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The Sr1-xYxCoO2.65(x=0.2) with layered perovskite structure was studied by neutron diffraction, synchrotron X-ray and 

magnetometry methods. It is shown that in the 90-375 K temperature range the crystal structure can be described by 

the monoclinic space group A2/m with the superstructure 4√2ap × 2√2ap × 4ap(apis a primitive cell) however basic 

diffraction peaks well indexed in I4/mmm (2ap × 2ap × 4ap) space group. Around theNeel point TN = 375 K there is a 

doubling of the unit cell parameter along a axis in the framework of the space group A2/m. A basic magnetic 

structure is G type antiferromagnetic with average magnetic moments of 2.7μB/Co and 1.7μB/Co in anion-deficient 

CoO4 + γ and stoichiometric CoO6 layers, respectively. The ferromagnetic component determined from the 

magnetization measurements is about 0.27μB /Co at 8 K. Sr0.8Y0.2CoO2.65shows almost standard magnetization 

vs. temperature dependence whereas Sr0.75Y0.25CoO2.65exhibitsantiferromagnet-ferromagnet transition 

accompanied by structural transformation. There is practically no spontaneous magnetization in x=0.3.The 

basic magnetic structure and high TNsuggest that Co3 + ions in both structural layers are predominantly in the low-spin 

/high-spin states mixture. It is assumed that the ferromagnetic component is due to the orbital ordering occurring at 

TNin the CoO5 pyramids and concomitantappearance of ferromagnetic exchange coupling between the Co3+(HS)ions 

located in CoO5 pyramids in anion-deficientCoO4 + γlayer. 

 

Introduction 

Cobaltites of rare-earth elements with a perovskite-like structure are of considerable interest, both from the point 

of view of technological applications and a research in the area of physics of magnetic phenomena [1-2]. The basic 

compound LaCoO3 up to 30 K is very close to a diamagnetic insulator with paramagnetic defects, above 30 K a 

partial spin crossover of Co3+ ions occurs from the low-spin (LS) state to the high spin/low spin (HS/LS) states mixture 

which is paramagnetic [3-4].However LS state is still dominant at least to 400 K. Both magnetic and orbital ordering 

has not been reliably observed at any temperature.The substitution of La3+ with Sr2+ ions leads to the drop of 

resistivity and appearance of a long-range ferromagnetic order above 18% replacement of La3 + ions [5]. 

Subsequently, TC and magnetization increase almost linearly from 170 K and Ms = 1.2μB /Co (x=0.18) up to TC ~ 305 K 



and Ms = 2.5μB /Co in practicallystoichiometric metallic SrCo4+O3, which can be obtained only under high oxygen 

pressure [6]. Taking into account the magnitude magnetic moment It was suggested that Co3+ and Co4+ ions are in 

intermediate spin state [6].Deviation in stoichiometry of oxygen in cobaltites leads to antiferromagnetic ordering 

with TN, which can be much higher than room temperature [7]. For example SrCoO2.5 containing only Co3+ in HS state 

both in tetrahedral and octahedral surrounding is G-type antiferromagnet with TN=537 K [7]. The observed magnetic 

moments are about 3μB /Cofor both tetrahedral and octahedral oxygen surrounding [7]. It is incompatible with IS 

spin state of Co3+ ions.So the magnetic interactions between Co3+ ions in HS state regardless from oxygen 

surrounding are strongly antiferromagnetic. It was shown in [8-10] that relatively small substitution of Sr2+ by Y3+ 

leads to the stabilization of Sr1-xYxCoO3-δ (0.05<x<0.35) solid solutionswith a layered perovskite-like structure which is 

associated with a strong deviation from stoichiometry in oxygen. The oxygen stoichiometric layers of CoO6 alternate 

with anion-deficient CoO4 + γ [9-10]. A basic antiferromagnetic ordering of the G type arises substantially above room 

temperature and accompanied by the appearance of a small ferromagnetic component [9-10]. Composition x=0.25 

exhibits anomalous decrease of magnetization with temperaturedecreasing. [9,10].  Small substitutionof Co with Fe 

almost completely destroysof the ferromagnetic component in spite of growth of TN and magnetic moment per unit 

cell thus underlining structural factor [9]. 

A number of scenarios for the appearance of the ferromagnetic component have been described: for example, 

orbital ordering in Co
3+

 (IS) ions located in oxygen-stoichiometric CoO6 layers is proposed as the reason for 

ferrimagneticcomponent [11,12],ferrimagnetic structure in anion deficient layers due to oxygen vacancies 

ordering [13], Ferromagnetic Co
3+

chains in oxygen-stoichiometric CoO6 layers [14], spin "bags" in CoO6 

layers [15] and a uncompensated canted magnetic structure [16]. The questions are still actually: whether or 

not the magnetic ordering is accompanied by a structural transition [11-12] andcrystal structureimpact on 

stability of ferromagnetic component. Note, that majority theoretical studies of magnetic properties have 

been performed in frame of space group I4/mmm. However,correct symmetry seems to be much lower [12]. 

Oxygen vacancies ordering observed in anion deficient layers correspondsto general chemical formula 

Sr3YCo4O10.5with very large superstructure [12].So the origin of ferromagnetic component is not clear.Therefore, we 

have conducted a comprehensive study of the crystal structure, magnetic and elastic properties of the 

composition Sr0.8Y0.2CoO2.65. Compoundswith larger yttrium content have been studied also in order to 

establish effect of Sr
2+

withY
3+

 substitution on magnetic properties. 

 

Experimental part 

 

Polycrystalline samples of compositionsSr1-xYxCoO2.65(x=0.2; 0.25; 0.275; 0.3and 0.35)were obtained by 

conventional ceramic technology in air. The initial reagents Y2O3, Co3O4 and SrCO3 of high purity were 

taken in the stoichiometric ratio and thoroughly mixed in a planetary ball mill RETSCH PM-100 for 30 

minutes at a speed of 250 rpm. Before weighing, the Y2O3 oxide was pre-annealed at 1000 ° C to remove 

moisture. The synthesis of the samples was carried out in two stages. Preliminary synthesis was carried out at 

a temperature of 1000 ° C. The final synthesis was carried out at a temperature of 1185 ° C for 8 hours. The 

samples were then cooled for 7 hours down to a temperature of 300 ° C. X-ray diffraction studies (95 K ≤ T ≤ 

420 K) were performed at a synchrotron radiation source at the research center of the Paul Scherrer Institute 

(Willigen, Switzerland). Neutron diffraction studies in the temperature range from 10 to 420 K were 



performed on a D2B high-resolution diffractometer at the Laue-Langevin Institute (Grenoble, France). The 

refinement of the crystal and magnetic structures was performed by the Rietveld method using the FullProf 

software package [17]. Measurements of the Young's modulus E are performed by the method of resonance 

oscillations in the frequency range 10
3
-10

4
 Hz. Magnetic and magnetotransport measurements were 

performed on a physical properties measuring unit (Cryogenic Ltd.) in magnetic fields up to 14 T in the 

temperature range 5 - 315 K. Conductivity measurements were performed using a standard four-contact 

method with indium contacts deposited by ultrasound. 

 
Results and discussion  
 

The crystal structure of Sr0.8Y0.2CoO2.65 was studied using the diffraction of synchrotron X-ray radiation in 

temperature range 90-400 K. Space groups I4 / mmm, Cmma and A2 / m were used for refinement of crystal 

structure. X-ray diffraction peaks weremuch better indexed in the monoclinic space group A2 / m with the 

superstructure 2√2ap × 2√2ap × 4ap  at 400 K and with 4√2ap × 2√2ap × 4ap  at 350 K, where ap is the parameter of the 

primitive cell. The volume of the unit cell gradually increases as temperature risingindicating stability of ground spin 

state of cobalt ions.  Figure 1 shows the parts of x-ray diffraction patterns at small angles at 400 and 350 K. Change in 

the diffraction spectra indicates that between 400 and 350 K a crystal-structural phase transformation occurs with a 

doubling of the unit cell along the a axis  as it was proposed [12]. 

Figure 2 shows parts of neutron diffraction patterns at small angles recorded at 10 and 400 K. At 400 K, the magnetic 

contribution to neutron scattering was not observed. With decreasing temperature, a number of additional peaks 

appeared, some of which can be indexed within the framework of the tetragonal space group I4 /mmmwith 

superstructure 2ap × 2ap × 4ap. These peaks are marked by arrows with the designation AF. Very weak diffraction 

peaks that can be indexed within the space group Cmma or A2 / m are marked with asterisks. The crystal and 

magnetic structures were calculated within the more simple tetragonal space group I4 / mmm (2ap × 2ap × 4ap), since 

the peaks which cannot be indexed in I4 / mmm group are very small. According to the refinement by Rietveld 

method , the magnetic structure is of the G type antiferromagnetic with magnetic moments of 1.7μB / Co in the 

stoichiometric layers of CoO6 and in the anion-deficient layers 2.7μB / Co (Table). The inset to Fig. 2 shows the 

temperature dependence of the magneticcontribution in the diffraction peak 112 (I4/mmm). One can see that the 

Neel point is about 375 K.Judging by the fact that the intensity of the reflexes marked with an asterisk depends 

strongly on temperature, the magnetic cell is much larger than that considered in Table. However, the 

intensity of the three reflexes marked with an asterisk is very small. Therefore, the presented approximation 

describes a fairly well of basic magnetic structure. According to the refined oxygen content, cobalt ions are 

dominantly in the trivalent state because thechemical formula is Sr0.8Y0.2CoO2.65. 

Figure 3 shows temperature dependences of Young's modulus. One can seethat the well pronounced 

minimum of Young's modulus of Sr0.8Y0.2CoO2.65coincideswith the Neel point TN. This indicates that the 

crystal structure phase transformation take places at the temperature of magnetic ordering. The compound 

Sr0.75Y0.25CoO2.65 exhibits two minimums of Young's modulus: below and above room temperature. The 

minimum observed at 350 K corresponds to temperature of magnetic ordering. 

Fields and temperatures dependencies of magnetization for Sr1-xYxCoO2.65 are shown in figures 4 and 5. 

From the field dependence of the magnetizationx=0.2 composition, it is difficult to precisely estimate the 

spontaneous magnetization, since saturation of the magnetization in fields up to 14 T is not observedbelow 

magnetic ordering temperature (Fig.4). However, one can conclude that the spontaneous magnetization for 

Sr0.8Y0.2CoO2.65is near 8 emu / g or 0.27 μB / Co. Magnetization vs. field dependencies at low temperature are 

almost linear for x=0.25; 0,275 and 0.35 as one can see from figure 4. The magnitudes of spontaneous 

magnetization arevery small in contrast to x=0.2 compound.  



The temperature dependence of the magnetization for x=0.2 has almost standard form, but at 270 K there is а 

inflection point (Fig5). One can seethat the composition of x=0.25shows well pronounced antiferromagnet-

ferromagnet transition slightly below room temperature(Fig.5). This transition is a first order because there is 

a large temperature magnetization hysteresis and a metamagnetic behavior (Figs.4 and 5). Magnetic fields 

transform compensated antiferromagnetic phase into new antiferromagnetic with ferromagnetic component. 

Theantiferromagnet-ferromagnetphase transition is accompanied by well pronouncedminimum of Young's 

modulus thus indicating a concomitant structural transition (Fig.3). Maximum of magnetization for x=0.275 

shifts to room temperature (Fig.5). Temperature hysteresis was observed too.There is no noticeable 

spontaneous magnetization in Sr0.7Y0.3CoO2.65below room temperature.Apparentlya very small spontaneous 

magnetizationis resulted froma tiny structural (chemical) inhomogeneity. 

Recently, we investigated the effect of cation and anion ordering on the crystal structure and magnetic 

properties of substituted rare-earth cobalt oxides Gd0.1Sr0.9CoO3-δ [1]. The solid solutions considered can be 

in an ordered and disordered state. The disordered sample Gd0.1Sr0.9CoO3-δ is a cubic perovskite phase with 

a uniform random distribution of Sr2+/Gd3+ ions and anionic vacancies in the corresponding positions of the 

crystal lattice. The formation of an ordered phase of a reduced symmetry is due to a partial ordering of 

Sr2+/Gd3+ cations and anion vacancies. The ordered perovskite has a layered tetragonal structure consisting 

of layers located along the c- axis in the sequence [Sr0.5O0.5]-[Co0.5O]-[Gd0.1Sr0.4O0.5-0.4·δ]-[Co0.5O1-0.6·δ]. An 

important circumstance is that the anion-deficient layered cobaltites of the type Sr3YCo4O10.5 and ordered 

Gd0.1Sr0.9CoO3-δ excluding the paramagnetic contribution from gadolinium ions Gd3+ have similar magnetic 

properties [1-3]. In addition, the magnetic and thermodynamic values of the ordered samples 

Gd0.1Sr0.9CoO3-δ have pronounced anomalies [1, 2], therefore we consider that analogous to layered 

cobaltites of the Sr3YCo4O10.5-δ type with different oxygen content [3] in the ordered compounds 

Gd0.1Sr0.9CoO3-δ there is a first-order phase transition from the high-temperature "ferromagnetic" state to 

the low-temperature antiferromagnetic state. 

The electrical resistivity in thetemperature range 5-315 K shows a semiconductor-like behavior.  Resistivityat 

5 K is relatively large ρ = 10
4
 Ohm cm. The magnetoresistance is small and amounts to ~ 2% at temperature 

range 5-300 K in a field of 14 T. 

To explain the magnetic properties, it is necessary to know the spin state of cobalt ions in both structural layers. We 

assume that all Co3 + ions are in the LS/HS states mixture. This assertion is supportedby the following facts. 

The basic antiferromagnetic structure is of the G-type. It means that magnetic moments of the all nearest neighbors 

are directed oppositelyto each other in both layers. Observed the Neel point is high, reaching up to 400 K. This 

indicates that antiferromagnetic interactions are strong.For Co3 + ions in the IS state magnetic interactions lead to a 

small the Curie point. For example, in ferromagnetic epitaxial thin films of LaCoO3shows maximal TC around 90 K 

regardless of sign of volume unit cell change due to strains arising from mismatch between lattices of film and 

substrate[18]. So ferromagnetism is associated with strains. It is known that Co3+ (IS)ionscan beJahn-Teller active in 

contrast to isotropic Co3+ (HS) ones. So strains should stabilize Co3+(IS) state. Note thatSrCoO2.5with Co3 + ions in the 

HS state showsG type antiferromagnetic orderingat temperature around of 540 K [7]. Strong antiferromagnetic 

interaction between Co3+(HS)-O-Co3+(HS) is in accordance with Goodenough’s rules [19]. In addition only Co3+(HS) and  

Co3+(LS) ions have been revealed by NMR method in antiferromagnetic layered cobaltites [20]. 

The electrical resistance at 5 K is relatively large (104 Ohm cm), while the magnetoresistance is almost absent, which 

correspond a good stability of the basic G-type antiferromagnetic state. The compounds with Co3+ in collective IS 

state are characterized by a small electrical resistance and a ferromagnetic exchange coupling. 



In octahedron CoO6, Co3 + (HS) is an isotropic ion, however, if the CoO5pyramids are articulated along the base, then 

ferromagnetic bonds appear due to orbital ordering in CoO5 pyramids [21,22]. This type of connection of the 

pyramids is believed to be typical for layered perovskites like YBaCo2
3+O5.5, which leads to uncompensatedcanted 

magnetic structure due to different types of magnetic interactions competition and large magnetic anisotropy 

[21].Ferromagnetic componentcoincides in magnitude (0.25 μB / Co) in both classes of compounds [21-25].  Both 

types of compounds shows crystal structure phase transition at temperature of magnetic ordering [12,24]. Small 

substitution of cobalt with iron ions (2-3%) in Sr0.78Y0.22CoO2.65completely destroys the orbital ordering and 

concomitantferromagnetic component [9]. Note that layered perovskites like YBaCo2
3+ O5.5 exhibit aniferromagnet-

ferromagnet transition too [21-25].  Non collinear magnetic structure have been suggested on the base of neutron 

diffraction data to explain ferromagnetic coupling between Co+3 in pyramids CoO5articulated along the base in 

TbBaCo2
3+ O5.5. The ferromagnetic coupling has been deduced from magnetic 4apstructure along c crystal 

axes.Apparently orbital orderingis very sensitive to concurrence of the different types of magnetic interactions and 

structural order/disorder and chemical composition.  

Conclusions 

It is shown that the crystal structure of layered cobaltite Sr0.8Y0.2CoO2.65 can be described by the monoclinic space 

group A2 /m with a superstructure √2ap × 2√2ap × 4ap above the Neel temperature of TN = 375 K and below375 K with 

a superstructure 4√2ap × 2√2ap × 4ap. Magnetic ordering coincides with a crystal structure phase transition.  At Neel 

point the unit cell is doubledalong a axes apparently due to the orbital ordering in the CoO5 pyramids, located in the 

anion-deficient layers. The basicmagnetic structure is G type antiferromagnetic with a small ferromagnetic 

component of near 0.25 μB /Co due to the presence of ferromagnetic bonds and orbital ordering in the anion-

deficient layers which lead to canted magnetic structure.The stability of the canted magnetic structure is also due to 

the large magnetic anisotropy. Magnetic moments in the structural layers CoO4 + γ are equal to 2.7μB/Co and in the 

CoO6 layers are1.7μB/Co.Antiferromagnetic structure of G-type and high Neel point suggest that Co3 + ions in both 

structural layers are in HS/LS states mixture. The antiferromagnet-ferromagnet transitionis observed in compounds 

with x>0.2. It is associated with concurrence of magnetic interactionsand structural disorderwhich provoke orbital 

disordering. Magnetic transitions are accompanied by structural phase transitions. Spontaneous magnetization is not 

found for x>0.275 compounds apparently due to orbital disordering and rise of crystal symmetry.  
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Figure caption 

 

Fig.1 Small angle parts of X-ray patterns ofSr0.8Y0.2CoO2.65at 350 and 400 К.Diffraction peaks are indexed in 

A2/m space group with superstructure 2√2ap × 2√2ap × 4ap (400 K) and with 4√2ap × 2√2ap × 4ap (350 K). 

Fig.2NPDpatternsofSr0.8Y0.2CoO2.65at 10 и 400 К. Diffraction peaks indexed in A2/m space group are 

marked with asterisks. The inset shows temperaturedependencies of intensity of (112)diffraction peak 

(I4/mmm). 

Рис.3 Temperaturedependencies of Yang’s modulus of Sr1-xYxCoO2.65(x=0.2 and 0.25).  

Рис.4 Field dependencies of magnetization of Sr1-xYxCoO2.65(x=0.2; 0.25;0.275 and 0.35).For x=0.25 

compound magnetization vs. field dependencies presented at different temperatures. 

Рис.5 Temperature dependencies of magnetization of Sr1-xYxCoO2.65(x=0.2; 0.25; 0.275 and 0.3). 

Field field dependencies  

 

 

Table.CrystalandmagneticstructureparametersofSr0.8Y0.2CoO2.65at 10 and 400 КrefinedinI4/mmmspacegroup. 


