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Abstract 22 

The geographic variation of the mitochondrial DNA was studied in Siberian fir using the newly 23 

developed markers and compared with the phylogeographic pattern of another previously studied 24 

Siberian coniferous - Siberian larch. Similar to Siberian larch the distribution of mtDNA haplotypes in 25 

Siberian fir revealed clear differentiation among distinct geographic regions of southern Siberia and the 26 

Urals, likely indicating post-glacial re-colonization from several sources. The northern part of the range 27 

of both species was genetically homogeneous, which is probably due to its recent colonization from one 28 

of the glacial refugia. This conclusion is in agreement with published pollen and macrofossil data in 29 

Siberian fir and with the reconstruction of environmental niches indicating a dramatic reduction of the 30 

range and a likely survival of fir in certain southern areas during the last glacial maximum (LGM) – 21 31 

thousand years ago (kya). Although the modeling of Siberian larch ecological niche reconstructed a shift 32 

of the range to the south at that period, the paleontological data indicated the presence of this species in 33 

most areas of the current range during LGM, that corresponds to the results of previous historical 34 

demography study suggesting the population expansion preceding the LGM.  35 

Key words: mitochondrial DNA, NGS, phylogeography, Abies sibirica, Larix sibirica, refugia, pollen 36 

data, macrofossils, environmental niche modelling 37 
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1. Introduction 42 

The response of the boreal forest species to the Pleistocene glacial cycles was different from that of 43 

the temperate forests. During the last glacial maximum (LGM), their ranges were not dramatically 44 

reduced, and they were able to survive near the glacial sheet (Huntley and Birks 1983; Willis and van 45 

Andel 2004). Unlike Europe, Siberia during the Pleistocene was less exposed to the influence of glacial 46 

cover, but the glacial sheet reached the latitude of 60º N by about 250-270 thousand years ago (kya) and 47 

the latitude of 62º N by about 130-190 kya (Volkova et al. 2002). Consequently, the recolonization of 48 

northern Siberia by woody species could occur no earlier than those glacial intervals, but likely earlier 49 

than the LGM. Although the paleontological and genetic data indicate a relatively recent settlement of 50 

the northern part of the range of larch Larix gmelinii (Rupr.) Rupr., L. cajanderi Mayr (Polezhaeva et al. 51 

2010), L. sibirica Ledeb. (Semerikov et al. 2013), common juniper Juniperus communis L. (Hantemirova 52 

et al. 2017), wood lemming Myopus schisticolor Lilljeborg (Fedorov et al. 2008), and others 53 

(Goropashnaya et al. 2004; Oshida et al. 2005; Zink et al. 2002; Kohli, 2015) the age of those 54 

colonizations is older than the age of LGM, during which the species probably survived in numerous 55 

northern micro-refugia. 56 

Siberian fir (Abies sibirica Ledeb.) is more demanding for temperature and humidity than other taiga 57 

trees (Krylov et al. 1986), which can lead to a specific reaction of this species to Quaternary climate 58 

fluctuations. Siberian fir fossils related to the Late Pleistocene are rare even in the southern part of the 59 

range, which makes it difficult to determine the location of glacial refugia. Previous range-wide studies 60 

of genetic diversity of Siberian fir were based on allozymes (Semerikova and Semerikov 2006), 61 

chloroplast microsatellite loci (Semerikova and Semerikov 2007), and AFLP (Semerikova and 62 

Semerikov 2011). They revealed several genetically distinct geographic groups, which were probably the 63 

result of post-glacial dispersion out of a few isolated refugia. Such refugia were hypothesized in South 64 
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Siberia (Altai Mountains, Sayan Mountains, the Baikal Lake area and the South Urals). Northern Siberia 65 

and the Northern Urals were suggested to have been colonized primarily from hypothetical refugia 66 

located in the Baikal Lake area (Semerikova and Semerikov, 2011). 67 

A study of the phylogeography of Siberian larch, another representative of the Pinaceae family in the 68 

flora of Siberia and Eastern Europe, which has the range close to that of Siberian fir, using mitochondrial 69 

and chloroplast DNA markers, also revealed a few geographic groups of populations (Semerikov et al. 70 

2013). Similarly, these groups can be regarded as the result of dispersion out of several refugia located 71 

in the Urals and in South Siberia. Possibly, two more refugia existed in more northern areas in the middle 72 

of West Siberia (Semerikov et al. 2013). Based on the similarity in the mitotype distribution in northern 73 

Siberia and the territory in the northern foothills of the Sayan Mountains, it was concluded that the latter 74 

area was the primary source of recolonization of northern Siberia. 75 

Comparison of the phylogeography of Siberian fir and Siberian larch helps to identify common 76 

features and differences in the history of the modern populations, to reveal glacial refugia, and time and 77 

direction of re-colonization. For this purpose, this study of the Siberian fir phylogeography was 78 

conducted using the markers of the mitochondrial DNA (mtDNA), which is maternally inherited in the 79 

Pinaceae family and transmitted via seeds, unlike the paternally inherited chloroplast DNA transmitted 80 

via pollen and the biparentally inherited nuclear DNA transmitted by both seeds and pollen (Neale and 81 

Sederoff 1989). Due to this property, the mtDNA markers are especially informative for describing 82 

migrations associated with seed dispersion, including recolonization from glacial refugia. During the 83 

preliminary study, we did not detect any variation in the fragments of the mtDNA amplified using 84 

"universal primers" based on conservative annealing sites in mitochondrial genes of plants (Demesure et 85 

al. 1995; Dumolin-Lapegue at al. 1997), also there were no publicly available mtDNA markers specific 86 

for the Siberian fir, therefore we used NGS data to develop four new mtDNA markers. 87 
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In addition to the genetic data we analyzed distribution of Siberian fir and Siberian larch during and 88 

after the LGM using available paleontological data and also conducted environmental niche modelling 89 

to reconstruct the expected ranges of these species during the LGM. 90 

The main aims of this study were to test the hypotheses regarding the location of glacial refugia, time 91 

and routes of post-glacial migrations of Siberian fir and to compare the observed biogeographic pattern 92 

with one found in other Siberian conifer – Larix sibirica. 93 

2. Materials and methods 94 

2.1. Development of mtDNA markers 95 

To develop mtDNA markers, we searched for polymorphism in the mitochondrial genome 96 

(mitogenome) of Siberian fir. The approach included the following steps: 97 

1) Relatively low coverage paired-end (PE) sequencing of the entire Siberian fir genome using 98 

Illumina HiSeq 2000. For this sequencing we used the PE DNA library with the insert size of 200 bp 99 

produced using total DNA isolated with the CTAB method from needles of a single Siberian fir tree 100 

growing in a natural population (56° 39’ N 59° 16’ E). The library preparation was performed following 101 

a standard Illumina protocol 102 

(www.bu.edu/iscf/files/2011/05/TruSeq_DNA_SamplePrep_Guide_15005180_A.pdf). For sequencing 103 

we used 2×100 cycles Illumina Kit. In total, 22,821,847 pairs of reads were generated. We used FastQC 104 

and Trimmomatic for quality control and adapter trimming. 105 

2) Assembly of contigs using the CLC Assembly Cell software. The expected genome size for Abies 106 

sibirica is 15.452 Gbp (Ohri and Khoshoo 1986). Because of the low coverage, the genome assembly 107 

was very partial and included only 0.2% of the expected genome size. However, due to the fact that 108 
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there are multiple copies of the mitogenome per nuclear genome in one cell, we were able to identify 109 

several mitochondrial contigs. 110 

3) Search for mitochondrial contigs using BLASTn and all plant mitochondrial sequences available 111 

in the NCBI Genbank and other public databases, such as ftp://plantgenie.org/ConGenIE and 112 

https://treegenesdb.org/FTP/Genomes/Pita/mito for Norway spruce (Picea abies (L.) Karst.) and loblolly 113 

pine (Pinus taeda L.), respectively. The matching Siberian fir contigs in the BLASTn hits with the 114 

alignment length of more than 100 bp and similarity higher than 90% were selected for further analysis. 115 

In total, 87 contigs with the total length of 958,226 bp were selected, which represents a significant part 116 

of the mitochondrial genome, considering 5.9 Mb of the mitochondrial genome assembled in another 117 

conifer Picea glauca (Moench) Voss (Jackman et al. 2016). The selected mtDNA contigs were then used 118 

to design PCR primers and to search for polymorphism by partial amplicon-based resequencing of eight 119 

individuals representing different parts of the Siberian fir range including Altai, Kuznetsk Alatau and the 120 

Sayan Mountains, the Lake Baikal Region, the Southern and the Northern Urals (Table S1 in the 121 

Supplementary material). The PCR primers (Table 1) were designed using the Primer3 software (Rozen 122 

and Skaletsky 2000). 123 

The PCR was performed in a volume of 25 ul, containing about 250 ng of genomic DNA, 1X PCR 124 

buffer (75 mm Tris-HCl, 20 mM (NH4)2SO4, 0.1% Tween-20), 2.5 mM MgCl2, 200μM of each dNTP, 125 

0.2μM forward and reverse primers, 0.32 units of Taq polymerase (SibEnzyme Ltd., Novosibirsk, 126 

Russia). The PCR program consisted of initial denaturation at 94ºC for 5 min and 35 cycles of 127 

amplification: 94ºC – 30 sec, 60ºC – 45 sec, 72ºC – 2 min. The final elongation was 7 min at 72ºC. The 128 

PCR product was checked using electophoresis in 1% agarose gel, purified using ExoSAP-IT® 129 

(Affimetrix Inc., Santa Clara, CA, USA) and then sequenced using the BigDye v.3.1. kit and 130 

GeneAnalyser 3130 (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA, USA). The 131 

obtained nucleotide sequences were edited and aligned using CodonCode v. 1.2.4 and BioEdit v. 7.2.5 132 

https://treegenesdb.org/FTP/Genomes/Pita/mito
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(Hall 1999). Four single nucleotide polymorphisms (SNPs) were detected in four different contigs, 133 

respectively (Table. 2). All four SNPs were biallelic. The identified SNPs were further used as genetic 134 

markers. 135 

2.2. Genotyping 136 

For routine genotyping, the SSCP (single strain conformation polymorphism) method (Fujita and 137 

Silver 1994) was applied with minor modifications. For better SSCP resolution, additional PCR primers 138 

were developed to amplify shorter fragments (less than 250 bp) containing SNPs (Table 1). All four 139 

fragments were amplified in a single 10 μl multiplex reaction. Its composition and PCR conditions were 140 

identical to the described above, except for a 1 min shorter elongation time. The PCR product was further 141 

subjected to digestion with the restriction enzyme RsaI in order to obtain shorter fragments containing 142 

polymorphism. As a result, the restriction fragment containing A37 was 95 bp in length, and the 143 

restriction fragment containing marker A126 – 130 bp. The restriction product was 5X diluted with a 144 

loading buffer containing 95% formamide and denatured at 95° C for 3 minutes before electrophoresis 145 

in a 8% polyacrylamide gel and 1X TBE electrode buffer containing 10% glycerol. The gel and buffer 146 

were pre-cooled in a refrigerator to 0-4ºC, and the electrophoresis was carried out at 4ºC. The electric 147 

power was stabilized at 15 watts, and the electrophoresis was run at 4000 volts × hours in the Model S2 148 

sequencing Gel Electrophoresis System (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, 149 

MA, USA). The DNA in the gel was visualized after the electrophoresis by silver staining. An example 150 

of an SSCP gel and observed polymorphism is demonstrated in Fig. S1 (Supplementary material). 151 

2.3. Plant material 152 

Samples from 45 populations representing 8 - 24 individuals per population (Fig. 1; Table S1 in the 153 

Supplementary material) used previously for allozyme, chloroplast microsatellite, and AFLP studies 154 
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(Semerikova and Semerikov 2006, 2007, 2011) were genotyped using the SSCP method to study mtDNA 155 

diversity. In addition, for verification the mtDNA fragments were sequenced in at least one individual 156 

for each detected mitotype in each studied population. 157 

2.4. Population genetic differentiation analysis 158 

A hierarchical analysis of molecular variation (AMOVA) within and between populations, and 159 

within and between groups was performed using the Arlequin program v.3.5 (Excoffier et al. 2006). The 160 

statistical significance of the fixation indices was estimated using 1000 permutations. The populations 161 

were grouped based on their clustering into geographic groups using the SAMOVA program (Dupanloup 162 

et al. 2002). The algorithm of the program is aimed at clustering geographically adjacent populations in 163 

K groups, where K is set a priori, by maximizing differentiation between groups (FCT). The analysis was 164 

performed at K = 2, 3, 4, 5, 6. The GST (Nei 1987) and NST fixation indices were also calculated based 165 

only on haplotype frequencies or taking into account also the genetic distance between the haplotypes 166 

(Pons and Petit 1996), respectively. The comparison of GST with NST was carried out using PermutCpSSR 167 

v.1.0 (http://www6.bordeaux-aquitaine.inra.fr/biogeco/Production-scientifique/Logiciels/Contrib-168 

Permut/Permut) (Burban et al. 1999). If NST > GST, genetically similar haplotypes tend to coexist in the 169 

same population. 170 

2.5. Phylogenetic analysis 171 

To investigate the phylogenetic relationships of the identified haplotypes (mitotypes) of A. sibirica, 172 

we sequenced polymorphic fragments in one sample in each of the two related species (Semerikova et 173 

al. 2018): A. nephrolepis (Trautv. ex Maxim.) Maxim. (Russian Far East) and A. semenovii B. Fedtsch. 174 

(Western Tien Shan). The latter was classified (Farjon and Rushforth 1989) as a subspecies of Siberian 175 

fir (A. sibirica subsp. semenovii (B. Fedtsch.) Farjon), but their species rank was confirmed by molecular 176 

http://www6.bordeaux-aquitaine.inra.fr/biogeco/Production-scientifique/Logiciels/Contrib-Permut/Permut
http://www6.bordeaux-aquitaine.inra.fr/biogeco/Production-scientifique/Logiciels/Contrib-Permut/Permut
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data (Semerikova et al. 2012; Semerikova and Semerikov 2016). To infer the relationships of mitotypes, 177 

we used the method of Median-Joining Network, performed with the software NETWORK v. 5.0.0.1 178 

(Bandelt et al., 1999). 179 

2.6. Environmental niche modelling 180 

We used environmental niche modelling to reconstruct putative ranges of Siberian fir and Siberian 181 

larch during the LGM (21 kya). To do so we used data on the current distribution of fir (A. sibirica, A. 182 

nephrolepis, A. sachalinensis and A. semenovii) and larch (L. sibirica, L. gmelinii, L. olgensis, L. 183 

kamtchatica and L. kajanderi) species, as well as present and past climatic parameter distributions and 184 

the machine learning method based on maximum entropy implemented in the program MAXENT 3.3.3 185 

(Phillips et al. 2006). The fir and larch distribution data were retrieved from the Global Bioinformation 186 

Facility database (https://www.gbif.org, accessed on June 17, 2018). The data set was expanded by 187 

adding 170 occurrences of larch from our field records (Polezhaeva et al. 2010; Semerikov et al. 2013) 188 

and fir occurrences from this study and Semerikova et al. (2011). The environmental data describing the 189 

baseline climate (19 BioClim layers for the 1950–2000 period at a spatial resolution of 2.5 arc min), the 190 

LGM climate (BioClim layers derived from the Coupled Model Intercomparison Project Phase 5) were 191 

retrieved from the WorldClim database (Hijmans et al. 2005). To reduce the effect of association between 192 

climate parameters, we computed correlation between all pairs of the 19 parameters for the geographic 193 

points of the species occurrence. For the parameters with correlation 0.8 or more we presented only one 194 

parameter. As a result, we used 9 layers: bio1 - Annual Mean Temperature, bio2 - Mean Diurnal Range, 195 

bio3 - Isothermality, bio4 - Temperature Seasonality, bio5 - Max Temperature of Warmest Month, bio8 - 196 

Mean Temperature of Wettest Quarter, bio12 - Annual Precipitation, bio15 - Precipitation Seasonality, 197 

bio18 - Precipitation of Warmest Quarter. Default settings of MAXENT were used. 198 
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2.7. Paleodata 199 

Published paleodata on pollen (Binney et al. 2017) and macrofossils (Binney et al. 2009; Kosintsev 200 

et al. 2012) were used to test the inferences from genetic data on the history of species distribution after 201 

the LGM. We selected data sites in the range of latitude 41°- 75° and longitude 29° - 177°. To reduce the 202 

number of erroneously interpreted cases of fir presence due to redeposition of pollen from older layers 203 

or long-distance pollen dispersion, we selected only cases with the proportion of pollen of the species in 204 

question of above 1% in the database. Since larch pollen has poor preservation and insufficient mobility, 205 

for larch we took into account all the samples where larch pollen was noted. We selected the pollen and 206 

macrofossil data younger than 21500 year old and combined them according to calibrated radiocarbon 207 

age into the following eight categories: 0 - 0.5, 0.5 - 3.5, 3.5 - 6.5, 6.5 - 9.5, 9.5 - 12.5, 12.5 - 15.5, 15.5 208 

- 18.5, and 18.5 - 21.5 kya. 209 

3. Results 210 

3.1. New markers revealed a strong spatial structure of the mtDNA variation in A. sibirica 211 

Sequencing of randomly selected 33 regions of 20 Siberian fir mtDNA contigs in eight trees from 212 

geographically distinct populations with the total length of 49,000 bp identified four biallelic SNPs 213 

(A167, A65, A126 and A37) in four contigs – 167, 65, 126, and 37, respectively (Table 1). The study of 214 

mtDNA variation in 45 populations of Siberian fir revealed three mitotypes different by 1-4 nucleotides: 215 

two of them were relatively frequent – mitotype M1 (GACC haplotype, according to the nucleotide 216 

alleles in A167, A65, A126, and A37 SNPs, respectively) and mitotype M2 (TCAC). M3 (GACA) was 217 

rare and different from M1 by one SNP (Fig. 1). M4 was found only in A. semenovii (GCCC) and M5 – 218 

only in A. nephrolepis (GCAC). Apart from four SNPs polymorphic in A. sibirica, one more mutation 219 

was found specific to mitotype M4 of A. semenovii and seven mutations specific to M5 of A. nephrolepis 220 
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(Fig. 1). A closer relationship between A. sibirica and A. semenovii compared with A. nephrolepis is 221 

expected, considering that, based on the previously used mitochondrial DNA fragments, A. sibirica and 222 

A. nephrolepis have different, albeit closely similar haplotypes, while no differences between A. 223 

semenovii and A. sibirica were found (Semerikova et al. 2018). Most of the studied populations of A. 224 

sibirica contained only one mitotype (Fig. 1). M2 was fixed in the Baikal region, north-east of the Eastern 225 

Sayan, the Middle and Lower Yenisei, most of West Siberia and the Northern and Subpolar Urals. M1 226 

was fixed or dominant in the mountain ridges of the Western Sayan, Kuznetsk Alatau and the Altai. These 227 

two mitotypes M1 and M2 formed a mosaic structure co-occurring in some populations in the Middle 228 

and Southern Urals, the west of the West Siberia Plain and European Russia. 229 

The mitotype M3 was fixed or present as an admixture to M1 in the southernmost populations of the 230 

Altai and Kuznetsk Alatau and completely absent in more northern populations. The phylogenetic 231 

structure was not pronounced, and NST was higher than GST (0.897 vs. 0.866), but the difference was not 232 

statistically significant (P = 0.25). At K = 3, SAMOVA divided the populations into three geographic 233 

groups according to the areas of the three identified mitotypes. At the same time, FST was very high 234 

(0.933, Table 2), which is typical for mtDNA markers in conifers. The highest differentiation, based on 235 

the SAMOVA grouping, was found between populations within the total sample and between groups 236 

(Table 2). 237 

3.2. The niche modelling indicates a stronger reduction of the range of A. sibirica compared to the 238 

Larix species during the LGM 239 

The computed Abies and Larix ranges in Northern Eurasia based on the environment niche modeling 240 

for the present day largely coincided with the current ranges of these species (Fig. 2: H and P). The 241 

computed area potentially favorable for fir during the LGM was at the mid-latitudes (south of Moscow's 242 

latitude – about 55 lat.) (Fig. 2, A). It intermittently stretches from west to east and partly overlaps with 243 
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the most southern parts of the present range of Siberian fir, such as the Southern Urals, Altai, the Sayans 244 

and the south of the Baikal region. This range included also areas where fir species are completely absent 245 

now: the plains of Eastern Europe and Central Kazakhstan. 246 

The potential area reconstructed for larch during the LGM (Fig. 2, I) was much wider, and the northern 247 

limit of larch distribution located much further to the north than for fir, reaching the latitude of Surgut 248 

town (about 61 lat.). In the southern and western parts, the range of larch in the LGM period could 249 

probably significantly expand into Eastern Europe, Central Kazakhstan and East Asia. 250 

3.3. Peleodata indicates a more limited distribution of fir in the LGM and a later expansion to the 251 

north after climate improvement in comparison to larch 252 

Pollen and macrofossil records of Abies in the time intervals close to the LGM (21.5–18.5 and 18.5–253 

15.5 kya; Fig. 2, A and B) are extremely rare. The pollen records along the coasts of the Kara and Okhotsk 254 

seas, as well as the macrofossil sample taken near the mouth of the Yenisei River, seem suspicious, as 255 

they are located far beyond the reconstructed range of fir during the LGM and even beyond the modern 256 

range. We believe that the wrong time placement of fir pollen in these records may be due to the re-257 

deposition of older pollen, and the wrong time placement of the macrofossil may be the result of an error 258 

in determining the radiocarbon age. In the more recent time (12.5–15.5 kya; Fig. 2, C), fir records become 259 

more abundant, however, relatively reliable ones are still limited to southern Siberia and the south of the 260 

Russian Far East. Near the beginning of the Holocene (10–12 kya; Fig. 2, D), fir suddenly becomes 261 

common both in the south of Western Siberia and in the north, where it is noted at several locations. 262 

Then, until about the middle of the Holocene, fir remains abundant in northern Siberia, and 7–9 kya it 263 

was noted in the center of Yakutia (Fig. 2, E). After 4 kya, fir reduces the area in the north (Fig. 2, G and 264 

H). Some pollen deposition corresponding to this time period was found in the north close to the Lena 265 

River delta, but it could be the result of re-deposition of older pollen from the early Pleistocene or an 266 



13 
 

occasional long-distance pollen dispersion. The same trend was observed in the south of the Yamal 267 

Peninsula and north of West Siberia where fir pollen was continuously present in the peat deposits 268 

beginning from 8 kya and disappeared after 5 kya (Panova et al. 2010). It is interesting to note that similar 269 

dynamics of fir was observed in the mountains of southwestern Mongolia, about 600 km beyond the 270 

southern limit of the present range, where, according to radiocarbon dating of fir macrofossils (wood) in 271 

the Holocene peat deposits, fir was present in the middle Holocene and disappeared approximately after 272 

3.5 kya (Dorofeyuk and Tarasov 2000). Similar, fir appeared in peatlands in Northern Kazakhstan (far to 273 

the south of the modern range) in the Holocene optimum and later disappeared (Gorchakovsky 1987). 274 

Unlike fir, during the LGM larch is noted in pollen records in northeastern Siberia, and macrofossils 275 

are found in the north of Western Siberia, i. e. much to the north of the area reconstructed by MAXENT 276 

(Fig. 2, I), and 18.3 kya, according to macrofossils – on the coast of the Kara Sea. However, a noticeable 277 

increase in the amount of pollen and macrofossil records throughout the present range is observed only 278 

after 15.5 kya (Fig. 2, K), and especially significantly with the beginning of the Holocene (Fig. 2, L). By 279 

the end of the Holocene, larch retreats to the limits of the modern range. 280 

4. Discussion 281 

4.1. NGS facilitates development of mtDNA markers in plants 282 

The maternal inheritance of mtDNA markers makes them very valuable for population and 283 

phylogeographic studies, especially in the Pinaceae family, where chloroplast DNA has paternal 284 

inheritance. MtDNA markers could be useful also in other plants, because plant mitogenomes are much 285 

larger than animal ones ranging from 208 kb in Brassica hirta to 11.3 Mb in Silene conica (see Liao et 286 

al. 2018 for review). However, until recently, the use of mtDNA was limited, since available markers 287 

were restricted to a few known intron and intergenic spacer regions amplified by the "universal" PCR 288 
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primers. For many conifers polymorphism in these regions is either absent or not sufficiently informative. 289 

Developing species-specific markers requires de novo sequencing of a sufficient part of the mitogenome, 290 

which, prior to the appearance of NGS methods, was a time-consuming task. This is exacerbated by the 291 

low nucleotide variation in plant mtDNA, much lower than the variation in nuclear and chloroplast DNA. 292 

The latter circumstance makes it inefficient to search for variation in plant mitogenomes using the RAD-293 

seq or other methods that involve sequencing of small fractions of the genome. In this study, we used the 294 

results of the whole-genome-shotgun (WGS) sequencing of the Siberian fir genome to develop species-295 

specific markers of mtDNA. Since the WGS was based only on one tree, to search for polymorphism we 296 

re-sequenced randomly selected portions of the mitogenome in a few trees using the Sanger method. We 297 

used the same approach recently to develop seven markers for mtDNA in Scots pine (Semerikov et al. 298 

2015, 2018). Unfortunately, this approach implies a large volume of capillary sequencing. The use of 299 

NGS instead of the Sanger method for the sequencing of several trees in the search for polymorphism in 300 

mtDNA of Scots pine and related species proved to be more effective (Donnelly et al. 2017). Thus, at 301 

present the progress of NGS methods makes it relatively inexpensive and very quick to develop mtDNA 302 

markers suitable for population and phylogenetic studies of any plant species. 303 

4.2. Colonization of the northern part of the range of Siberian fir and Siberian larch 304 

The histories of Siberian larch and Siberian fir in the LGM and after it apparently differed significantly 305 

from each other. According to the reconstruction of ecological niches, pollen and macrofossil data, 306 

Siberian larch was present in northern Siberia during the LGM, although treeless landscapes dominated 307 

much of Northern Eurasia (Tarasov et al. 2000; Binney et al. 2017). Siberian larch reached the latitude 308 

of 72° already by 18.37 kya (Kosintsev et al. 2012). Consequently, the colonization of northern Siberia 309 

by larch began before the LGM that agrees with the results of the Bayesian analysis of the historical 310 

demography of Siberian larch based on the chloroplast microsatellite data, which gave the estimate of 311 
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the age of population expansion that significantly exceeded the age of the LGM and probably 312 

corresponded to the onset of migration from the refugia after one of the intensive Middle-Pleistocene 313 

glaciations (Semerikov et al. 2013). Despite the fact that the structure of the mtDNA variation in Siberian 314 

larch corresponds to the colonization of northern Siberia primarily from a single southern refugium, 315 

heterogeneity of the mtDNA variation in the northern Siberia supported by the spatial analysis of 316 

molecular variation (SAMOVA) suggests post-LGM dispersion out from several secondary refugia 317 

located in the north of Western Siberia (Semerikov et al. 2013). 318 

In contrast to larch, Siberian fir had a very limited distribution in Siberia and the Urals during the 319 

LGM, according to both the paleodata and niche modelling. During the LGM, it apparently could exist 320 

only in some mountain and foothill areas of the Southern Urals, the south of Siberia and the Baikal region. 321 

A significant increase in the number of samples containing Abies pollen or macrofossils occurred after 322 

15 kya and only in the southern part of the range. However, by the beginning of the Holocene, Siberian 323 

fir had already reached the Kara Sea. The mtDNA data in Siberian fir correspond to the colonization of 324 

the north range from a limited area, because only one of the two most common haplotypes is distributed 325 

in the north of Western Siberia and the north of the Urals. Such a source could be the Baikal region, 326 

where this haplotype is fixed. Data on the allozyme and AFLP variation (Semerikova and Semerikov 327 

2011) are compatible with this hypothesis: based on the allele frequencies, the populations of northern 328 

Siberia and the northern Urals are similar to Baikal populations (Semerikova and Semerikov 2011). 329 

Moreover, higher diversity in populations of southern Siberia and the Baikal region compared to northern 330 

Siberia and the Urals was revealed with chloroplast microsatellites (Semerikova and Semerikov 2007), 331 

which is in agreement with the hypothesis of migrations from southern refugia. The contribution of only 332 

one hypothetical glacial refugium in the recolonization of the North suggested by the mtDNA data 333 

contrasts Siberian fir with Siberian larch, for which the existence of several secondary refugia can be 334 

assumed in the north of the range during the LGM. This circumstance also distinguishes it from boreal 335 
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conifers in North America, where several refugia were reconstructed for each of the species studied: 336 

balsam fir (Cinget et al. 2015), black spruce (Gérardi et al. 2010; Jaramillo-Correa et al. 2004), tamarack 337 

(Warren et al. 2016), and jack pine (Godbout et al. 2010). This difference is probably related to the dry, 338 

extremely continental climate of Siberia, which could have been drier in the late glacial and probably 339 

restricted the fir to the most favorable areas of south Siberia and the Urals, unlike the larch, which 340 

survived close to the present Kara sea, and prevented the fir from crossing the southern, most arid belt 341 

of the West Siberian Plain after warming. As a result, only the populations of the refugium located in the 342 

mountains around the Baikal Lake could do this by spreading along the Angara and Yenisei Rivers. 343 

The phylogeographic pattern of the presence of a common haplotype in the north of Western Siberia 344 

and in the Baikal region found in Siberian fir, is not quite common for the species of the taiga biota of 345 

Northern Eurasia. For instance, the populations of Siberian larch (Semerikov et al. 2013), wood lemming 346 

(Fedorov et al. 2008), flying squirrel (Oshida et al. 2005), and Siberian pine (Dr. D. Shuvaev, pers. 347 

comm.) in the north of Western Siberia had haplotypes common with haplotypes in the regions located 348 

west of Lake Baikal. In addition to the peculiarities of the ecological properties of Siberian fir, its unusual 349 

phylogeographic pattern may be a consequence of the random nature of the long-distance seed dispersion, 350 

which undoubtedly plays an important role in the process of colonization. 351 

The mitotypes M1 and M3, common in the Altai, the Sayans, and Kuznetsk Alatau Mountains, were 352 

absent in northern Siberia, indicating the lack of a significant contribution of populations of these regions 353 

to the modern northern populations, which coincides with a similar conclusion about the role of southern 354 

mountain populations of Siberian larch (Semerikov et al. 2013). 355 

4.3. MtDNA data indicate repeated migrations of fir to the Urals 356 

Floristic surveys suggest the Siberian origin of most of the taiga forests species of the Urals 357 

(Krasheninnikov 1937; Hulten 1937; Gorchakovsky 1969). Accordingly, the mitotypes of Siberian fir 358 
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and Siberian larch in the Urals arose in Siberia or have originated from related mitotypes common in 359 

Siberia. Unlike Siberian larch, which has only one mitotype across the Urals, Siberian fir in the Urals 360 

has two mitotypes, M1 and M2, which are also common in Siberia. It is noteworthy that in the northern 361 

part of the Urals (starting from population #5 to the north) mitotype M2 is almost fixed (Fig. 1). M2 is 362 

also fixed in northern Siberia, which probably indicates that the colonization of the north of the Urals 363 

took place together with the settlement of the north of Siberia by a single migration wave. This 364 

assumption is supported by the results of studies of variation of allozyme and AFLP loci, which make 365 

however the story more complex: populations in the northern Urals genetically are similar both to the 366 

populations of the Baikal region, as well as to the populations of the Urals south (Semerikova and 367 

Semerikov 2006, 2011), suggesting the admixed origin of the populations in the northern Urals. It is 368 

interesting that the fir mitotypes in the south Ural and neighbor areas have a mosaic geographical 369 

distribution, and the majority of the investigated populations contain a single mitotype, which may be 370 

the result of dispersion from multiple local refugia, that suggests that M1 and M2 mitotypes were present 371 

here before LGM. Moreover, they could not come to the Urals together, during the post-LGM 372 

colonization of northern Siberia, since only one of them is present in the center of Western Siberia. 373 

Consequently, the fir migrations to the Urals most likely occurred several times or in different ways, for 374 

example, through more southerly regions, which are now outside the range of fir. For example, according 375 

to the findings of the Abies pollen in the peat bog near Lake Karasie, Kokshetau region of Kazakhstan 376 

(Gorchakovsky 1987, and refs. cited therein), the area of fir in the early Holocene could have expanded 377 

southward, capturing Northern Kazakhstan. In addition, the MAXENT reconstruction allows the 378 

presence of Siberian fir in Central Kazakhstan in the LGM (Fig. 2, A) and, accordingly, does not exclude 379 

the possibility of migrations from the Altai to the Urals across this area. 380 

4.4. Markers with different inheritance mode reflect different aspects of the colonization 381 
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The populations in Western Siberia, despite their Baikalian origin suggested by the mtDNA, according 382 

to the allozyme, AFLP and cpDNA data (Semerikova and Semerikov 2006, 2007, 2011) contain an 383 

admixture of genes from the populations of Altai, the Urals and the Sayans. Probably, this discrepancy 384 

of mitochondrial vs. nuclear and chloroplast markers can be explained by the difference in their 385 

inheritance mode and, as a result, the second and third are transferred by both seeds and more mobile 386 

pollen in contrast to the first transferred only by seeds. This feature determines faster homogenization of 387 

the spatial structure for nuclear and chloroplast markers due to the pollen mediated gene flow that more 388 

efficiently connects remote regions. 389 

5. Conclusions 390 

The study of mtDNA variation, analysis of paleontological data and environmental niche modelling 391 

shed light on the history of two Siberian conifers in the Late Pleistocene and Holocene and suggested the 392 

most likely scenario of the dynamics of their ranges. The geographical heterogeneity of the mtDNA 393 

variation of Siberian fir and Siberian larch in the southern part of their range is in agreement with their 394 

distribution from several glacial refugia, while the homogeneity of populations in the northern part of the 395 

range indicates that its colonization involved only one of the southern refugia, which, however, was not 396 

the same in these species. In addition, the beginning of the colonization of the northern part of the range 397 

of Siberian larch as indicated by the paleontological data and the results of modeling of ecological niches, 398 

predated the last glacial maximum unlike in Siberian fir. According to the mtDNA data the migrations of 399 

Siberian fir to the Urals probably occurred more than once. 400 
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Table 1. Mitochondrial contigs, mitotypes, GenBank accession numbers, SNPs detected, nucleotide 576 

sequences of primers used for sequencing and SSCP genotyping, and length of the PCR product amplified 577 

in Abies sibirica (mitotypes M1, M2 and M3), A. nephrolepis (M5) and A. semenovii (M4). 578 

Contig 

number 

Mitotype GenBank 

accession 

number 

SNP 

(nucleotide 

position) 

Primer nucleotide sequence Length of the 

PCR 

fragment in 

A. sibirica, bp 

167 M2 MH070276 T (992) A167F: AGCTGATCCGCTGAATGACT 

A167R: ACTTCGTCCCTGAAGCAAGA 

1339 

M1, M3 MH070277 G (992) 1339 

M5 MH070278 G (992) 1339 

M4 MH070279 G (992) 1339 

   A167NLa: AACAATGGGATTTGGAATGC 

A167NRa: CTCGTCCAATTGATCAAGCA 

221 

65 M2 MH070284 C (46) A65F: CCGGAGTGGTTTTGTTGAGT 

A65R: TATGCCTTCTCGGAAACACC 

1113 

M1, M3 MH070285 A (46) 1113 

M5 MH070286 C (46) 1096 

M4 MH070287 C (46) 1113 

   A65NRa,b: TGGCCCCTAATGGTGTTAGA 165 

126 M2 MH070272 A (1254) A126-2F: TGTGGGGATGGATCTCTAGC 

A126-2R: AGGGGTGGTGTGGTCAATAA 

1452 

M1,M3 MH070273 C(1254) 1452 

M5 MH070274 A(1250) 1448 

M4 MH070275 C(1254) 1452 

   A126NLa: CTCCTCACCCTTCGACTCAC 

A126NRa: CCAGAACGGGTGAGTCACTT 

182 

37 M2, M1 MH070280 C (1191) A37-1F: GGCGACGAATAAATCAGGAA 

A37-1R: TCTTGCTTGTTTTGGTGCTG 

1431 

M3 MH070281 A (1191) 1431 

M5 MH070282 C (1191) 1431 

M4 MH070283 C (1191) 1431 

   A37NLa: CTACAGCGGCACATAGATCG 

A37NRa: GTGGAGAGCTCTGCGCTAAT 

250 

aUsed for the SSCP genotyping 579 

bUsed in a pair with A65F 580 

 581 
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Table 2. Hierarchical analysis of the mtDNA genetic variation (AMOVA) based on the SAMOVA 582 

grouping of the Abies sibirica populations into three groups. 583 

Source of variation d.f. Sum of 

squares 

Variance 

components 

Percentage of 

variation 

Among groups 2 422.082 1.244 92.23 

Among populations within groups 42 12.793 0.014 1.03 

Within populations 648 58.903 0.091 6.74 

Total 692 493.778 1.349  

 Fixation indices P-value 

FSC 0.133 <0.00001 

FST 0.933 <0.00001 

FCT 0.922 <0.00001 

 584 

 585 

Figure captions 586 

 587 

Fig. 1. (a) Geographic distribution of the studied fir populations. The mitotype frequencies in each 588 

population are represented as a pie diagram. See population names in Table S1 (Supplementary 589 

material). (b) A network of three mitotypes (M1-M3) found in Abies sibirica in Eastern Europe and 590 

Northern Asia and two mitotypes found in A. semenovii (M4) and A. nephrolepis (M5). 591 
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Fig. 2. Mapped pollen and macrofossil paleorecords of Abies sp. and Larix sp. Modern ranges are 592 

outlined by the thick purple line. Existed pollen records for particular time interval are depicted as 593 

white circles, pollen records of Abies – as red circles, Abies macrofossils – as red diamonds, pollen 594 

record of Larix – as plume circles, Larix macrofossils – as plume diamond. Distributions of species 595 

predicted by MAXENT for LGM (A and I) and present day (H and P) are highlighted by the tone of 596 

red color. More saturated red color reflects conditions more appropriate for the species, less 597 

saturated - less suitable conditions. Time span (kya) for Abies: A – 18.5–21.5, B – 15.5-18.5, C – 598 

12.5–15.5, D – 9.5–12.5, E – 6.5–9.5, F – 3.5–6.5, G – 0.5–3.5, H - 0–0.5, and Larix: I – 18.5–21.5, 599 

J – 15.5-18.5, K – 12.5–15.5, L – 9.5–12.5, M – 6.5–9.5, N – 3.5–6.5, O – 0.5–3.5, P - 0–0.5. 600 
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A range-wide study of the mitochondrial DNA diversity of the Siberian fir 604 

indicates multiple post-glacial colonization centers 605 

Vladimir L. Semerikov, Svetlana A. Semerikova, Yuliya A. Putintseva, Natalia V. Oreshkova, 606 

Konstantin V. Krutovsky 607 
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Table S1. Studied fir populations and their mitotypes. 609 

No. Population Location (Northern latitude / 

Eastern longitude) 

Sample 

size 

Mitotype 

frequencies 

Diversity, He 

A. sibirica 

1 Viyatka 58°40’/ 49°30’ 16 M1:1,M2:15 0.094 

2 Pechera 65o00’/ 57o30’ 12 M2:12 0 

3 Manya 64o30’/ 60o50’ 16 M1:1,M2:15 0.094 

4 Pechero-Ilychsky 61o50’/ 57o00’ 24 M2:24 0 

5 Denegkin 60o09’/ 59o57’ 16 M2:16 0 

6 Kongakovskii 59o40’/ 59o10’ 16 M1:15,M2:1 0.094 

7 Kushva 58o18’/ 59o41’ 16 M1:16 0 

8 Homutovka 56o48’/ 59o57’ 13 M1:9,M2:4 0.346 

9 Chusovoy 57o17’/ 57o49’ 16 M1:16 0 

10 Tavatuy 56o50’/ 60o20’ 16 M2:16 0 

11 Sim 54o59’/ 57o41’ 12 M1:12 0 

12 Taganay 55o10’/ 59o40’ 16 M1:16 0 

13 Tobolsk 58o12’/ 68o16’ 16 M2:16 0 

14 Khanty-Mansiysk 61o00’/ 69o10’ 16 M1:16 0 

15 Oktyabrskoye 62o35’/ 66o05’ 16 M1:16 0 

16 Noyabrsk 63o12’/ 75o29’ 16 M2:16 0 

17 Turuhansk 65o48’/87o59’ 16 M2:16 0 

18 Yartsevo 60o14’/90o15’ 16 M2:16 0 

19 Kemerovo 55o20’/ 86o05’ 24 M1:24 0 

20 Salair 53o35’/ 85o70’ 24 M1:24 0 

21 Kolyvan 51o10’/ 82o50’ 18 M1:18 0 

22 Karasuk 51o58’/ 85o57’ 16 M1:16 0 

23 Tashtagol 52o40’/ 88o00’ 16 M3:16 0 

24 Tanzybey 52o50’/ 93o00’ 16 M1:16 0 

25 Divnogorsk 55o55’/ 92o30’ 15 M1:14,M2:1 0.100 

26 Taishet 55o57’/ 98o00’ 16 M1:1,M2:15 0.094 
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No. Population Location (Northern latitude / 

Eastern longitude) 

Sample 

size 

Mitotype 

frequencies 

Diversity, He 

27 Sludyanka 51o38’/103o42’ 24 M2:24 0 

28 Ulan-Ude 51o50’/106o42’ 16 M2:16 0 

29 Sohondinskii 49o30’/111o00’ 16 M2:16 0 

30 Inzer 54o18’/57o23’ 16 M2:16 0 

31 Yoshkar-Ola 56°42’/47°55’ 11 M1:8,M2:3 0.327 

32 Artybash1 51°48’/87°15’ 16 M1:9,M3:3 0.409 

33 Multa 50° 00’ /85° 49’ 8 M1:5,M3:3 0.534 

34 Bor 61°30’/90°10’ 16 M2:16 0 

35 Salym 60°03’/71°27’ 16 M2:16 0 

36 BelYar 58°26’/85°06’ 16 M2:16 0 

37 Kargasok 59°00’/80°51’ 16 M2:16 0 

38 Teguldet 57°18’/88°14’ 16 M1:2,M2:14 0.175 

39 Bakchar 57°02’/82°03’ 16 M1:1,M2:15 0.094 

40 Eniseysk 58°25’/92°09’ 16 M1:1,M2:15 0.094 

41 Severobaikalsk 55°42’/109°03’ 16 M2:16 0 

42 Pochekuika 61°22’/73°46’ 16 M2:16 0 

43 Visokii 61°06’/76°00’ 16 M2:16 0 

44 Aleksandrov 60°25’/77°50’ 8 M2:8 0 

45 Tomsk 56°34’/84°00’ 8 M1:1,M2:7 0.188 

 Total  697   

A. nephrolepis 

 Obluchye 49°01’/131°05’ 1 M5:1 - 

A. semenovii 

 Sary-Chelek 41°54’/71°56’ 1 M4:1 - 

 610 

  611 
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Fig.S1. Genotyping of Siberian fir mitochondrial DNA markers using the SSCP method (Fujita et al., 612 

1994) in a non-denaturing polyacrylamide gel. Eight lines (from left to right) correspond to eight 613 

individuals with mitotypes M3, M1, M1, M3, M2, M2, M2, M2. Four variable electrophoretic zones of 614 

single-stranded fragments correspond to the markers A167, A65, A126 and A37 (from top to bottom), 615 

each of which has two alleles differing in one nucleotide and different mobility, due to conformational 616 

polymorphism. Marker A167 in these eight trees has a nucleotide: G, G, G, G, T, T, T, T. Marker A65 - 617 

A, A, A, A, C, C, C, C, respectively. Marker A126 - C, C, C, C. A, A, A, A. A37 - A, C, C, A, C, C, C, 618 

C. 619 
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