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 A B S T R A C T 

 
The aim of the work is to present a construction, a mathematical model 
and a method for calculating the indicators quality dynamics of a gas-
static thrust bearing with a сarrying center on an elastic suspension. It 
is shown that the applying this improvement completely eliminates the 
significant shortcomings of the quality dynamics of a thrust bearing 
with self-compensation. It turns the design into a dynamic system with 
optimal dynamic characteristics - high stability indicators, aperiodic 
nature of transients, and oscillatory index values  which are specific for 
ideally damped dynamical systems. 
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1. INTRODUCTION 
 
It is known that gas-static bearings with self-
compensation (with “annular diaphragms”) are 
absolutely stable [1 - 3], but the quality of their 
dynamics has a number of serious drawbacks. 
These include low speed, increased oscillatory 
transients, big amplitudes of the resonance 
frequency response of the transfer function of 
dynamic compliance. This is due to the negative 
effect of the volume of compressed gas in gap on 
the thrust bearing damping. 
 
It is possible to improve the dynamic 
characteristics of the thrust bearing by means of 
improvements aimed at reducing the volume of 

the bearing lubricating film and increasing its 
damping capacity. 

 
Fig. 1. The design scheme of the thrust bearing 
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Figure 1 shows a scheme of a gas-static thrust 
bearing (GB) with shaft 1 and base 2, which is 
connected to the supporting disc 3 of radius r0. 
GB uses lubrication from a source of compressed 
gas through openings of small diameter d, which 
are evenly located on the disk 3 around a circle 
of radius r1. The central movable carrying disc 5 
is supported by the elastic suspension 4 in the 
form of a thin ring of thickness δ providing the 
required amount of deformation e of the 
suspension material. 
 
During operation of the thrust bearing, the 
lubricant is fed into it under pressure of pH 
through the hole in the base 2, then through the 
annular diaphragms into the carrier gap and 
then flows out of it into the environment. Under 
the action of the pressure difference pH – pd > 0 
on the surface of the center 5, the ring 4 is 
deformed, as a result of this center is displaced 
by the value of e in the direction of the shaft 1. 
Compared with the usual thrust bearing (e = 0), 
its carrier gap will be less, moreover, due to the 
deformation of the material of the ring 4, the 
nature of oscillations of the carrier gap of 
lubricant will change, which may contribute to 
the improvement of the design dynamics. 
 
2. MATH MODELING 
 

The study of the quality of the GB dynamics was 
carried out in dimensionless form. Dimensional 
values of the mathematical model are indicated 
by lower case letters, dimensionless – upper 
case. The scales of dimensionless quantities are 
taken: outer radius r0 – for radii; the 
corresponding static load f0 (stationary mode of 
the so called state of a “starting point”) thickness 
h0 of the lubricant gap on the outer ring of the 
disk 3 – for displacements, pressure pa of the 
environment – for pressures, πr02pa – for forces.  
 
The mathematical model describes the 
movement of compressed gas in the areas of the 
lubricating gap formed by the surfaces of shaft 1 
and center 5 (central region 0 ≤ r ≤ r1) and the 
outer ring of disk 3 (annular region r1 ≤ r ≤ r0). 
The areas are in contact around a circle of radius 
r1, on which the annular diaphragms are located. 
The pressure function in the lubricant gap of 
these regions obeys the system (1) – (2) 
boundary value problems for the Reynolds 
differential equation [7] 
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where Pc(R, τ) and Pr(R, τ) – pressure functions 
in lubricant gaps of areas; Hc (τ) and H (τ) are 
functions of the thickness of the gaps in these 
areas; Pd (τ) is the pressure function at the outlet 
of the annular diaphragms; R, τ – radius and 
current time. 
Here 

2 2

0 0 0σ 12 / аr p h t=                           (3)                                                                  

– “number of compression” of the gas gap [8], 
where μ is the dynamic viscosity of the gas 
lubricant, t0 is the current time scale. 
 
To determine the unknown pressure Pd (τ), the 
continuity equation of the lubricant flow was 
used 

Q (τ) Q (τ) Q (τ),r c d− =                  (4)                                                          
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– functions of the mass flow rate of gas at the 
entrance to the gaps of the corresponding 
regions and at the exit from the annular 
diaphragms, where Ad is the similarity criterion 
of the feeding holes in the Prandtl outflow 
function [8]. 
 
The force balance equation of shaft 1 was 
represented as 
 

W(τ) (τ) (τ),inF F− =                             (6)    

 
where F is the external force, W = Wr + Wc is the 
bearing capacity of the thrust bearing, 
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– components of the carrying capacity of the 
areas of the gap and the inertia force of the shaft 
1, where M – its mass. 
 
The displacement ε (τ) of center 5 and the 
function of the gap Hc (τ) were found by the 
formulas 

 

( ) ( )2

1 1 , ε ,H H m H cW R P K W W= − = −  

ε,cH H= −                                               (8) 

 
where Km is the elasticity of the elastic ring 4. 
 
The study of the dynamics of the thrust bearing 
was carried out for small oscillations of the shaft 
1 in the vicinity of the aforementioned state of a 

“starting point” using a specialized computer 
simulation environment, calculation and 
research of gas-static bearings (SIGP 
environment) [8] by methods of the theory of 
linear dynamic systems [8, 9]. The solution of 
boundary value problems (1), (2) for the 
linearized and Laplace-transformed Reynolds 
equations is obtained by numerical method [7], 
which guarantees the specified accuracy of the 
calculation of complex coefficients with integro-
differential images of the generalized 
coordinates of the dynamic model (1) - (8). 
For a quantitative assessment of the stability 
and speed of the GB as a dynamic system, the 
degree of stability η was used [8]. The stability 
margin of the GB was estimated using the 
oscillatory index β [7] of the amplitude-
frequency characteristic of the transfer function 
of the dynamic compliance of the thrust bearing 

( ) ( ) / ( )K s H s F s=   , where ,H F   are the 

Laplace transform of small deviations of the 
corresponding functions from their stationary 
values, s is the variable of the Laplace transform 
[8, 9]. 
 
The following parameters were used as input: 
supply pressure PH, radius R1, “squeeze number” 
σ and ε0 – static shift of center 5and normalized 
diaphragm resistance adjustment factor 

( ) ( )2 2

0χ 1 / 1d HP P= − −   [0,1], where Pd0 is the 

static lubricant pressure at the outlet annular 
diaphragms with a static gap thickness H0 = 1 
(state of a “starting point”). 

 
The scale t0 was determined from the condition 
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where m is the mass of the shaft 1. 
 
The pressure Pd0, the criterion Ad and the 
compliance Km in the “starting point” mode, for 
which problems (1) – (2) have an analytical 
solutions, were determined by the formulas 
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3. RESEARCH RESULTS 
 
Figure 2 shows the dependences of the static 
compliance K0 of the thrust bearing on the 
setting factor  at various values of the supply 
pressure PH. As the parameters ε0 and σ do not 
affect the static characteristics of the thrust 
bearing, so the meanings  of the coefficient  are 
significant and at which the thrust bearing has 
the least static compliance. The function K0 () is 
unimodal and, therefore, has a unique minimum, 
which, as can be seen from the graphs, 
corresponds to  ≈ 0.45. The calculation of the 
dynamic characteristics carried out for this 
value . 

 
Fig. 2. Curves of static compliance K0 as a 
function of the setting factor χ for different 
values of supply pressure PH at R1 = 0.7 
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Figure 3 shows the effect of the static 
displacement ε0 of center 5, which is equivalent 
to the effect of Km compliance of ring 4, on the 
character of the transient process ΔH (τ) with 
the input force ΔF (τ) as a δ-function of Dirac [7].  
 

 
Fig. 3. Curves ΔH of the transition process for 

different displacements ε0 of center 5 at PH = 5; χ = 

0.45; R1 = 0.7; σ = 20 
 
With a hard disk 5, when ε0 = 0 and Km = 0, the 
transition curve is characterized by distinct 
oscillation. With an increase in ε0 and Km the 
oscillation of the transition curves decreases, 
which is reflected in a decrease in the amplitude 
of the oscillations. Already at ε0 ≥ 0.3, when in a 
static state, the thickness of the gap in the 
central region due to the displacement of the 
center 5 decreases by at least 30% and thereby 
contributes to a noticeable decrease in the 
volume of lubricant in the gas gap, the transient 
process becomes aperiodic. For such modes the 
duration of transient processes decreases. 
 
A more complete picture of the duration of the 
transient characteristics is provided by the 
curves of Fig. 4, which show the effect of the 
displacement ε0 on the speed of the thrust 
bearing. The graphs show that with increasing 
ε0, the degree of stability η quickly increases, 
reaches its maximum and then decreases, which 
indicates the extreme nature of the dependence 
η (ε0). It was established that the σ values that 
are to the left of this maximum correspond to 
oscillatory modes of transient processes, and to 

the right – aperiodic ones, which is confirmed by 
the graphs shown in Fig. 3.  

 
Fig. 4. Curves of the degree of stability η from the 
displacement ε0 of the movable center 5 for 
different values of the “compression number” σ 
at PH = 5; χ = 0.45; R1 = 0.7 
 

 
Fig. 5. Curves of the oscillation index β from the 

“number of compression” σ for different 

displacements ε0 of the moving center at PH = 5; χ = 

0.45; R1 = 0.7 
 
The analysis of the curves in Fig. 4 indicate that 
the function η(σ), and, therefore, the function 
η(ε0, σ) also has an extremal character and has a 
unique extremum maximum. It determines the 
optimal mode of the speed of the thrust bearing. 
As a result of the optimization of the function 
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η(ε0, σ), it has been established that the thrust 
bearing has a maximum response speed when ε0 
= 0.31 and σ = 13, which corresponds to the 
extremum η (ε0, σ) = 1.52. A similar thrust 
bearing with a rigid ring 4 (ε0 = 0) would have 
the largest value η = 0.13. From this it follows 
that the improvement applied in the thrust 
bearing, with an optimal choice of parameters 
affecting only the dynamics of the construction, 
makes it possible to increase its speed more 
than an order of magnitude. 
 
Figure 5 shows the dependence of the oscillation 
index β on the “number of compression” σ for 
various displacements ε0. To the heel with a rigid 
ring 4 (ε0 = 0) there corresponds a curve on β > 
5, which characterizes the heel as a resonant 
system of too high oscillation. 
 
With increasing ε0, the index β decreases and 
already at ε0 ≥ 0.2, the thrust bearing acquires 
the properties of a well-damped dynamic 
system, for which the indicator β should not 
exceed values of 1.1 – 1.5 [7]. As can be seen 
from the graphs, when ε0 ≥ 0.3, the dependences 
β (σ) become resonanceless (β = 1), and the 
thrust bearing becomes a non-oscillating 
dynamic system with aperiodic nature of 
transients, providing the structure with the 
greatest stability margin. 
 
4. CONCLUSION 
 
The results suggest that the applying this 
improvement completely eliminates the 
significant shortcomings of the quality dynamics 
of a thrust bearing with self-compensation. It 
turns the design into a dynamic system with 
optimal dynamic characteristics - high stability 
indicators and oscillations index values which 
are specific for ideally damped dynamical 
systems. 
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