frequencies of 533.6 cm–1 (a), 4 

446.7 cm–1 (b), 291.5 cm–1 (c), 278.1 cm–1 (d), 196.1 cm–1 (e) and 129.0 cm–1 (f). 5 
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It is worth noting that the orthorhombic Si(oP32) has the IR-active phonons, opposite to 1 

cubic silicon. The dynamical properties calculation was carried out and the simulated wavenumbers 2 

of Raman and Infrared active modes are listed in Table 3. The calculated phonon dispersion of 3 

Si(oP32) structure is shown in Figure 7. There are no phonon branches with imaginary frequencies, 4 

and, hence, the predicted structure should be stable with respect to phonon states. 5 

Table 3. The calculated vibrational wavenumber values (cm–1) of Si(oP32) allotrope 6 

№ Raman Infrared 

 Ag B1g B2g B3g Au B1u B2u B3u 

1 533.6 519.3 502.4 513.0 501.4 497.2 526.3 515.6 

2 490.7 481.4 485.0 487.8 477.0 482.9 486.3 482.2 

3 481.9 476.2 478.3 469.2 463.3 474.2 479.0 481.3 

4 457.4 464.4 466.2 463.1 451.7 413.9 434.7 465.6 

5 455.4 446.6 390.4 419.7 367.2 382.9 415.7 456.0 

6 439.5 423.8 348.3 362.5 315.4 185.6 367.5 374.8 

7 393.7 382.0 188.4 291.5 178.3 169.2 360.1 339.4 

8 383.9 331.2 177.2 176.7 170.5 153.2 320.0 322.4 

9 323.2 277.2 138.2 157.4 138.0 130.6 298.2 297.9 

10 278.1 196.1 119.0 117.4 110.0 115.8 159.2 253.5 

11 171.3 180.6 95.9    150.2 173.3 

12 129.0 174.0     135.2 167.4 

13 91.3 164.6     119.5  

14  134.7       

 7 

 8 

Figure 7. Calculated phonon dispersion curves of the Si(oP32) allotrope of silicon. 9 
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Earlier, other orthorhombic allotrope of silicon with the structure in space group Cmcm was 1 

investigated [14]. In Fig. 8, the energy of the relaxed geometries of cubic and orthorhombic Pbcm 2 

and Cmcm structures as a function of volume per formula unit is shown. 3 

 4 

Fig. 8. Total energy per formula unit (f.u.) as a function of the volume per f.u. for cubic and 5 

orthorhombic structures of silicon. 6 

It is clearly seen that the phase transition from cubic to orthorhombic structures with Cmcm 7 

and Pbcm spase groups may occur in the case of increasing the volume of per formula unit of cubic 8 

silicon. These curves intersection points relate to the ~18.2 and ~23.8 percent increase of the cubic 9 

silicon cell volume. As a possible way of such structure expansion, an intercalation of neutral atoms 10 

into the cubic silicone structure may be considered. Herewith, the cubic structure still remains to be 11 

stable, with respect to elastic stability conditions and phonon states. Thus, such possible phase 12 

transitions should be of the first order type. As evident in Figure 8, the intersection of the energy per 13 

volume curves for Cmcm and Pbcm phases exist and, thus, the structural transformation is possible 14 

from Si24 to the Si(oP32) allotrope. Si24 (orthorhombic Cmcm) silicon was experimentally obtained 15 

as a result of thermal `degassing' of Na4Si24 at 400 K under dynamic vacuum [14]. Ge(oP32) 16 

(orthorhombic Pbcm) germanium was experimentally prepared by the treatment of Li7Ge12 in ionic 17 

liquids [15]. The processes appropriate for the Li intercalation into cubic silicon are well known 18 
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and, supposedly, they could be developed to reach the Li7Si12 phase [37-40]. Thus, it may be 1 

suggested that similar chemical reactions can also be designed for the formation of Si(oP32) 2 

modification. In terms of the total energy minimum, from results of our research follows that the 3 

total energy per formula unit for the Si(oP32) structure of orthorhombic silicon predicted in this 4 

work is lower than the one for Cmcm silicon. Thus, it can be reasonably assumed that the Pbcm 5 

phase is preferable than the Cmcm phase at ambient conditions. 6 

4. Conclusions 7 

In the present study, the unit cell parameters and atomic coordinates were predicted for a 8 

new anisotropic modification Si(oP32) of silicon. The Si(oP32) allotrope structure is similar to that 9 

of earlier synthesized germanium allotrope Ge(oP32). Respectively, because of chemical and 10 

structural similarities, the existence of continuous series of solid solutions Si(oP32)-Ge(oP32) can 11 

be assumed. The band gap value Eg = 1.361 eV predicted for Si(oP32) is very close to the 12 

Shockley–Queisser limit and it indicates that the silicon modification is a promising material for 13 

efficient solar cells. Thus, this is the time for the experimental synthesis of Si(oP32) allotrope and 14 

detailed exploration of their properties. 15 
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