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Abstract. An efficient finite difference shock-capturing scheme for the solution of direct seismic problems
is constructed. Problem formulation is based on equations of the dynamics of elastic medium with axial
symmetry. When implementating the scheme on multiprocessor computing systems, the two-cyclic
splitting method with respect to spatial variables is used. One-dimensional systems of equations that
arise in the context of splitting procedure are represented as subsystems for longitudinal, transverse and
torsional waves. The case of longitudinal waves is considered in this paper. The results of simulations
with the use of explicit grid-characteristic schemes and implicit schemes of the "predictor–corrector"
type with controllable dissipation of energy are compared with exact solutions that describe propagation
of monochromatic waves.
Keywords: elastic medium, cylindrical waves, splitting method, finite difference scheme, monotonicity,
dissipativity, parallel computing.
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Introduction
The key problem in simulation of axially symmetric wave propagation consists in selection of

appropriate approximation of lowest terms in equations of dynamic elasticity written in cylin-
drical system of coordinates. These terms cause the degeneracy of the equations at the axis
of symmetry. Our aim is to find such appropriate approximations while remaining within the
framework of conservative Godunov’s scheme which is widely used in numerical solution of two-
and three-dimensional problems [1]. The scheme can be modified to simulate wave propagation
in granular and porous materials with different resistances to compression and tension [2–4],
wave propagation and fracturing in blocky media [5–7] and other nonlinear processes.

Many methods were developed to solve axially symmetric equations of dynamic elasticity. The
method of characteristics was used for the analysis of one-dimensional cylindrical wave [8,9]. To
solve two- and three-dimensional equations finite difference schemes based on the method of
characteristics were proposed [10, 11]. These schemes allow one to compute the discontinuities
of velocities and stresses. Such methods were applied for the analysis of wave processes in linear
elastic, viscoelastic and elastic-plastic media [12, 13]. Numerical analysis of the dynamics of
plates and shells of revolution was implemented with the methods based on the axially symmetric
equations [14–16].
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1. Equations of axially symmetric motion
Equations of the dynamic theory of elasticity with axially symmetric fields of stresses and

velocities are written as
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Here E = 2µ (1 + ν) is Young’s modulus, µ is the shear modulus, ν is the Poisson ratio; the
axes r and z of the cylindrical coordinate system are directed along the radius and the axis of
symmetry, respectively. This form of equations is convenient for obtaining the equation of energy
balance. Let us multiply the equations of motions by vr, vφ, vz and the constitutive equations
by r σr, r σφ, r σz, r σrφ, r σrz, r σφz. Then the left-hand and right-hand sides of the obtained
equations are summed up. The result is
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where W is the elastic potential which is a quadratic form with respect to stresses:
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System (1) is a system of hyperbolic partial differential equations. It can be splitted into
two independent subsystems. The first subsystem (equations 1, 3–6 and 8) describes motion in
plane of symmetry, and the second subsystem (equations 2, 7 and 9) describes torsional motion.
Motion in rz-plane is represented by superposition of longitudinal and transverse waves with
velocities

cp =

√
2µ

ρ

1− ν

1− 2 ν
, cs =

√
µ

ρ
,

respectively. The torsional wave has velocity cs.
For seismic analysis, system of equations (1) is solved using the method of two-cyclic splitting

with respect to spatial variables with solution of one-dimensional problems in parallel mode
at different stages. Contrary to the conventional splitting, the method of two-cyclic splitting
maintains the second-order accuracy if second-order finite difference schemes are used to solve
one-dimensional systems [17]. Numerical implementation of splitting in z direction presents no
difficulties. We have the system with constant coefficients after all derivatives with respect to r
and terms containing r are canceled. Then obtained system is splitted into subsystems of plane P-
and S-waves. These subsystems can be solved using Godunov’s scheme [1] or grid-characteristic
finite difference scheme with limiting reconstruction of Riemann invariants [18].

One-dimensional system of equations in the direction of radial axis r is splitted into three
subsystems of longitudinal, transverse and torsional waves. The system contains terms without
derivatives. Thus direct application of standard finite difference schemes for plane problem of
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the elasticity theory may lead to unwanted effects such as asymptotic instability, accumulation
of rounding errors in simulations with many time steps or imbalance in momentum and energy.
In consequence of these features the correctness of numerical results may be doubtful.

A common approach to suppress such effects is to use fully conservative finite difference
schemes [19, 20] in combination with the method of artificial viscosity [21] that smoothes off
oscillations of numerical solution in calculation of discontinuities due to artificial dissipation of
energy. In the case of equations of the dynamic theory of elasticity, an approach to construct
schemes with controllable dissipation of energy was developed [22,23]. This approach is applied
to the subsystem of equations for one-dimensional cylindrical longitudinal waves.

2. Finite difference schemes for propagation of cylindrical
longitudinal wave

The equations for longitudinal waves can be written in an equivalent form in terms of the
Lamé parameters λ = 2µ ν/(1− 2 ν) and µ as follows
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Equation (2) of the energy balance for this subsystem takes the form
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Integrating equations (3) over the rectangular space–time grid leads to discrete equations of the
"corrector" step
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In what follows, the values with circumflex belong to the upper time layer, and the values without
circumflex belong to the lower time layer. The values with superscripts "±" belong to the right-
hand and left-hand boundaries of a cell, respectively and r0 = (r+ + r−)/2. The input velocity
v0r and stress σ0

φ, alongside with σ±
r and v±r , are determined at the "predictor" step.

Multiplying equations (4) respectively by (v̂r + vr)/2, r0(σ̂r + σr)/2, r0(σ̂φ + σφ)/2 and
r0(σ̂z + σz)/2, the difference analogue of the energy balance equation (2) for longitudinal waves
is obtained. It has the form
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The idea to control the dissipation of energy consists in setting expression for D explicitly in
the form of a positive definite quadratic form. This form can be identically equal to zero. Then
we have a dissipation-free (totally conservative) scheme.
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Let the quadratic form be D = γ
(
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)2
/h2 with a free parameter γ = O(h) > 0, with
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(5)

In this case, artificial dissipation of energy in the scheme is nonnegative. This automatically
ensures stability of calculations. Further, it decreases with refinement of the grid and only de-
pends on the rate of deformation of the medium. When γ = 0 the scheme is totally conservative,
and the law of energy conservation is preserved on discrete level. However, in practice this is
inapplicable in calculations of discontinuities and solutions with high gradients because it results
in nonmonotonic solutions.

Considering equations (4), the closure equations in the scheme with controllable energy dis-
sipation lead to the system
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j = 1, 2, . . . , n (fractional indices belong to the centers of cells). They are calculated as
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Equating these expressions and changing index j, we obtain system of linear equations with
three-diagonal matrix to determine velocities v+r = vjr and v−r = vj−1

r at the cell boundaries:

Aj v
j+1
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j
r +Bj v
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with coefficients

Aj = cj+1/2 − aj+1/2 , Cj = dj+1/2 − bj+1/2 − aj−1/2 − cj−1/2 ,

Bj = − bj−1/2 − dj−1/2 , Fj = fj+1/2 + fj−1/2 − gj+1/2 + gj−1/2 .

This system is supplemented with the boundary condition v0r = 0 at the axis of symmetry in
the first cell of the grid and with the condition vnr = v in the last cell of the grid if the particle
velocity v is set at r = R or with the condition(

an−1/2 + cn−1/2

)
vnr +

(
bn−1/2 + dn−1/2

)
vn−1
r + fn−1/2 + gn−1/2 = 2Rσ ,

which follows from (6) if the external stress σ is set at the boundary. In either case, the system
of equations with boundary conditions is solved with the use of the three-point sweep method.
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In this manner, the algorithm of transition to the next time level starts with computation of
v±r and σ±

r using equations (6), (7) at the "predictor" stage. Then, v0r and σ0
r are determined

from (5). The final computations of v̂r, σ̂r, σ̂φ and σ̂z are performed using equations (4) of the
"corrector" stage.

For comparison, we consider three versions of explicit finite difference schemes based on the
solution of the Riemann problem. The schemes are constructed by means of approximation of
the first equation in (3) written in equivalent (nonconservative) form
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is applicable if the Courant number Kp = cp τ/h is in the range from 0 to 0.8. When the Courant
number exceeds 0.8 the parasitic oscillations appear in the vicinity of the axis of symmetry.
The amplitude of oscillations unlimitedly increases with increasing Kp from 0.9 to 1. This
results in distortion of the solution. When the value of Kp is low, the viscosity of the scheme
considerably smoothes off the solution. For these two reasons, it is inadvisable to use this scheme
in simulations.

The scheme with implicit approximation of lowest terms is derived by replacing the stresses
σr, σφ and the velocity vr in the lowest terms with σ̂r, σ̂φ and v̂r. This scheme is stable and
monotone for 0 < Kp 6 1 but it also smoothes off the solution at sufficiently low values of the
Courant number.

The scheme with implicit approximation of lowest terms by the Crank–Nicolson method
includes

σ̂r + σr

2
,

σ̂φ + σφ

2
,

v̂r + vr
2

.

In regard to the accuracy of numerical solution, this scheme has certain advantages over the
explicit and implicit schemes.

3. Results of computations
Computational schemes were verified by comparing the results of simulations with the exact

solution obtained for the monochromatic wave with frequency ω with the use of the method of
separation of variables. The exact solution has the form
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(
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2

ξ
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)
,

where ξp = ω r/cp is the dimensionless variable, Jk(x) is the Bessel function of an integer order
k.

Tabs. 1 – 4 present relative errors of the schemes for various frequencies as a function of
the Courant number. The dimensionless frequency ω̄ = ωR/cs, where R is the radius of the

– 648 –



Vladimir M. Sadovskii . . . Finite Difference Schemes for Modelling the Propagation . . .

computational domain, was varied between 10 and 50. At such frequencies the number of half-
waves in the computational domain varies between one and a half and seven and a half (Fig. 1).

Table 1. Relative errors for the dissipation-free scheme (γ = 0)

HHHHHKp

ω̄ 10 20 30 40 50

0.5 0.00023 0.00110 0.00837 0.01408 0.03500
0.75 0.00009 0.00045 0.00405 0.00701 0.01818
1 0.00019 0.00081 0.00201 0.00349 0.00563

1.25 0.00049 0.00210 0.00977 0.01621 0.03527
1.5 0.00085 0.00372 0.01920 0.03209 0.07125

Table 2. Relative errors for the scheme with explicit approximation of lowest terms

HHHHHKp

ω̄ 10 20 30 40 50

0.5 0.04334 0.09600 0.37513 0.40646 0.63148
0.75 0.02148 0.05053 0.19970 0.25226 0.39363

Table 3. Relative errors for the scheme with implicit approximation of lowest terms

HHHHHKp

ω̄ 10 20 30 40 50

0.5 0.04802 0.10547 0.39297 0.41076 0.65137
0.75 0.02860 0.06545 0.23341 0.26373 0.44424
1 0.01025 0.02666 0.03320 0.04613 0.05591

Table 4. Relative errors forn the scheme with Crank–Nicolson approximation of lowest terms

HHHHHKp

ω̄ 10 20 30 40 50

0.5 0.03824 0.09015 0.36576 0.40030 0.62509
0.75 0.01350 0.04288 0.18149 0.23903 0.37536
0.97 0.00912 0.02940 0.02788 0.05726 0.04975
1 0.01220 0.03379 0.05646 0.06663 0.12026

To calculate the error of numerical solution a discrete equivalent of the norm of the space
L∞

(
0, T ;L2(0, R)

)
was used:

∥∥∥(vr, σr, σφ, σz

)∥∥∥ = sup
0<t<T

√
π

∫ R

0

(
ρ
v2r
2

+W

)
dr2 .

The time T was set so that the cylindrical longitudinal wave in the interval (0, T ) travels a dis-
tance 2R with single reflection from the axis of symmetry.

The finite difference grid has 200 cells. Analysis of the data in the tables shows that numer-
ical solution obtained with implicit approximation of lowest terms and with approximation by
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Fig. 1. Exact solution for cylindrical longitudinal waves; dimensionless velocity versus dimen-
sionless distance

the Crank–Nicolson method is inaccurate if one half-wave contains less than 60 – 70 cells. The
dissipation-free scheme gives more accurate results at all frequencies within the specified range.

Figs. 2 and 3 show the velocity profiles behind the front of a strong discontinuity when sudden
constant stress is applied at the boundary of the domain. These results are obtained using the
scheme with Crank–Nicolson approximation (Fig. 2) and the dissipation-free scheme (Fig. 3).

Fig. 2. Velocity profiles behind the front of discontinuity: scheme with approximation of lowest
terms by the Crank–Nicolson method
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Fig. 3. Velocity profiles behind the front of discontinuity: dissipation-free scheme

In the case of the dissipation-free scheme, the profiles of velocities and stresses are only
monotonous at Kp = 1, while at Kp = 0.9 parasitic oscillations appear ahead of the wave front,
and they grow as the Courant number decreases. The oscillations are smoothed off setting γ > 0
in doing so the artificial dissipation of energy is introduced or replacing the sudden application
of stress at the boundary by a monotone increasing stress that is changed from zero to a constant
value during not less than 10 time steps.

To implement the scheme with controllable energy dissipation on computational clusters it
is possible to use the iterative process which demonstrates rarely high rate of convergence of
approximate solutions in umerical experiments. It appears that errors presented in Tab. 1 are
already obtained with one or two iterations.

The problem consists in parallel computing at the "predictor" stage of the finite difference
scheme. System of equations (7) is changed at the junction points of the neighbor processors and
corresponding three-point equations of the system are replaced by the relations of the Godunov
scheme:

vjr =
vr j+1/2 + vr j−1/2

2
+

σr j+1/2 − σr j−1/2

2 ρ cp
,

where fractional indices mark the velocities and stresses that belong to the boundary of grid
cell of the neighbor processors. This procedure allows one to implement the three-point sweep
method in parallel mode on a cluster and obtain solution in the first approximation.

Referring to figures given above, the nonconservative finite difference scheme with approx-
imation of lowest terms by the Crank–Nicolson method provides much more reliable results
for solutions with discontinuities over the whole range of the Courant number Kp 6 1 (this is
stability condition of the scheme).

It is worth to mention that the analogous schemes with conservative equations (3) inade-
quately distort the pattern of wave reflection from the axis of symmetry even in the case of
smooth solutions, and this may finally result in the total loss of accuracy.
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Conclusions

The finite difference scheme with controllable dissipation of energy and typical grid-
characteristic schemes of the "predictor–corrector" type were considered. The comparison of the
results of computations shows that the scheme with controllable dissipation has undisputable
advantages over the other approaches in the case of smooth solutions. As for solutions with
discontinuities, the grid-characteristics schemes are preferable due to their monotonicity. In the
case of solutions with discontinuities the scheme with controllable energy dissipation produces
parasitic oscillations. To smooth off these oscillations one should introduce artificial energy
dissipation.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
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Разностные схемы для анализа продольных волн
на основе осесимметричных уравнений
динамической теории упругости

Владимир М. Садовский
Оксана В. Садовская
Евгений А. Ефимов

Институт вычислительного моделирования СО РАН
Красноярск, Российская Федерация

Аннотация. Цель исследования состоит в построении экономичной разностной схемы сквозного
счета для решения прямых задач сейсмики на основе уравнений динамики упругой среды в осесим-
метричной постановке. При численной реализации схемы на многопроцессорных вычислительных
системах применяется метод двуциклического расщепления по пространственным переменным.
Одномерные системы уравнений на этапах расщепления распадаются на подсистемы продоль-
ных, поперечных и крутильных волн. В данной работе рассматривается случай продольных волн.
Проводится сравнение явных сеточно-характеристических схем и неявных схем типа "предиктор–
корректор" с контролируемой диссипацией энергии на точных решениях, описывающих бегущие
монохроматические волны.

Ключевые слова: упругая среда, цилиндрические волны, метод расщепления, разностная схема,
монотонность, диссипативность, параллельная реализация.
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